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ABSTRACT 

Solar technologies are being developed to address a wide range of environmental problems. Sunlight 
plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of 
processes that use solar energy to remediate environmental problems or to treat process wastes is 
underway in laboratories around the world. This paper reviews progress in understanding the role of 
solar photochemistry in removing man-made chemicals from the environment, and developing 
technology that uses solar photochemistry for this purpose in an efficient manner. 

INTRODUCTION 

Renewable forms of energy have a central role to play in reducing and correcting the negative impact 
of human activity on the environment. Solar energy is unique among the renewable energy forms in 
that it can be applied directly to mitigating problems created by past and continuing release of man­
made chemicals into the environment. This chapter will briefly review the ways that sunlight 
degrades hazardous chemicals in the environment, and the development of technologies that can use 
sunlight for that purpose. 

The past release of a wide range of substances into the environment as the result of human activity has 
created conditions at many sites that pose a risk to human health and the well-being of large and small 
ecosystems. Existing contamination affects air, water, and soil, and will ultimately cost billions of 
dollars to correct. Preventing further release of hazardous substances is a high priority for industry as 
it develops new processes and products.1 

The involvement of sunlight in the removal of synthetic chemicals from the environment is well 
documented. A few examples will serve to illustrate how solar energy plays a part in the destruction 
of a variety of chemicals in the environment under ambient conditions. These naturally occurring 
processes can be termed passive solar photochemistry because they do not require human intervention. 
These processes illustrate the kinds of photochemistry that can be done under solar conditions, and the 
ways in which the chemical reaction path taken depends on the type of substance and the medium. 

The classes of photochemical processes that have been observed to occur under solar conditions are 
briefly described below. For a more detailed discussion of the interaction of light with matter the 
reader may consult some of the standard sources on photochemistry? Representative photochemical 
processes include: 

a. direct photochemistry where light is absorbed by a compound, A, and the excited state, A*, 
goes on to react with oxygen and/or water to be mineralized to carbon dioxide or to produce 
small molecules that are, ideally, environmentally benign or can be further broken down. 

(1) 
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b. photochemistry of molecules adsorbed on smfaces, A(ads), where the adsorbed compound is 
excited to a reactive state by absorption of light and is degraded. 

c. sensitized formation of singlet oxygen or hydroxyl radical by energy transfer from an 
electronically excited donor, D*, to oxygen. 

JI,.0,02 
---+-+OH 

(2) 

(3) 

d. photocatalytic oxidation, where light of wavelength greater than the band gap of a 
semiconductor, for example Ti02, promotes an electron from the valence band to the 
conduction band. The resulting valence band hole may either directly oxidize a molecule of 
contaminant or oxidize water to produce a hydroxyl radical. 

(4) 

e. photo-Fenton chemistry in which light absorption by iron(+3) hydroxo complexes can result in 
electron transfer to give a hydroxyl radical and iron(+2). 

(5) 

SOLAR CHEMISTRY FOR THE DESTROYING HAZARDOUS CHEMICALS 

The high energy cutoff of the solar spectrum at the earth's surface is about 295 nm.3 This limits the 
types of organic compounds that will undergo direct photochemical reactions in sunlight to those that 
have absorption bands extending into the near ultraviolet (300-400 nm). In general these will be 
substituted aromatic compounds or compounds having extended systems of conjugated double bonds. 
Adsorption of molecules on surfaces may cause red shifts of the absorption spectra that will make 
them susceptible to solar photochemistry.4 
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Solar Chemistry in the Environment 

The solar photochemical destruction of chlorinated dibenzo-p-dioxins adsorbed on surfaces is believed 
to be a route for removing such compounds from the environment This has been shown to occur for 
compounds adsorbed on soi15•6 and grass foliage? Similar mechanisms may be important for 
photochemical oxidation of compounds in air by involvement of minerals in aerosol form. 

The solar photochemistry of organic compounds in natural waters is believed to be important in the 
removal of synthetic compounds. Three kinds of processes have been proposed. The first is 
photocatalytic oxidation mediated by naturally occurring semiconducting oxides of iron or titanium8•9• 
The second is the sensitized fonnation of hydroxyl radicals by excited states of humic substances10• 
The final process is Fenton type chemistry caused by the presence of soluble iron compounds or 
perhaps iron oxides. This mechanism may also be important in cloud water.11•12 Hydroxyl radicals are 
believed to be the active agent responsible for the initial attack on the target compound in each case. 
The combination of hydroxyl radicals may be at least partially responsible for the fonnation of 
hydrogen peroxide in cloud water.13 

Solar Technology for Environmental Remediation 

The role of sunlight in destroying organic compounds in the environment is well established. The 
development of technology that will use solar energy for this purpose in a controlled manner is a 
challenge that is being actively pursued in laboratories and at the engineering scale all over the world. 
Passive solar photochemical destruction of hannful substances in air, water, and soil is free. However, 
when reactors and solar collection hardware are used costs are incurred. The goal of research and 
development being performed worldwide is to develop cost effective technology that can efficiently 
utilize solar photochemistry in active processes for destroying hazardous chemicals. 

