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Preface

The research and development described in this document was conducted within
the U.S. Department of Energy’s (DOE) Solar Thermal Technology Program. The
goal of this program is to advance the engineering and scientific understanding of
solar thermal technology and to establish the technology base from which private
industry can develop solar thermal power production options for introduction into
the competitive energy market.

Solar thermal technology concentrates the solar flux using tracking mirrors or
lenses onto a receiver where the solar energy is absorbed as heat and converted
into electricity or incorporated into products as process heat. The two primary
solar thermal technologies, central receivers systems and distributed receivers,
employ various point and line-focus optics to concentrate sunlight. Current central
receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the
sun’s radiant energy onto a single, tower-mounted receiver. Point focus concen-
trators up to 17 meters in diameter track the sun in two axes and use parabolic
dish mirrors of Fresnel lenses to focus radiant energy onto a receiver. Troughs
and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver
tubes along their focal lines. Concentrating collector modules can be used alone
or in a multimodule system. The concentrated radiant energy absorbed by the
solar thermal receiver is transported to the conversion process by a circulating
working fluid. Receiver temperatures range from 100°C in low-temperature
troughs to more than 1500°C in dish and central receiver systems.

The Solar Thermal Technology Program is directing efforts to advance and
improve each system concept through solar thermal materials, components, and
subsystems research and development and by testing and evaluation. These efforts
are carried out with the technical direction of DOE and its network of field
laboratories that work with private industry. Together they have established a
comprehensive, goal-directed program to improve performance and provide tech-
nically proven options for eventual incorporation into the nation’s energy supply.

To successfully contribute to an adequate energy supply at reasonable cost, solar
thermal energy must be economically competitive with a variety of other energy
sources. The Solar Thermal Technology Program has developed components and
system-level performance targets as quantitative program goals. These targets
are used in planning research and development activities, measuring progress,
assessing alternative technology options, and developing optimal components.
These targets will be pursued vigorously to ensure a successful program.
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Executive Summary

Research at SERI within the Department of Energy’s Solar Thermal Technology
Program has focused on the development of membrane dish concentrators for
space and terrestrial power applications. As potentially lightweight, inexpensive,
high-performance structures, they are excellent candidates for space-deployable
energy sources as well as cost-effective terrestrial energy concepts.

A thorough engineering research treatment of these types of structures consists
primarily of two parts: (1) structural mechanics of the membrane and ring support
and (2) analysis and characterization of the concentrator optical performance. It
is important to understand the effects of the membrane’s structure and support
system on the optical performance of the concentrator. This requires an interface
between appropriate structural and optical models. Until recently, such models
and the required interface have not existed.

This report documents research that has been conducted at SERI in this area. It
is a compilation of several papers describing structural models of membrane dish
structures and optical models used to predict dish concentrator optical and thermal
performance. The structural models were developed under SERI subcontract by
Dr. Steele and Dr. Balch of Stanford University. The optical model was
developed in-house by SERI staff. In addition, the interface between the models
is described. It allows easy and thorough characterization of membrane dish
systems from the mechanics to the resulting optical performance.

The models described herein have been and continue to be extremely useful to
SERI, industry, and universities involved with the modeling and analysis of
lightweight membrane concentrators for solar thermal applications.
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Abstract

The governing fourth-order equations are presented for the shell of
revolution under axisymmetric load, and an asymptotic solution for edge
bending is obtained. The asymptotic solution is based on the assumption
that the thickness of the shell is very small relative to the the shell’s radii
of curvature. In order to incorporate the effect of high pressurization on
edge bending, the geometric nonlinearity associated with the change in
meridional slope is included in the governing equations.

The total solution, which is the sum of the membrane (particular) and
edge bending (complementary) solutions, is given for the case of uniform
pressure load, and the steps required in order to evaluate the solution are
explicitly described. As an example, the paraboloidal shell under uniform
pressure load is discussed, and the results are compared with a previous
ANSYS finite element analysis by Murphy (1987).



