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Radiative Transport Models for Solar Thermal Receiver/Reactors

Marks. Bohn 
Mark S. Mehos 

Solar Energy Research Institute 
Golden. CO 

ABSTRACT 

Modeling the behavior of solar-driven chemical reactors 
requires detailed knowledge of the absorbed solar flux 
throughout the calculation domain. Radiative transport 
models, which determine the radiative intensity field and 
absorbed solar flux. are discussed in this paper with special 
attention given to particular needs for the application of solar 
thermal receiver/reactors. The geometry of interest is an 
axisymmetric cylinder with a specified intensity field at one 
end, diffuse reflection at boundaries, and containing a 
participating medium. Participating media are of interest 
because receiver/reactors are expected to have one or more 
zones containing small particles or monoliths acting as 
absorbers or catalyst supports, either of which will absorb, 
emit, and scatter radiation. A general discussion of modeling 
techniques is given, followed by a more complete discussion of 
three models--the two-flux, discrete ordinate, and the Monte 
Carlo methods. The methods are compared with published 
benchmark solutions for simplified geometries-the infinite 
cylinder and plane slab-and for geometries more closely 
related to receiver/rea(:tors. Conclusions are drawn regarding 
the applicability of the techniques to general receiver/reactor 
models considering accuracy, ease of implementation, ease of 
interfacing with solution techniques for the other conservation 
equations,· and numerical efficiency. 

NOMENCLATURE 

• coefficient of the phase function expansion 
• back scatter fraction 
• intensity, W/m2sr 

total blackbody intensity, W/m2sr 
- number of directions for the discrete ordinate method 
• scattering phase function 
• dimensionless heat flux at z = 0 
- dimensionless heat absorption by medium 
- dimensionless flux divergence at z = 0 
• radiative flux vector, W/m2 
• position vector, m 
• axial coordinate, m 
- cylinder length or slab thickness, m 

extinction coefficient - a + 1C, m·1 
- emissivity of surface 

90 - half angle of cone containing incident intensity, 
Fig. 2 

1C • absorption coefficient, m·1 
a - scattering coefficient, m·1 
'to - optical thickness 
m single scatter albedo = afP 
n . direction of intensity 

INTRODUCTION 

Historically, concentrated solar therm81 energy has 
been applied primarily to produce electricity via heat engine 
cycles. There has been recent interest, however, in applying 
solar thermal energy to other processes, most notably those 
involving fuels and chemicals applications. A recent conference 
featured presentations on solar destruction of hazardous 
waste, solar detoxification of organics in water, solar-induced 
surface transformation of materials, solar treatment of carbon 
fibers, and photo-assisted solar thermal chemical reactions 
[Couch 1989]. 

Although the work mentioned above was primarily 
concerned with proof-of-concept experiments, ultimate 
commercialization of these technologies will require a 
capability to predict receiver/reactor behavior via detailed 
analytical models. The reasons for this are: (i) validated 
models can be used to complement and extrapolate costly 
experimental data and to give guidance to experimental 
programs, (ii) results from such models support systems 
studies aimed at estimating the economic potential of the 
processes, and (iii) the models can be used to design 

·receiver/reactors. 
Depending on the level of complexity needed, a 

receiver/reactor model will include some or all of the following: 
(i) a radiative transport model to predict the local volumetric 
absorption of solar energy within the receiver/reactor, (ii) a 
radiative transport model to predict the transport of infrared 
radiation within the receiver/reactor, (iii) convective and 
conductive heat transfer models to determine the coupling of 
the absorbed solar energy, into a gas phase or into 
receiver/reactor components, (iv) a model of the conservation 
of mass with the pertinent chemical reactions and reaction 
rates, and (v) models of the conservation of momentum. Item 
(i) will be required for all receiver applications. Item (ii) will 
be required for those receiver/reactors operating at high 
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temperature. Item (iv) will be required for receivers 
incorporating chemical reactions. The remaining two items 
may be necessary depending on the particular receiver/reactor 
of interest. For example, if the chemical reaction is carried 
out in the gas phase, convective heat transfer and conductive 
heat transfer are probably not important. Convection and 
conduction will be important mainly in cases where solar 
energy is absorbed on a solid surface and then transferred to 
a gas or to other surfaces. If the gas flow pattern is well 
defined in the receiver/reactor, modeling the conservation of 
momentum may not be needed. 

In the process of developing a capability for modeling 
receiver/reactors, we chose to focus first on the radiative 
transport for solar wavelengths because it is common to all 
receiver/reactor configurations. This component of a 
receiver/reactor model is fundamental from the standpoint of 
giving the quantity that drives the chemical reaction--the local 
volumetric absorption of solar en�rgy. 

Although a significant body of literature describes 
various comparisons and applications of radiative transport 
models, very little of that literature deals specifically with 
concentrated solar energy as ·a boundary condition and 
properties and geometries relevant to receiver/reactors. The 
objective of this paper, therefore, is to determine the 
capabilities of several radiative transport modeling methods as 
applied to the receiver/reactor problem. The characteristics of 
importance include accuracy, reliability, robustness, numerical 
efficiency, and applicability to receiver/reactor models. This 
paper will first present a brief description of receiver/reactors 
currently under consideration within the solar research and 
development community. Then, an introduction to methods of 
solving the radiative transport equations will be covered in 
general terms. Next, validation of three of these methods will 
be covered. These three methods will then be compared in 
terms of their ability to solve problems of interest to the 
receiver/reactor designer, and conclusions regarding these 
capabilities will be given. 