The kinds of processes that have been or are currently being considered include both thermal and 
photochemical technologies. On the thermal side pyrolysis and oxidation and catalytic steam 
refonning of hazardous compounds have been studied, primarily at the laboratory scale.14 The cutoff 
of the solar spectrum at about 295 nm precludes direct photochemistry for many classes of organic 
compounds that are considered environmental hazards. This requires that processes , such as b - e 
discussed earlier be considered. 

Direct, High Temperature Photochemistry 

The University of Dayton Research Institute working under Subcontracts from the National Renewable 
Energy Laboratory (NREL) has extensively explored the effects of high light flux on the destruction 
of organic compounds at temperatures in the range of 200-1000 C. Compounds such as napthalene, 
chlorobenzene, and nitrobenzene that have some absorbance in the near UV region of the solar 
spectrum show increased levels of destruction when irradiated compared to the pure thennal reactions 
at the same temperatures. 15•16 

This effect was tested under solar conditions in a series of experiments conducted by NREL at solar 
furnaces at White Sands Proving Ground and Sandia National Laboratories. The effects of light on the 
high temperature destruction of 1,2,3,4-tetrachloro-p-dibenzodioxin are illustrated in Figure 1. The 
experiment demonstrated increased destruction when the reactor was irradiated with the full solar 
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spectrum compared to when a 450 nm cutoff filter was placed in the light path.17 This work is now 
being extended to the pilot scale in a joint project funded by the United States Departments of Defense 
and Energy, and Environmental Protection Agency. 

Dye Sensitized Oxidation 

Dye sensitized formation of singlet oxygen and its application to the destruction of organic compounds 
and disinfection of effluent from a municipal sewage treatment plant has been investigated extensively. 
A number of dyes that absorb strongly in the visible region of the solar spectrum sensitize the 
formation of singlet oxygen. This has been tested on a range of organic compounds and pilot plants 
operated for both removing organic compounds from contaminated water and for disinfecting sewage 
plant effluent to use for crop irrigation.18•19.2° Figure 2 shows a pilot system that was used for the latter 
purpose in Israel. 

Photocatalytic Oxidation 

Oxidizing organic compounds in water with irradiated semiconductors is the subject of a large body 
of research. The author has a data base containing over 600 references to work on this and related 
areas. There are a number of reviews that cover aspects of this worJ:21.22.23 as well as papers that 
discuss the mechanism and kinetics of the process.24.25.26 In general the process requires a 
semiconductor, light with higher energy than the bandgap of the semiconductor, and a suitable 
oxidizing agent. Various types of the anatase form of titanium dioxide have been found to be the 
most effective photocatalyst and oxygen or hydrogen peroxide are the oxidizing agents of choice. 

Solar experiments have been reported by a number of workers.27•28.29.3° Large scale tests have been 
conducted by the solar research programs in the United States and Europe. The first large scale 
outdoor tests used existing solar hardware modified to carry out photochemical reactions.31 A test on 
actual groundwater was carried out at a superfund site at Lawrence Livermore National Laboratory 
(LLNL) by NREL, LLNL, and Sandia National Laboratory. Groundwater contaminated with 
trichloroethylene (TCE) was treated using a system constructed from parabolic troughs with a 
borosilicate glass pipe at the focus for a reactor. The system is shown in Figure 3. The contaminated 
groundwater was mixed with titanium dioxide powder and pumped through the reactor. The TCE 
level was successfully reduced from about 300-500 ppb (micrograms per liter) to <5 ppb?2 

Experiments have also been done at the European solar test facility at Almeria, Spain. The Spanish 
have fitted existing two-axis tracking parabolic troughts with borosilicate glass reactors, shown in 
Figure 4, and studied the destruction of pentachlorophenol and dichloroacetic acid with this system.33.34 

