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ABSTRACT 
The new approach to modal parameter identification, 
presented in this paper, uses an asymptotically stable 
observer to form a discrete state-space model for a 
wind turbine structure. The identification is per
formed using input-output time-series. A special 
software package developed in this research has been 
tested using the data generated by the ADAMS�1 
model of the Micon 65/13 wind turbine structure. 
Numerical and graphical presentation of some of the 
results, generated by the programs developed, illus
trates the range of their applicability. 

1 INTRODUCTION 

The goal of this research was to develop advanced 
system identification techniques to accurately meas
ure the frequency response functions of a wind tur
bine structure -immersed in wind noise. To allow for 
accurate identification, we developed a special test 
signal called the Pseudo-Random Binary Sequence 
(PRBS). The PRBS signal produces the wide-band 
excitation necessary to perform system identification 
in the presence of wind noise. The techniques pre
sented here will enable researchers to obtain modal 
parameters from an operating wind turbine. More 
importantly, the algorithms we have developed and 
tested (so far using input-output data from an ADAMS 
model of a wind turbine structure) permit state-space 
representation of the system under test, particularly 
the modal state-space representation. This is the only 
system description that reveals the internal behavior 
of the system, such as the interaction between the 
physical parameters, and which, in contrast to trans
fer functions, is valid for non-zero initial conditions. 

Sandia National Laboratories' (SNL) Natural Excitation 
Technique (NExT) for modal parameter extraction from
operating wind turbines uses the measured system 

1 ADAMS is a registered trademark ofMechenical Dynam

ics, Inc. 

outputs obtained as a result of natural wind excitation 
[2). Generally, the cross-correlation function of such 
outputs has the shape of the system's impulse re
sponse and therefore allows one to extract modal fre
quencies and damping ratios. SNL's researchers have 
done this using one of the system realization algo
rithms (such as the Eigensystem Realization Algo
rithm developed at the National Aeronautical and 
Space Administration's [NASA] Langley Research 
Center). In other words, SNL researchers assume that 
the cross-correlation function represents the sequence 
of Markov parameters or impulse response of the sys
tem to be identified. Such an assumption will not lead 
to any input-output model of the system, such as a 
transfer function or state-space representation. To 
identify any of these input-output characteristics, it is 
not enough to excite the system with a frequency-rich 
signal (such as natural wind noise) but one must also 
measure this signal. System identification requires a 
frequency-rich input-output history. 

Researchers have developed many system identifica
tion techniques and applied them to state-space 
models to identify modal parameters. Most tech
niques use sampled-impulse system response histo
ries, known as system Markov parameters. The new 
approach, presented here, uses the results obtained 
by researchers at NASA's Langley Research Center [3-
5]. Rather than identifying the system Markov pa
rameters (whieh may exhibit very slow decay), one can 
use an asymptotically stable observer to form a stable, 
discrete state-space model to identify the system. 

The organization of this paper is as follows. In Section 
2, we discuss how the excitation or input signal 
should be chosen. Then, in Section 3, we present the 
problem of making a proper selection of measure
ments to be obtained from a modal test. In Section 4, 
we introduce the Observer /Kalman Filter state-space 
model whose identification is performed by the 



®2 MATLAB program fiokuy.m, originally introduced in
(1]. Finally, in Section 5, we present general informa
tion on the identification methodology. Additional 
details are discussed in the Appendix, where a case 
study is presented using input-output time-series 
obtained from the ADAMS model of the wind turbine 
Micon 65/13. Section 6 concludes the paper and 
summarizes the results presented. 

2 SELECTION OF INPUT SIGNAL 

Both the simulation and the experiment provide sam
pled input-output data. The sampling interval T has
to be properly chosen. The Nyquist frequency 

1t 
roN =- [rad Is] or T f N - [Hz] (1) 2T 

must be greater than the bandwidth of interestfm of ax 
the structure. If the structure bandwidth considered 
is limited by the frequency fm then (according to ax· 
the sampling theorem) discrete-time representation of 
this process requires a sampling frequency of 

fs > 2/ max. The rule of thumb is to choose

fs = (6 to 25)/max with fs=1/T as high as possible.