BACKGROUND 

Several receiver/reactors are currently under 
investigation. A brief description of these concepts will help 
to understand the scope of design parameters such as 
geometry, optical properties, operating temperatures, and 
reactions that must be considered when developing a 
receiver/reactor model. 

Glatzmaier et al. [1989] are currently investigating the 
use of a dish-mounted high temperature (-1000 K) 
photoreactor to destroy hazardous organic vapor. The reactor 
employs a two-stage design (see Fig. 1). The first stage 
consists of an absorbing, porous, ceramic insert in which air 
containing the hazardous vapor is· heated to a high 
temperature. The vapor is then photolytically decomposed in 
the second stage using available ultraviolet (UV) solar 
radiation in a gas phase reaction. The optical properties of 
the ceramic insert are such that much of the incoming 
radiation is absorbed while the UV radiation is diffusely 
reflected to enhance the photodestruction in the reactor second 
stage. 

sunlight __--:;: ·· - J::§��� ���� 

f? �-·-

Fig. 1. Receiver/reactor used to destroy hazardous organic 
vapors [Glatzmaier 1989]. 

· 

Fish and Hawn [1987] developed a dish-mounted 
receiver/reactor for use in the carbon dioxide reforming of 
methane. The reactor consists of a single-stage design in · 
which methane and carbon dioxide are heated to a high 
temperature (-1000 K) and reformed to carbon monoxide and
hydrogen through the use of an absorbing, porous, alumina 
insert. The absorber is impregnated with rhodium catalyst. 

These two designs represent two-dimensional 
axisymmetric geometries in which the incident intensity 
entering the reactor is isotropic within the 45• cone angle 
characteristic of point focus concentrators. 

Researchers are currently investigating the use of solar 
energy for the destruction of toxic organics in dilute solution 
in wastewater. Pruden and Ollis [1983] examined the 
degradation of trichloro-ethylene under illumination of 
concentrated UV radiation in the presence of a photoactive 
catalyst under laboratory conditions. The reaction takes place 
at low temperature, relying on the relatively low 
concentrations of UV radiation available from line focusing 
concentrators. In an actual system, the photocatalyst such as 
titanium dioxide would be impregnated upon a solid matrix 
inside a receiver tube. This system demonstrates a 
two-dimensional nonaxisymmetric geometry with a 
circumferential variation in the incident intensity. A similar 
concept incorporating a falling film reactor using radiation 
concentrated by a field of heliostats has been conceptualized 
for destruction processes requiring greater throughput of the 
waste material [Tyner 1989]. 

Each receiver described above uses solar energy to 
obtain a desired reaction between compounds. As a more
general example, Skocypec et al. [1988] describe a dish
mounted receiver in which an air stream is heated to high 
temperature for downstream processes. Heating is 
accomplished by absorption of solar radiation onto a metal 
wire grid. Air flows through the absorber where energy is 
convectively transferred to the gas stream. 

ANALYSIS METHODS 

To determine the local volumetric absorption of solar 
energy in the receivers described above, it is necessary to 
solve the radiative transport equation (RTE), which may be 
written in general for a gray medium as follows: 

(O•V)I(r,O) = ·(IC+O)I(r,O) + ldb(r) 

+ � J l(r,n')p(O'-+O)dn' (1) 
4lt D'-411: 

Equation 1 relates the gradient of radiant intensity in 
direction n (left side of equation) to absorption, out-scattering, 
emission, and in-scattering, respectively. With properties of 
the surface bounding the medium and appropriate boundary 
conditions, the solution of Eq. 1 gives the radiant intensity 
everywhere in the medium as a function of direction n. The 
intensity field is then related to the volumetric absorption of 
radiant energy by the divergence of the radiative flux 

V•q = JC[4lt�(r) • J l(r,ll)dn] (2) 

We see from Eq. 2 that flux divergence is equal to the 
local difference in emitted and in-scattered radiation. 

The solution of Eq. 1 has received considerable 
attention in the literature because of interest in a wide range 
of engineering applications. Viskanta [1966, 1986] and Howell 
[1988] review the state of the art in radiant heat transfer 
with emphasis on participating media. Viskanta [1986] 
categorized solution methods as analytical, approximate, and 
numerical. For solving practical problems, it appears that 
methods in the last two categories are more applicable. 



Approximate methods include multi-flux, discrete ordinates, 
spherical harmonics, and others, all of which are 
approximations to Eq. 1 and can be applied to 
multidimensional geometries, an advantage for receiver/reactor 
applications. An example of a numerical method is the Monte 
Carlo approach, which also can be applied to multidimensional 
geometries. 