The mechanism of action of the semiconductor-initiated photochemistry predicts that the rates and 
efficiencies of the oxidation reactions will increase as the square root of light flux at low organic 
concentrations.24 Hence multiple sun reactors will be less efficient than reactors using the ambient 
intensity of sunlight. This was shown to be the case in a test using the LLNL system. 32 For this 
reason a second generation of tests has been done using solar reactors that do not concentrate the 
sunlight. One-sun or non-concentrating reactors are shown in Figures 4 and 5. The first was tested at 
the Plataforma Solar in Almeria, Spain in collaboration with a group from the Institute fur 
Solarenergieforschung in Hanover, Germany. The second was developed by American Energy 
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Technologies (AET), Inc. for treating contaminated groundwater at Tyndall Air Force Base in 
Florida.35 In addition to avoiding the square root penalty for increased light flux, the one-sun 
reactors can use both the direct beam and diffuse components of the near UV part of the solar 
spectrum, and they eliminate losses due to reflector surfaces,. A number of innovative reactors that 
operate with low solar flux or at one sun have been evaluated at NREL.36.37 Examples are shown in 
Figures 6 and 7. Cost studies have shown that under most conditions the cost of solar photons is 
competitive with the cost of photons from electric lamps.38.39•40 

New Developments 

The photocatalytic oxidation of low molecular weight hydrocarbons in the gas phase was the subject of 
considerable attention in the 1970s and 1980s partially because of the search for solar technologies for 
the production of chemicals. The goal was to produce oxygenated products such as alcohols, aldehydes 
and ketones.41•42 Interest waned when the price of oil dropped in the latter part of the '80s. The report 
that trichloroethylene could be rapidly oxidized in air over irradiated titanium dioxide43 revived interest 
in the gas phase oxidation process as a potential method for reducing emissions of volatile organic 
compounds and as a tool for environmental remediation. There is a great deal of research being done, 
but only bench scale tests have been reported to date.44.45 

Other developments include processing water to remove metal ions and a method for cleaning up 
ocean oil spills. Photocatalytic reduction of metal ions by the conduction band electrons at irradiated 
semiconductor surfaces has been demonstrated and considered as a potential solar process for the 
removal of heavy metals from contaminated water. 46•47 Development of Ti02 - coated hollow glass 
microspheres for use· in decomposition of organic compounds on the surface of water is underway. 
The coated beads can be applied to oil spills in order to break the oil down into harmless substances 
when exposed to sunlight.48 

Cost estimates have been made that compare the cost of solar and conventional photochemical 
processing for environmental remediation.38•39.4° Figure 8 gives a graphical presentation that compares 
the cost of photons from electric lamps with photons supplied by one-sun solar collectors. As 
expected photons from the one-sun systems are less expensive than for the concentrating systems 
because of the lower hardware costs. The results show that solar photons can be less expensive than 
photons from lamps in many parts of the United States when low, but realistic, collector costs are 
achieved. 

CONCLUSION 

The destruction of hazardous substances by solar processes has amply demonstrated. 
Commercialization of solar technologies requires that they be shown to be cost effective, and that they 
overcome the barriers normally encountered by new technology as well as barriers that are unique to 
solar processes. The barriers include: 

1) the risk associated with adopting a new technology, 
2) a general lack of familiarity with photochemical processes on the part of industry, and 
3) using the sun as a light source introduces new process requirements that deal with the 

intermittent nature of this source of photons. 
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It is likely that cost competitive solar technologies for environmental cleanup applications will become 
commercially available in the next few years. Technical developments are being driven by the need 
for innovative tools to treat the wide range of environmental problems that have been created by past 
practices. 

Figure Captions 

1. Effect of solar near ultraviolet light on the destruction of 1,2,3,4-tetrachloro-p-dibenzodioxin. 

2. Pilot plant for the dye sensitized disinfection of sewage plant effluent at Herzliyya City, Israel. 

3. Pilot plant for the photocatalytic removal of chlorinated solvents from groundwater at Lawrence 
Livermore Laboratory, California. 

4. Pilot plant for studying solar photocatalytic removal of organic compounds from water. 
Background, two-axis tracking parabolic trough system, foreground, non-concentrating thin film 
reactor. Location, Plataforma Solar - Almeria, Spain. 

5. Non-concentrating reactor designed by AET, Inc. for treating contaminated groundwater at Tyndall 
Air Force Base, Florida. 

6. Reactor with compound parabolic concentrators designed by IST, Inc. and tested at NREL. 

7. Artist's concept of a solar photocatalytic water detoxification system using ponds or tanks as one­
sun reactors. 

8. Comparing the cost of photons from lamps and from the sun as a function of solar collector cost 
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