On the other hand, in order to correctly identify the 
steady-state gain of the process, the duration of at 
least one of the pulses in the PRBS must be greater 
than the rise time tR of the process. · 

The value of the input PRES signal can switch be
tween two levels every Tprbs seconds. In other words,

Tprbs is the switching period. As explained in [8], the

spectrum of the pseudo-random binary signal ap
proximates the broad-band noise, provided its clock 
frequency is fast enough and its sequence length is 
large enough. The PRESs are generated by shift regis
ters with feedback (implemented in hardware or soft
ware). The maximum length L of a sequence is 

(2) 

where N is the number of stages of the shift register. 
As mentioned earlier, the maximum duration of at 

least one pulse, NTprbs, must exceed the rise time of 

the process: 

NTprbs > tR (3)

The clock frequency fprbs for the PRES must accord

ingly be chosen as a submultiple of the sampling fre

quency ]5• If fprbs=fsiP (p=1,2, ... ), then Tprbs = T p 

2 MA 1LAB is a registered trademark of The Math Works, 

Inc. 

and, combining this with the inequality (3). we obtain 
the following condition that must be fulfilled: 

t tR R
N>-= -- (4) T P Tprbs 

Because lowering the clock frequency of the PRBS will 
reduce the frequency range in which its spectral 
density can be considered constant, choosing p � 4 is 
recommended [7]. 

Suppose that the process to be identified has the 
bandwidth of 5 Hz but at the same time the band
width of interest is much higher. The time constant of 
such a process is approximately equal to 0.2 s and the 
rise time is approximately 0.4 s. If we set N=10, then 
in view of equation (3) we should have Tprbs 
= pT > 0.04. Because we want the sampling interval to 
be as small as practical, we shall choose p=4 and 
T=O.Ol. This results in Nyquist frequency k =50 Hz,
and we can expect accurate identification of the mo
dal frequencies lower than 10 Hz. Higher modal fre
quencies will be identified with some distortions. If the 
required bandwidth of interest is 30 Hz, then, for ac
curate identification, the sampling frequency should 
at least be 180 Hz or the sampling period should be 
approximately 0.005 s that gives fN=100 Hz. On the 
other hand, assuming that the PRBS input sequence 
is generated with N=10 and p=4 (4092 samples long), 
the maximum duration of a pulse in the input signal 
is pNT=0.2 s. Such an input sequence will not prop
erly excite low frequency modes, resulting in consider
able distortions in the low-frequency range of the 
identified frequency response. A practical solution is 
to run several experiments with different sampling 
intervals and to obtain for each of them the fre
quency response accurate in a particular frequency 
range. 

3 SELECTION OF MEASUREMENTS 

The problem of the proper selection of measurements 
has been studied using simulation data for the 
ADAMS analytical model of the Micon 65/13 wind 
turbine structure. There were 32 measurement points 
along the structure but at each of them we had two 
virtual accelerometers measuring in two dir.ections; .. Y . 

and Z, according to the local coordinate systems, dif
ferent for each blade and the tower. 

To excite all the modes, the simulation was performed 
for three out-of-plane excitations and one in-plane 
excitation, all of the same PRES type. The out-of-plane 
excitations were two near the blade tips and one at 
2/3 of the tower height. For each of the three inputs 
we generated a measurement matrix. For identifica
tion purposes, and as a result of sensitivity analysis, 
we reduced the set of 64 measurement variables. We 
selected five variables, i. e., five outputs or five col
umns of the measurement matrix. We did this for 



each of the three driving points. We also applied one 
in-plane excitation at 2/3 of the tower height. To see 
the difference in the frequency response, i.e., to estab
lish that the excitation and consequently the identifi
cation of different modes depends on both the driving 
point and the set of measurement points, we per
formed the identification twice. We used the set of 
out-of-plane measurement points the first time and 
the properly selected set of in-plane measurement 
points the second time. Corresponding pairs of meas
urement points, related to measuring acceleration in 
two different directions, have the same locations on 
the wind turbine structure. 

The important conclusion for modal testing on a real 
wind turbine structure is that the number of meas
urement points can be substantially reduced without 
loss of the modal information. Such a properly se
lected driving point-measurement set leads to accu
rate identification. This statement is supported by 
comparing frequency responses for a given excitation 
point and different outputs. It can be seen from fre
quency responses for any driving point that the fre
quency response for a collocated excitation
measurement pair gives the best resolution of the sys
tem's r�sonance modes. 