Application of these various methods has concentrated 
for the most part on one-dimensional slab problems. Daniels 
et al. [1978, 1979] compared the two-flux, six-flux, and 
discrete ordinate methods to predict absorption and scattering 
in a layer of turbid water. Brewster and Tien [1982] 
compared results from the two-flux method with an exact 
solution of the RTE for pure scattering in a slab geometry. 
Menguc and Viskanta [1983] compared two-flux, spherical 
harmonics, and discrete ordinate methods for the slab 
geometry with an absorbing, highly forward-scattering 
medium. Incropera and Houf [1979] investigated the viability 
of a three-flux method for predicting radiative transfer in an 
aqueous suspension layer. Tong and Tien [1983] compared 
results from the two-flux model and a linear anisotropic 
scattering model for a slab geometry in radiative equilibrium. 
Houf and Incropera [1980] compared several methods of 
solving the RTE for the slab geometry with an absorbing, 
scattering medium. Azad and Modest [1981] solved the RTE 
exactly for an infinitely long cylinder containing an absorbing, 
emitting, scattering medium. 

Howell and Perlmutter [1964] and Perlmutter and 
Howell [1964] used the Monte Carlo method to solve for 
radiant transfer between plane gray walls and between 
infinitely long concentric cylinders, respectively. In both cases, 
the medium was absorbing and emitting, but not scattering. 

For multidimensional problems, Fiveland [1982, 1984] 
applied the discrete ordinate method to radiant transfer in a 
rectangular geometry and in an axisymmetric cylindrical 
geometry, respectively. 

MODELS UTILiiED 

The literature provides a good basis for understanding 
how to apply the various methods of solving the RTE, but it 
is difficult to determine which methods can be applied 
successfully to ·the receiver/reactor problem. Subtle 
interactions between the problem parameters (radiative 
properties, geometry, boundary conditions) and the solution 
methods can lead to convergence problems, poor accuracy, and 
other difficulties. For this reason, we chose to investigate in 
detail three RTE solution methods: the two-flux method, the 
discrete ordinate method, and the Monte Carlo method. 
Although several other RTE solution methods could have been 
chosen for investigation, these three cover a reasonably broad 
spectrum. The two-flux method is a widely used, relatively 
simple differential method applicable to one-dimensional 
problems. . The discrete ordinate method is a more detailed 
differential method that has seen widespread use, often as a 
baseline against which other methods are compared and which 
has recently seen application to multidiinensional problems. 
Finally, the Monte Carlo method differs significantly from the 
other two in that it does not seek a solution of Eq. 1 but 
rather approaches the problem statistically. Development of 
these three methods has been discussed in detail in the 
references cited and will not be repeated here. 

CODE VALIDATION 

Each of the three methods was used to develop 
computer codes. To ensure proper operation of these codes, 
they were compared with published calculations, and the 
results will be discussed in this section. For any calculation, 
the parameters of importance include problem geometry, 
boundary conditions (heated surfaces or specified surface 
intensity or flux), surface emissivities, and medium properties 
(optical thickness, single scatter albedo, and scattering phase 
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function). Results can be presented in terms of surface heat 
transfer or volumetric absorption of radiant energy. Finally, 
the solution may be carried out by assuming radiative 
equilibrium. With this assumption, there is no net volumetric 
absorption of energy because the medium temperature is 
assumed to rise sufficiently so that remitted radiation 
balances absorbed radiation. If radiative equilibrium is not 
assumed, some means other than medium re-emission is 
assumed to be removing the absorbed radiation. 

Tong and Tien [1983] solved for the rate of heat 
transfer from surface to surface in the one-dimensional slab 
problem, assuming radiative equilibrium, black surfaces, and 
an isotropic source on one plane of the slab .. Figure 2 shows 
the geometry and nomenclature for this problem. For a range 
of albedo 0 to 1.0, a range of optical thickness 0.2 to 6.0, and 
a range of backward scatter fraction 0.025 to 0.5, we found 
that our two-flux code agreed with their results to better than 
four decimal places. 

For the case of not assuming radiative equilibrium, 
Menguc and Viskanta [1983] give surface heat transfer and 
flux divergence at both surfaces of a one-dimensional slab 
calculated with the two-flux method. An albedo of 0.8, a 
range of backscattering parameter from 0.345 to 0.039, and a 
range of optical thickness from 0.1 to 10 were chosen. A 
comparison of our two-flux calculations with those of Menguc 
and Viskanta again showed very close agreement. 

The previous two comparisons show that our two-flux 
code operates correctly over a wide range of problem 
parameters when compared to other two-flux codes. 

Siegel and Howell [1981] present the solution for the 
slab problem with an isotropically scattering medium, no 
absorption, black surfaces, and one surface heated, in terms 
of the surface heat flux. In comparing the results of the 
present two-flux, discrete ordinate, and Monte Carlo codes 
with Siegel and Howell [1981], we found that the two-flux 
method is somewhat less accurate than the other two methods 
over the range of optical thickness of interest (0.1 to 3.0). 
The two-flux method differed by 17% from the Siegel and 
Howell results for optical thickness of 3.0. _The discrete 
ordinate and Monte Carlo results agreed to within 2% of the 
Siegel and Howell results. However, pure scattering is not as 
interesting as is absorption with scattering. For this reason, 
more detailed validation runs comparing against Menguc and 
Viskanta [1983] will be discussed shortly. 

Azad and Modest [1981] solved for radiative transport 
in an infinitely long cylinder with black walls containing an 
absorbing and scattering medium with albedo of 0.5. A 
constant temperature medium and linear anisotropic scattering 
(LAS) were assumed. In this problem, radial heat transport 
is emphasized, and the two-flux model is not applicable. Heat 
flux at the cylinder surface was presented. We found 
satisfactory performance of both the discrete ordinate and 
Monte Carlo codes, which agreed with the published results 
to within ::t5%. 
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Fig. 2. Nomenclature for the one-dimensional radiative 

transport problem. 



The final set of validation runs involved further 
comparisons with Menguc and Viskanta [1983]. They 
compared solutions of the one-dimensional slab problem from 
the two-flux, discrete ordinate, and spherical harmonics 
methods. We compared the results of our two-flux, discrete 
ordinate, and Monte Carlo codes with their results from the 
discrete ordinate and two-flux methods. They used two 
scattering phase functions, MVI and MVII, which represent 
moderate forward scatter (b = 0.345) and strong forward 
scatter (b = 0.075), respectively. A single scatter albedo of 0.8 
and optical thickness of 1.0 were assumed. The boundary 
condition corresponded to an isotropic source at z = 0. 
Dimensionless heat flux at z = 0, Q�o and total energy 
absorbed by the media, Q.,, were presented. For both 
scattering phase functions, all five models give fairly close 
results. The two-flux models tend to slightly overpredict Q,., 
by about 6%. The discrete ordinate method did not converge 
for the highly forward scatter phase function, MVII, because 
of the inadequate number of ordinate directions used in this 
study, M = 24. 

The following conclusions may be made based on the 
above results. Comparisons have been made with published 
results for conditions as close as possible to those expected for 
receiver/reactors, i.e., absorbing and scattering medium, 
forward scattering phase function, and moderate optical 
thickness. The comparisons show that all three solution 
methods adequately predict surface heat transfer and overall 
volumetric heat absorption, with the two-flux method perhaps 
slightly less accurate. It should be noted, however, that the 
two-flux code is about three orders of magnitude faster than 
either the discrete ordinate or Monte Carlo methods. 

CODE COMPARISONS FOR PROBLEMS OF INTEREST 

As discussed in previous sections, numerous 
comparisons of RTE solution methods appear in the literature. 
Many comparisons of interest to receiver/reactor modeling are 
not available in the literature, however. For this reason, we 
compared the three codes described in the previous section 
for several configurations specific to the receiver/reactor 
problem. 

The first such comparison sought to extend the slab
geometry comparison presented earlier to other scattering 
phase functions. Specifically, the codes were compared for an 
isotropic, LAS (a1 = 1) and for phase function MVI and MVII, 
with single scattering albedo of 0.5 and 0.8 and optical 
thickness of 1.0 and 2.0. All three methods gave good 
agreement (for all phase functions except MVII where the 
discrete ordinate code did not converge) for Q1; the two-flux 
results for Q,. were about 8% high relative to the discrete 
ordinate and Monte Carlo codes. For scattering phase function 
MVII, the Monte Carlo and two-flux codes were compared on 
the basis of Q, Q,., and Q,. The comparisons were again very 
close with the two-flux code overpredicting Q .. by 6% relative 
to the Monte Carlo code. 

For a more detailed look at the performance of the two 
codes for this problem; Fig. 3 shows the local dimensionless 
flux divergence as calculated by the two-flux and Monte Carlo 
codes. The runs were for optical thickness 3.0, single 
scattering albedo 0.5, and the MVII scattering phase function. 
This comparison is perhaps the most important from the 
standpoint of receiver/reactor applications because it is this 
local absorption of solar energy that drives the chemical 
reaction and therefore determines reactor performance. 
Figure 3 shows that the two methods agree within about 10% 
over the entire range of z and would therefore be expected to 
give approximately the same reactor performance. 

These comparisons of the codes for a wide variety of 
scattering phase functions show that viability of these codes 
does not depend on this problem parameter, i.e., strong 
forward scattering does not preclude the use of either the two
flux or Monte Carlo methods. The discrete ordinate method 
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Fig. 3. Local flux divergence for two-flux (TF) and Monte 
Carlo (MC) codes, optical thickness = 3.0, albedo = 
0.5, MVII phase function, isotropic intensity 
distribution at z = 0. 

did not converge for the strongly forward-scattering phase 
function. 

The next comparisons sought to add more realism to 
the problem parameters by more nearly modeling the 
boundary conditions to be expected with a receiver/reactor. 
Specifically, the intensity distribution at z = 0 for a dish-type 
collector is expected to be isotropic within a cone half angle 
of about 45• and zero outside this cone, see Fig. 2. For the 
two-flux method, this cone angle does not appear as a 
parameter in the solution. Therefore, the two-flux method is 
not sensitive to the distribution of intensity at a boundary. 
Calculations were performed for isotropic, LAS (ax = 1), MVI 
and MVII phase functions, single scattering albedo 0.5, and 
optical thickness of 1.0 to 3.0. Comparisons · of Q, Q,., and
Q;, are given in Table 1.