4 WIND TURBINE STATE-SPACE MODEL

IDENTIFICATION 

The state-space model is generated using a proper 
input-output sequence, generated as discussed in 
Section 2 and Section 3. The discrete-time state
space model (A;B,C,D) to be identified, defines the fol
lowing relation' betweerr the scalar driving excitation 
u(k) and the measurement m-vector (or output) y(k): 

x(k + 1) = Ax(k) + Bu(k) 
(5) 

y(k) = Cx(k) + Du(k) 

Note that this state space model depends on the 
choice of the state vector .x(t) and the sampling interval
T. Assuming that .x(O)= 0 and solving for the system 
output, we obtain 

k 
CA i-1 y(k) = L .. Bu(k- i) +Du(k) (6) 

i=1 

Equation (6) represents the convolution of the sys
tem's input sequence u(k) and the sequence Y{k) with 
the following elements: 

k-1 Yo = D, Y = CB, Y = CAB, Y = CA B (7)1 2 •.. , k 

Therefore, these elements represent consecutive sam
ples of the system's pulse response and are known as 
Markov parameters. Assuming that our input-output 
sequence has a length of l, we can write l equations of 
the type of (6) with the number of terms on the right 

side increasing as the new input-output pairs become 
available. This set of l equations can be represented 
by the following equation: 

[y(O): y(l): . . . : y(l-1)] = 

u(O) u(1) u(2) ... u(l-1) 

u(O) u{1) ... u(l- 2) 

l 
I 

u{O) ... u(l- 3) 
. I (8) 

u(�) J 
The wind turbine structure is a flexible structure with 
lightly damped low-frequency modes. For such a 
system and a sufficiently large p, 

This signifies that to solve for the Markov parameters 
as an adequate system representation, a sufficiently 
large lis required. 

As alternative possible approach is to artificially in
crease system damping to solve for Markov parame
ters. The observer model of the system is used in this 
approach. The state equation (5) can be manipulated 
as follows: 

x(k + 1) = Ax(k) + Bu(k) + Gy(k) - Gy(k)
(9) 

= (A+ GC)x(k) + ( B  + GD)u(k) - Gy(k) 

where G is an nxm matrix chosen to make A +GC as 
stable as desired. Equation (9) can be rewritten in a 
standard compact form: 

x(k + 1) = Ax(k) + Bv(k) (10) 

where 

A = A+ GC, B = (B + GD - G] , v(k) = [: J 
Now, we can write an equation, similar to (8), but .one 
which 

- [ 
involves observer Markov parameters: 

Y= 
- - -p-1- -l-2-

D:CB:CAB: ... :cA B: ... :CA B 
] (ll)

For an �bservable system, we can assign the eigenval

ues of A arbitrarily through a proper choice of G. In 
the case of the dead beat observer, i.e., when all the 

eigenvalues of A are placed at the origin, 
-k-

CA B = 0 for k � p where p is a sufficiently large in-



teger. We then solve for the observer Markov parame
ters - [ -

Y = v:cB:CAB: 
-

... :cA 
-p-1-] 

B (12) 

using a least-squares algorithm. 
I 

The observer Markov parameters in equation (12) in
clude the system Markov parameters and the observer 
gain Markov parameters. The system Markov parame
ters are used to compute the system matrices A, B, C, 
and D, whereas the observer gain Markov parameters 
are used to determine the observer gain matrix G. The 
proper algorithm for obtaining these Markov parame
ters has been introduced by Phan et al. [6) and is also 
discussed by Juang [3). Software implementation of 
this identification algorithm was developed at NASA 
Langley and is known as the Matlab function OKID. 
Finally, the state-space representation (A, B, C, D) of
the system is obtained using the Eigensystem Reali
zation Algorithm (ERA), based on system realization 
theory [3). 

It can be proven that the truncated observer model 
(12), obtained as a result of the dead beat approxima
tion of equation (10), produces the same input-output 
map as a Kalman filter if the data length is sufficient 
so that the truncation error is negligible. In this case, 
G, when computed from the combined Markov pa
rameters of equation (12), gives the steady-state Kal
man filter gain K = -G . 

5 IDENTIFICATION PROCEDURE 

The identification of the Observer /Kalman Filter 
model of a wind turbine is performed by the MATLAB 
program flokuy .m which uses the MATLAB function 
okid. The initial estimate of the number of observer 
Markov parameters is specified considering that the 
maximum system order that can be identified equals 
the product pem where p is the number of Markov 
parameters considered and m is the number of meas
urements (or outputs). Using the measurement ma
trix, the Hankel matrix is formed and a plot of its sin
gular values is displayed to aid in selecting the correct 
system order. After selecting system order, the per
centage of data realized by the model is computed. It 
is recommended to choose the lowest system order 
resulting in 100% realization of the measurement 
data. The corresponding modal parameters are also 
displayed on the screen in a tabular form showing the 
mode singular values (SV) and modal amplitude co
herence (MAC) factors. This provides additional 
evaluation of the quality of the identified model. Exam
ining this table, the user can determine the modes 
whose contribution to the system dynamics is insig
nificant. Such modes can be classified as the noise 
modes. 