The data presented in Table 1 show that the two-flux 
model grossly overpredicts the flux divergence at z = 0 
compared with the discrete ordinate and Monte Carlo models; 
the discrepancy is in the range of 48% to 63%. The two-flux 
model also overpredicts the overall absorption of energy, Q,., 
by as much as 35%. Figure 4 shows this behavior in more 
detail. For the same conditions as those used to produce 
Fig. 3, except that for the Monte Carlo code the intensity at 
z = 0 was confined to a 45" half angle, the graph shows that 
the two-flux model overpredicts the flux divergence at z = 0 
and underpredicts it at z = Zo. 

To help clarify this behavior, Fig. 5 shows the effect 
of incident intensity cone angle, 90, on flux divergence at z = 
0 for the three methods. An optical thickness of 2.0, single 
scatter albedo of 0.5, and LAS (ax = 1) were used. As 
discussed previously, the two-flux method is not sensitive to 
90 and gives a dimensionless flux divergence of -2.135. 

The discrete ordinate method gives two values of flux 
divergence depending on whether cos 90 is greater or less than 
0.29. This is related to -the direction set chosen for the 
discrete ordinate method. For M = 24 as used in this work, 
there are 12 directions in the positive z direction. However, 
for these 12 directions, there are only two unique angles with 
the z axis with cosines of 0.2959 (8 each) and 0.9082 (4 each). 
To impose an isotropic boundary condition at z = 0 requires 
that intensities in all 12 directions be set to unity. If 0 � cos 
90 < 0.2959, all 12 directions will be also be set to unity. If 
0.2959 < cos 90 < 0.9082, only the four directions with cosine 
of 0.9082 will be set to unity; the remaining eight intensities 
will be set to zero. Finally, if cos 90 � 0.9082, no solution is 
possible because none of the directions lie within the specified 
cone. The two values produced by the discrete ordinate 
method in Fig. 5 (-1.270 and -2.097) correspond to these two 
ranges of 00• 
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Table 1. Comparison of two-flux (TF), discrete ordinate (DO), 
and Monte Carlo (MC) methods for one-dimensional slab 
problem, single scatter albedo = 0.5 and specified boundary 
intensity at z = 0 consisting of isotropic distribution within a 
half cone angle of 45" and zero outside this cone. 

Scattering 
Phase 

Optical 
Optical 

Thickness 
======Method======= 

TF DO MC 

isotropic 1 

2 

3 

Q 
Q.. 

-Qo' 
Q 
Q.. 

-Q,' 
Q 
Q.. 

-Q,' 

0.8383 
0.6022
1.1212
0.8290 
0.7729 
2.1874
0.8285
0.8176 
3.1787

0.8859 
0.4807 
0.6690 
0.8775 
0.7184 
1.3400 
0.8771 
0.8153 
1.9880 

0.8868 
0.4917 
0.7560 
0.8777 
0.7291 
1.4220 
0.8703 
0.8085 
2.0500 

LAS (at=1) 1 

2 

3 

Q 
Q.. 
Q,' 
Q 
Q., 
Q,' 
Q 
Q.. 
Q,' 

0.8707 
0.6093
1.0924 
0.8617
0.7933 
2.1354
0.8611
0.8453
3.1093

0.9266 
0.4859 
0.6350 
0.9261 
0.7379 
1.2700 
0.9264 
0.8475 
1.8900 

0.9390 
0.5080 
0.6720 
0.9299 
0.7472 
1.3700 
0.9272 
0.8510 
2.0320 

MVI 1 

2 

Q 
Q.. 
Q,' 
Q 
Q.. 
Q,' 
Q 
Q.. 
Q,' 

0.8791 
0.8703
1.0849 
0.8703
0.7984 
2.1216
0.8696 
0.8524
3.0907 

0.9101 
0.9036 
0.6420 
0.9036 
0.7219 
1.2850 
0.9033 
0.8281 
1.9090 

0.9181 
0.9088 
0.6860 
0.9088 
0.7320 
1.3440 
0.9031 
0.8325 
2.0300 

MVII 1 

2 

Q 
Q.. 
Q,' 
Q 
Q .. 
Q,' 
Q 
Q.. 
Q,' 

0.9692 
0.6275 
1.0040 
0.9656
0.8494 
1.9636 
0.9651
0.9271
2.8740 

* 
* 
* 
* 
* 
* 
* 
* 
* 

0.9817 
0.4637 
0.6440 
0.9785 
0.7267 
1.2120 
0.9805 
0.8531 
1.7840 

*discrete ordinate code did not converge 

In contrast to the two-flux and discrete ordinate 
methods, the Monte Carlo method produces a continuous 
variation in the flux divergence as 90 is increased. At 
cos 90 = 0, all three models agree reasonably well (TF = 
-2.135, DO = -2.097, MC = -1.993). At cos 90 = 0.8, the 
Monte Carlo and discrete ordinate methods agree closely, 
mainly by happenstance. At cos 90 = 0. 7071 we see as before 
that the two-flux method overpredicts the flux divergence by 
about 56% relative to the Monte Carlo and discrete ordinate 
methods, which agree fairly closely. 

The reason for this behavipr can be thought of in terms 
of the paths taken by bundles' of energy. Bundles that
originate in a direction more nearly parallel to the z axis are 
more likely to reach z = Zo than are bundles that originate 
at a large angle to the z axis. The latter are more likely to 
be absorbed by the media, especially near the surface z = 0. 
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Fig. 4. Local flux divergence for two-flux (TF) and Monte 
Carlo (MC) codes, same conditions as in Fig. 2 except 
intensity distribution at z = 0 is not isotropic. 
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Fig. 5. Flux divergence at z = 0 for two-flux (TF), discrete 
ordinate (DO), and Monte Carlo (MC) codes as a 
function of half angle containing intensity at z = 0. 
Optical thickness = 2.0, albedo = 0.5, LAS a1 = 1 
phase function. 

For this reason, the more collimated is the incident solar 
beam, the less will be the local absorption of energy near z = 
0. Because the two-flux method cannot account for this
behavior, it predicts the results as if the incident beam were
isotropic (90 = 90"), significantly overpredicting the flux 
divergence when 90 = 45". Like the two-flux method, the 
discrete ordinate method deals with a finite number of 
directions and exhibits poor resolution in terms of the effect 
of eo. albeit slightly better than the two-flux method. The 
number of directions M could be increased for the discrete 
ordinate method to improve this resolution. However, our 
experience indicates that this would give the Monte Carlo 
method a clear advantage over the discrete ordinate method 
in terms of execution speed in addition to the advantage of 
better resolution with respect to 90• 

Figure 6 shows that this behavior is not sensitive to 
single scatter albedo. For a cone half angle of 45", optical 
thickness of 3.0, and scattering phase function MVI, Fig. 6 
shows the flux divergence at z = 0 plotted as a function of 
single scatter albedo for all three models. The two-flux model 
consistently overpredicts the flux divergence, by 48% for large 
albedo and 61% for small albedo relative to the Monte Carlo 
solution. The discrete ordinate model and the Monte Carlo 
model agree to within about 5% over the range of albedo 
tested. 
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Fig. 6. Flux divergence at z = 0 for two-flux (TF), discrett. 
ordinate (DO), and Monte Carlo (MC) codes as a 
function of single scattering albedo. Optical thickness 
= 3.0, intensity at z = 0 confined to cone of half angle 
= 45", MVI phase function. 

If the absorption of solar energy near z "' 0 is 
significantly overpredicted, one would expect the reaction rate, 
which typically increases exponentially with temperature, to 
be s�gnificantly overpredicted there also. For a purely thermal 
rece1ver, used to heat a . gas for example, overpredicting 
volumetric heat absorption would lead to an overprediction of 
local absorber temperatures near z = 0, overstate reradiation 
losses, and prematurely indicate the potential for absorber 
damage. 

The behavior described above typically has not been 
covered in the literature. This is because almost without 
exception, radiant transfer problems have dealt with specified 
surface temperature boundary conditions that give isotropic 
surface intensity distributions rather than specified 
nonisotropic intensity distributions as found in concentrated 
solar energy applications. One exception is the work of 
Daniels et al. [1979] in which the absorption of 
(nonconcentrated) solar flux in a horizontal layer of water was 
studied. In that work, the boundary condition consisted of the 
collimated (direct normal) solar beam plus a diffuse 
component. They found that the two-flux model significantly 
overpredicted volumetric absorption near the upper surface of 
the layer similar to the effect seen in this work. These 
results, in addition to �xperimental data [Daniels et al. 1978], 
led Incropera and Houf [1979] to develop a three-flux model 
to circumvent these problems. 

This suggests that a three-flux approach may alleviate 
some of the problems found with the two-flux method in the 
present work. One flux would be contained within a cone half 
angle from zero to 90, i.e., the cone containing the incident 
beam; a second flux would be contained from 90 to so•; and 
the third flux would be contained in the back hemisphere. 
Although it is not certain that this approach would work, the 
exceptional simplicity and numerical efficiency of the two-flux 
method relative to the other two methods suggest that the 
three-flux approach or other methods to improve the two-flux 
method should be investigated. 

The final sequence of comparison runs involved a 
geometry more closely related to a receiver/reactor than the 
one-dimensional slab or infinite cylinder described previously. 
The number of �iver/reactor configurations currently under 
consideration indicates that several possible geometries would 
be worth investigating. Here we have chosen to work with 
one reasonably simple geometry that appears to have 
application to several receiver/reactor configurations. This 
geometry is a right circular cylinder with radius-to-length 

ratio of 6:1. Optical properties are albedo of 0.5, optical 
thickness of 3.0, scattering phase function MVI, and specified 
intensity distribution at one cylinder face. Such a cylinder 
could represent the reaction zone of the methane reforming 
reactor or the preheat section of the hazardous vapor 
destruction reactor as seen in Fig. 1. 

Due to excessive computer memory requirements, the 
discrete ordinate model could not be used to solve this 
problem, except for a very coarse radial and axial grid. 
Therefore,. discrete ordinate results will not be presented. 