The identified system matrices A, B. C, D, generated
by the program for the structure model of a selected 
order, are available as MATLAB variables Aj, Bj, Cj, 
Dj, The identification error is displayed in the Figure 
Window. 

The next step is to run other identification programs 
for all input-output data files. They return the list of 
identified eigenvalues and corresponding . modal fre
quencies in [rad/s) and [Hz). as well as system zeros 
related to the selected output. The frequency re
sponse plot is also displayed in the Figure Window. A 
special program can be used to enlarge a selected 
portion of this plot. 

All the outlined steps of the above procedure are illus
trated in the Appendix, where a case study is pre
sented using simulation data obtained from the 
ADAMS model of the Micon 65/13 wind turbine. 

6 CONCLUSION 

The input-output time-series obtained from the virtual 
wind turbine were used to develop and to validate the 
identification procedure presented above. It was 
found that to identify all vibration modes, we have to 
process, repeating the same procedure, the in
put/output time-series for both in-plane and out-of
plane excitations applied at various points of the 
wind-turbine structure. This has been done for three 
data files generated by out-of-plane excitations, collo
cated with the measurements near the tips of two 
blades and at 2/3 of the height of the tower, and for 
one data file generated by the in-plane excitation col
located with the measurement at 2/3 of the height of 
the tower. 

For each of the four above listed data files, each con
taining five measurements, the Observer /Kalman Fil
ter state-space model was identified interactively in 
order to determine the model order providing the best 
fit for the measurement data. The corresponding set 
of modal parameters was generated. Then, for each of 
the five input-output pairs, the frequency response 
was plotted and the corresponding set of system zeros 
and their frequencies determined. 

The Appendix presents the scope of the tests per
formed. It also gives the numerical results of modal 
parameter identification, graphically illustrated by 
frequency response plots. This graphical illustration 
is most distinct on the frequency response plot for the 
system output (measurement) collocated with the exci
tation used to obtain the analyzed data file. 

Examining all the capabilities of the developed identi
fication software tools, it seems that the scope of ap
plied research this software could support is very 
broad. 
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APPENDIX: A CASE STUDY 
This appendix illustrates system identification proce
dure with special emphasis on identification of modal 
parameters. ADAMS simulation data for the Micon 
65/13 wind turbine is used to illustrate the system 
identification procedure. 

As outlined in Section 3, the excitation of all modes 
requires obtaining input-output time series for both 

in-plane and out-of-plane excitations applied at vari
ous points of a wind turbine structure. For out-of
plane excitations, collocated with three of the meas
urements, five measurements listed in Table A-1 have 
been selected and the corresponding reduced meas
urement data fl.les have been formed. In addition, one 
in-plane excitation, collocated with the measurement 
TOWER4_Y, has been applied. The measurements 
included in the reduced data fl.le, formed for this exci
tation, are listed in Table A-2. The measurements 
included in all these data fl.les are referred in this ap
pendix as outputs with a proper number assigned as 
shown in Table A-1 and Table A-2. 

For all these data flles, the same identification proce
dure was repeated. First, after loading a particular 
data fl.le into the MATLAB work area, the program that 
determines the state-space model is executed. The 
user is asked for the number of outputs (or number of 
measurements) and the number of Markov parameters 
to be considered and then decides what the order of 
the system model to be generated should be. After 
selecting a particular order, the percentage of data 
realized by the model is computed. Using a trial and 
error procedure, the user can fmd the lowest system 
order resulting in the 100% realization of the meas
urement data. The program identifies a state-space 
representation of a system (in the form of an ob

.server /Kalman Filter model) and returns the identified 
system's modal parameters (modal frequencies and 
damping values) with the corresponding mode singu
lar values and modal amplitude coherence factors. 
This provides additional evaluation of the quality of 
the identified model. The identification error is dis
played in the Figure Window. Then, the other identi
fication programs are usually repeated a number of 
times equal to the number of measurement points in 
the processed data file (five times in the identification 
process presented below). This is justified by the fact 
that for each input-output relation in a given flle we 
have the same poles or modal frequencies but different 
zeros. Therefore, each input-output pair has a differ
ent frequency response. As we can see from the iden
tification results presented below, the visibility of the 
modal frequencies on the frequency response plots is 
different for different input-output pairs and of course 
much sharper for those pairs that are collocated. 
Also, we can observe that for the excitation inputs, 
applied at any point on the turbine axis of symmetry, 
the frequency responses for symmetrical outputs are 
identical. Considering the possible wide range of re
search avenues which can be pursued using this soft
ware, one of the identification programs returns the 
following list of the identified system parameters: sys
tem eigenvalues, modal frequencies, and system zeros 
and their frequencies. 