Although the two-flux method applies strictly to one
dimensional problems, Skocypec et al. [1988] extended the 
method to axisymmetric problems. Applying their technique 
to the present geometry, we divide the cylinder into concentric 
rings and assume each ring is one-dimensional. A single two
flux calculation is performed for the optical properties specified 
and for the length of the cylinder. The incident flux 
distribution over the face of the cylinder is partitioned into 
the concentric rings, and the solution for each ring is then the 
two-flux solution scaled by the flux specified for the ring. It 
appears that such a procedure, which assumes each ring is 
independent, would neglect the radial component gradient 
term in Eq. 1. One purpose of the comparison of this 
approach with the Monte Carlo method .is to determine if this 
term can be neglected. 

Three boundary conditions were explored for the 
geometry. For the first boundary condition, denoted BCI, the 
intensity at z = 0 was assumed to be uniformly distributed 
over the cylinder face and isotropic. This boundary condition 
is equivalent to the one-dimensional problems discussed earlier 
where the cone half angle, 90, is 90".

The second boundary condition, BCII, was similar to 
the first except that a radial distribution of intensity was 
assumed, simulating the actual performance at the focal plane 
of a dish collector and providing a test of the validity of 
dropping the radial gradient term in Eq. 1. 

The third boundary condition, BCIII, used the same 
radial distribution as the second boundary condition but added 
the realism of a cone of half angle, 90, of approximately 45•.
Input to the Monte Carlo code for this third boundary 
condition was calculated with a dish analysis code [Balch et 
al. 1989]. This code uses a Monte Carlo technique to 
determine the distribution and direction of bundles crossing 
the focal plane of a dish with given dimensions and 
properties. A 10-m diameter, glass/metal dish with focal 
length of 6 m was assumed. Gaussian slope, specularity, and 
sun shape errors of 1.5, 1.5, and 2. 7 mr half angle, 
respectively, were assumed. In the focal plane the bundles 
were found to be contained within a radius of 0.1264 m with 
a root mean square radius of 0.0433 m. The cosine of the 
angle with the z axis ranged from 0.6976 to 0.9999, e.g. very 
nearly a cone half angle of 45•. Consistent with the range of 
bundle radii, the cylinder radius was assumed to be 0.127 m 
and the specified radius-to-length ratio of 6 gave a cylinder 
length of 0.021 m. 

Results are presented in Table 2 in terms of the 
percent difference between the local flux divergence 
determined by the two-flux and Monte Carlo codes. A positive 
difference indicates the two-flux code overpredicted the 
volumetric heat absorption relative to the Monte Carlo code. 
The data are presented in an array, one for each boundary 
condition. The node nearest to r = z = 0 is the lower left 
corner of the array with radius increasing vertically upward 
and axial distance increasing to the right in each table. Only 
the first 10 axial nodes are shown because at this depth, the 
volumetric absorption has decreased to approximately 25% of 
the z = 0 value, so percent differences are not very 
meaningful. For BCII and BCIII, nodes near r = Ro also 
exhibit small volumetric absorption, so large percent 
differences at large radii are not significant. 

The results of Table 2 can be summarized as follows. 
For boundary condition BCI (Table 2a), with uniform radial 
and isotropic intensity, the two methods agree within roughly 
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Table 2. Comparison of the two-flux and Monte Carlo methods for a cylindrical absorber with albedo 
of 0.5, optical thickness of 3.0, scattering phase function MVI, and for three boundary conditions at
z = 0, BCI--Table 2a, BCII--Table 2b, BCIII-Table 2c. The tables give percent differences between 
the local flux divergence calculated by the two methods at each radial and axial node. 

i 
r 

Z-+ 

i 
r 

Z-+ 

i 
r 

z-+ 

Table 2a. 
12 23 38 42 45 41 46 50 40 30 
10 11 11 13 15 16 10 11 -7 9 

3 11 12 11 11 11 9 2 1 -6 
1 10 4 8 8 11 8 6 -4 -11 
3 11 13 14 5 6 2 0 3 -9 
5 17 7 12 15 8 5 -6 -4 -2 
5 19 12 4 22 6 1 14 -1 -10 
4 15 15 6 9 8 5 -7 -6 -15 
9 13 2 10 9 9 9 -1 -12 4 
4 12 16 5 -5 -4 -4 10 -9 -21 
7 10 22 6 12 18 15 -4 -0 -15 
6 24 9 14 7 11 17 5 2 -15 

15 20 5 9 20 19 -8 -7 -13 -13 
4 14 -5 -5 15 -20 -11 14 -9 -34 
7 27 26 -3 21 18 21 -9 43 -12 

Table 2b. 
53 -21 -26 115 -65 -27 20 57 -33 

-17 18 -23 33 65 -26 -16 -31 51 -53 
29 -2 -33 -22 -25 29 -1 -32 25 65 
26 21 -1 9 -11 -10 -20 6 -23 -43 

-10 17 19 12 -8 -28 -17 -26 -29 -25 
-0 -4 4 -8 -8 -16 -20 -5 -31 -35 
9 18 22 16 4 -7 -9 -5 -13 7 
1 14 10 7 3 2 -4 -10 -15 -13 
8 11 21 13 10 1 8 -11 -6 -10 
4 13 8 14 7 10 3 -4 4 -6 
4 14 12 12 10 8 -2 -1 7 -3 
4 7 12 11 11 9 3 5 8 -1 
7 12 12 6 10 11 10 -2 1 2 
3 19 19 17 17 21 8 14 7 -5 

12 9 5 20 8 9 -9 -5 -2 -2 

Table 2c. 
53 -42 31 -28 17 45 -60 -2 57 -56 
54 11 -19 51 -10 16 -16 83 -25 -38 
19 23 47 21 15 -14 35 -28 -28 -8 
29 21 15 -3 -16 -12 -26 -13 -43 -13 
59 9 1 -10 -4 -23 -12 -24 -22 -21 
29 26 30 -2 6 3 -10 -21 -19 -25 
39 27 12 14 9 0 -18 -24 -21 -34 
43 32 38 11 2 -8 -19 -15 -19 -35 
49 32 23 6 -3 -5 -5 -19 -22 -22 
52 31 19 11 5 -2 -12 -14 -18 -24 
47 29 21 14 9 -2 -5 -11 -14 -26 
47 31 21 14 11 -0 -10 -10 -14 -20 
56 44 23 13 9 -0 -6 -13 -16 -19 
54 41 21 21 7 4 -13 -12 -24 -25 
50 34 31 20 9 4 1 -18 -7 -16 

10%. This is consistent with Fig. 3, the equivalent one
dimensional problem. For BCII with isotropic intensity but 
with a radial distribution (Table 2b), agreement is still about 
10%. Thus, for the properties and geometry tested, it seems 
permissible to drop the radial gradient term in Eq. 1, i.e., 
make the independent-ring assumption for the two-flux model. 
For BCIII, with nonisotropic intensity and radial distribution 
(Table 2a), the two-flux model overpredicts the volumetric 
absorption by about 50%. This is consistent with Fig. 4, the 
equivalent one-dimensional problem. In other words, it is only 
the presence of nonisotropic specified intensity at z = 0 that 
creates problems for the two-flux model for this 
receiver/reactor absorber. 

CONCLUSIONS 

Three methods for solving the radiative transport 
equation have been compared for conditions typical for solar 
thermal receiver/reactors. Two-flux, discrete ordinate, and 
Monte Carlo methods were validated against published 
solutions for simple geometries and then compared against 
each other for one-dimensional problems and two-dimensional 
axisymmetric problems similar to . a dish-mounted 
receiver/reactor. 

The two-flux method is by far the most computationally 
efficient method, generally executing three orders of magnitude 
faster than the other two methods. In addition it is simple, 
easily implemented, and adaptable to two-dimensional 
axisymmetric problems, and it gave reasonably accurate 
results for all conditions with the exception of one important 
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boundary condition. The method does not accurately predict 
volumetric absorption of radiant energy if the incident 
intensity is nonisotropic. For conditions typical of a dish 
collector the method overpredicts volumetric absorption by 
about 50% near the front absorber face. This is expected to 
lead to large errors in local chemical reaction rate 
calculations. Significant modifications and extensions of the 
two-flux method would be needed to overcome this 
shortcoming and also to apply it to more complex receiver 
geometries. 

The discrete ordinate method also suffers when the 
incident intensity is not isotropic. This can be overcome by 
using a large number of ordinate directions, but. the method 
will then be significantly slower than the Monte Carlo 
method. For isotropic boundary intensity, 90 = 90", and for 
90 = 45", typical of dish collectors, the method compared very 
closely with the Monte Carlo method and can be used with 
confidence for these two conditions. However, execution time 
is comparable to the Monte Carlo code, and memory 
requirements are much greater. A large number of ordinate 
directions are needed to accommodate other values of 90 and 
also to accommodate strong forward scattering. The 
requirement for many ordinate directions leads to an even 
greater memory requirement. The method is complex, 
especially in the two-dimensional axisymmetric configuration, 
so code development, maintenance, and debugging are difficult. 

The Monte Carlo method proved to be reliable and 
accurate under all conditions tested and provides the analyst 
with an excellent physical appreciation of the problem. In 
addition the nature of the method simplifies development, 
testing, and debugging of the computer code used to 
implement the method. Relative to the two-flux method, the 
Monte Carlo method is much slower. This would be 
important if the Monte Carlo code were to be used for both 
the solar and infrared wavelength spectra in a full 
receiver/reactor model Although the two-flux model cannot be 
recommended for calculating the local absorption of solar 
energy, it appears that it is satisfactory for solving for the 
infrared transport where the boundary intensities are 
isotropic. This is fortunate because, although determination 
of the solar absorption is only required once for a 
receiver/reactor model, solving for infrared transport must be 
carried out iteratively or simultaneously with the other 
conservation equations, a process that is awkward and 
inefficient with the Monte Carlo method. Thus, the Monte 
Carlo method can be used to accurately determine the local 
absorption of solar energy, and the two-flux method can be 
us�d with confidence to determine the infrared transport 
simultaneously with the other conservation equation 
algorithms needed in the full receiver/reactor model. 

The above considerations strictly apply only to the 
axisymmetric cylindrical geometry considered in detail in this 
paper. Further comparisons should be performed if alternate 
receiver/reactor geometries are considered. 
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