The numerical and graphical illustration of the identi
fication results is given below using one of the reduced 
data flles and plotting the frequency response for a 
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Fig. A-1 Identification error as function of the 
number of measurement points 

collocated input-output pair. The 34th order model 
has been identified The identification error is shown 
in Fig. A-1. The identified system eigenvalues are 
listed in Table A-3 with the corresponding modal fre
quencies listed in Table A-4. The identified system 
zeros, associated with the collocated input-output 
pair, are listed in Table A-5 with the corresponding 
frequencies listed in Table A-6. Finally, the frequency 
response is shown in Fig. A-2 on a logarithmic scale 
and for the full frequency range, and in Fig. A-3 on a 
linear scale, obtained for a frequency range of interest 
using a zooming program. 

Table A-1 Out-of-plane measurements 

TOWER4_Z or column 12 OUTPUT 1 
SLRING_Z or column 15 OUTPUT 2 
B1S13_Y or column 24 OUTPUT 3 
B2S13_Y or column 32 OUTPUT 4 
B3S13_Y or column 40 OUTPUT 5 

TableA-2 In-plane measurements 

TOWER4_Y or column 4 OUTPUT 1 
SLRING_Y or column 7 OUTPUT 2 
B1S13_Z or column 48 OUTPUT 3 
B2S13_Z or column 56 OUTPUT 4 
B3S13_Z or column 64 OUTPUT 5 

Table A-3 Identified system eigenvalues 

r1 = 

-1.3346e+001+ 2.7233e+002i 
-1.3346e+001- 2.7233e+002i 
-1.8295e+001+ 2.5914e+002i 
-1.8295e+001- 2.5914e+002i 
-9.6893e+000+ 2.1843e+002i 
-9.6893e+000- 2.1843e+002i 
-1.1474e+001+ 2.0598e+002i 
-1.1474e+001- 2.0598e+002i 
-1.0435e+001+ 1.8812e+002i 
-1.0435e+001- 1.�812e+002i 
-1.5566e+002 
-7.5905e+000+ 1.2766e+002i 
-7.5905e+OOO- 1.2766e+002i 
-1.2341e+001+ 1.1345e+002i 
-1.2341e+001- 1.1345e+002i 
-5.8522e+000+ 9.9550e+001i 
-5.8522e+000- 9.9550e+001i 
-5.9147e+001 
-5.4268e+000+ 7.7330e+001i 
-5.4268e+000- 7.7330e+001i 
-1.3009e+001+ 7.2863e+001i 
-1. 3009e+001- 7. 2863e+00li' 
-3.6530e+000+ 6.7912e+001i 
-3.6530e+000- 6.7912e+001i 
-3.4150e+000+ 5.4387e+001i 
-3.4150e+000- 5.4387e+001i 
-1.0776e+001+ 4.3325e+001i 
-1.0776e+001- 4.3325e+001i 
-1.3177e+000+ 2.1992e+001i 
-1.3177e+000- 2.1992e+001i 
-s.osase-001+ 2.ooaoe+001i 
-s.osase-001- 2.0080e+001i 
-1.0685e+000+ 1.1023e+001i 
-1.0685e+000- 1.1023e+001i 

Table A-4 Identified modal frequencies 

rad/s Hz 
fr = 

2.7266e+002 4.3395e+001 
2. 7266e+002 4.3395e+001 
2.5978e+002 4.1346e+001 
2.5978e+002 4.1346e+001 
2.1865e+002 3.4799e+001 
2.1865e+002 3.4799e+001 
2.0630e+002 3.2834e+001 
2.0630e+002 3.2834e+001 
1.8841e+002 2.9987e+001 
1.8841e+002 2.9987e+001 
1.5566e+002 2.4774e+001 
1.2789e+002 2.0354e+001 
1. 2789e+002 2.0354e+001 
1.1412e+002 1.8163e+001 
1.1412e+002 1.8163e+001 
9.9722e+001 1.587le+001 
9.9722e+001 1.5871e+001 
5.9147e+001 9.4135e+000 
7.7520e+001 1.2338e+001 
7.7520e+001 1.2338e+001 
7.4015e+001 1.1780e+001 
7.4015e+001 1.1780e+001 
6.8010e+001 1.0824e+001 
6.8010e+001 1.0824e+001 
5.4494e+001 8.6730e+000 
5.4494e+001 8.6730e+000 
4.4645e+00l 7.1055e+000 
4.4645e+001 7.1055e+000 
2.2031e+001 3.5064e+000 
2.2031e+001 3.5064e+000 
2.0086e+001 3.1968e+OOO 
2.0086e+001 3.1968e+000 
1.1075e+001 1. 7626e+OOO 
1.1075e+001 1.7626e+000 



FREQUENCY RESPONSE FOR OUTPUT 1 
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Fig. A-3 Frequency response of Fig. A-2 shown on a 

linear scale in the frequency range of interest. 
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Fig. A-2 Frequency response for a collocated input
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Table A-5 Identified system zeros 
related to the OUTPUT 1 

ZER = 

3.1139e+002+ 3.6853e+002i 
3.1139e+002- 3.6853e+002i 

-2.1704e+001+ 2.5902e+002i 
-2.1704e+001- 2.5902e+002i 
-1.0073e+001+ 2.3527e+002i 
-1.0073e+001- 2.3527e+002i 
-1.5076e+001+ 2.1052e+002i 
-1.5076e+001- 2.1052e+002i 
-2.4163e+001+ 1.9487e+002i 
-2.4163e+001- 1.9487e+002i 
-1.9364e+001+ 1.3254e+002i 
-1.9364e+001- 1.3254e+002i 
-4.8435e+000+ 1.0962e+002i 
-4.8435e+000- 1.0962e+002i 

3.3462e+001+ 9.5703e+001i 
3.3462e+001- 9.5703e+001i 

-8. 0594e+
-9.1650e+000+ 8.4268e+001i 
-9.1650e+000- 8.4268e+001i 
-4.3114e+000+ 7.0832e+001i 
-4.3114e+000- 7.0832e+001i 
-8.1020e+000+ 6.5483e+001i 
-8.1020e+000- 6.5483e+001i 
-1.7053e+001+ 4.8927e+001i 
-1.7053e+001- 4.8927e+001i 
-3.4549e+OOO+ 5.0486e+001i 
-3.4549e+000- 5.0486e+00li 
-9.285le+000+ 1.690le+001i 
-9.285le+000- 1.690le+001i 
-3.128le+000+ 2.0829e+001i 
-3.1281e+000- 2.0829e+001i 
-3.7882e-001+ 1.971le+001i 
-3.7882e-001- 1.971le+001i 

4.0870e+000 

.

Table A-6 Identified zero frequencies 

rad/s 
zfr = 

Hz 

4.8247e+002 7.6788e+001 
4.8247e+002 7.6788e+001 
2.5992e+002 4.1368e+001 
2.5992e+002 4.1368e+001 
2.3548e+002 3.7478e+001 
2.3548e+002 3.7478e+001 
2.1106e+002 3.359le+001 
2.1106e+002 3.359le+001 
1.9636e+002 3.1252e+001 
1.9636e+002 3.1252e+001 
1.3395e+002 2.1318e+001 
1.3395e+002 2.1318e+001 
1. 0972e+002 1. 7463e+001 
1.0972e+002 1.7463e+001 
1.0138e+002 1. 6136e+001 
1.0138e+002 1.6136e+001 
8.0594e+001 1.2827e+001 
8.4765e+001 1.349le+001 
8.4765e+001 1.349le+001 
7.0963e+001 1.1294e+001 
7.0963e+001 1.1294e+001 
6.5982e+001 1.050le+001 
6.5982e+001 l.OSOle+OOl 
5.1813e+001 8.2464e+000 
5.1813e+001 8.2464e+000 
5.0604e+001 8.0539e+OOO 
5.0604e+001 8.0539e+000 
1.9283e+001 3.0690e+000 
1.9283e+001 3.0690e+000 
2.1063e+001 3.3522e+000 

2.1063e+001 3.3522e+000 
1.9715e+001 3.1377e+000 
1.9715e+001 3.1377e+000 
4.0870e+000 6.5047e-001 