§1 Introduction

In many thin shell structures, loads are carried chiefly by membrane
stresses. Near the edges of a shell, however, boundary constraints may give
rise to bending stresses which are rapidly varying functions of the spatial
coordinates. For the case of the thin, axisymmetric shell, this type of local
edge effect can be described by an asymptotic solution, which exploits the
fact that the shell thickness ¢ is very small compared to other dimensions
of the shell. This report presents an asymptotic solution for edge bending
effects in a thin, axisymmetric shell, and focuses on the case of uniform
pressure loading. ,

The shell geometry and coordinate system are shown in Fig. 1. Fig-
ure 1 shows the meridian curve of the shell, which is defined by a function
y(r). The angle ¢, given by

é = tan™! (j—z) (1)

is the angle between the y axis and the normal to the meridian.

Figure 1. Coordinate system for an axisymmetric shell. The
distances r; and r, are the radii of curvature in the ¢ (merid-
ional) and € (circumferential) directions at the point P.

1.1-2



Also shown in Fig. 1 are the radii of curvature of the shell. The merid-
ional radius of curvature is denoted by r;; thus an element ds of arc length
along the meridian is given by

ds = \/dr2 +dy? = r;do (2)

The radius of curvature r3 in the circumferential direction is given by

r
sin ¢

Ty =

(3)

The force quantities to be employed in the analysis are shown in
Fig. 2a. The quantity N, is the meridional stress resultant (force per unit
length), and Q is the transverse shear resultant. For thin shells, it can
usually be assumed that Q <« Ny. The stress resultant vector may also be
expressed in terms of the horizontal and vertical components H and V (see
Fig. 2a). The meridional bending moment is denoted by M.

| 5 > r —r
%L.H \Lh
\N o l\u

¢ .
A 1% ¢ T v
.O ¢ ’0
Yy Yy

(a) (®)

Figure 2. (a) Force components and uniform pressure load p;
and (b) displacement components for the axisymmetric shell.

Figure 2b shows the shell displacements, which can be defined in terms of
the tangential and normal components (u,w) or the horizontal and vertical
components (k,v).

§2 Governing Equations

The governing equations for a shell of revolution under axisymmetric



load can be written in “state vector” form as follows:

_ 3.2
_a v) cos & sin ¢ Et® cos’ &

M¢ r 1 12r 0 A’I¢
L) e g |
ds X Etl_cr 0 —-y—c:—sd-’ 0 X
h !1—v2) cos? & . v cos & \ h
0 Tt —sin¢ - -
V cos ¢ )
Py — v sin & v
- P )
2y L.
_Q-vH sE_u%qs cos ¢ v

in which the coordinate s is the arc length along the meridian, E is the
elastic modulus, v is Poisson’s ratio, ¢ is the shell thickness, and c is the
reduced thickness, defined by

c = t/[12(1 =)} (5)

The quantities 7, ¢, My, H, V, and h in Eq. (4) are defined in Fig. 2.
The load term py is the horizontal (r direction) component of the load,
and the displacement quantity x is the rotation of the meridian, given by

dw u
=%t (6)

The four coupled first-order differential equations (4) follow from the equi-
librium, kinematic, and constitutive relations for the shell of revolution.
The derivation of Eq. (4) is discussed in Steele and Skogh (1970).

§3 Geometric Nonlinearity due to Pressurization

For a thin shell under internal or external pressure, it is: possible for
the magnitude of the membrane stresses to be of the same order as the
magnitude of the local buckling stress. Under these circumstances, it is
necessary to consider the geometric nonlinearity associated with the change
in meridional slope. (This is analogous to a stability or prestress analysis
in classical beam theory, in which a geometrically nonlinear second-order
term must be added to the fourth-order ODE.)

The relationship between the stress resultants (N4, Q) and (H, V) (see
Fig. 2a) therefore becomes

Ny = Hcos(d+ x) + Vsin(é + x)
= (Hcos¢+ Vsing) — (Hsing — Veosg)x + O(x*) (7a)

Q = Hsin(¢+x) — Veos(é+x)
= (Hsing—Vcosg) + (Hcosp + Vsind)x + O(x?) (7b)



where the slope of the deformed meridian is ¢+ x. In most problems where
the meridional rotation x is moderate, the meridional stress resultant vector
remains parallel to the undeformed meridian curve; hence the membrane
result

H = Vecote (8)

remains accurate. The second term of Eq. (7a) and the first term of Eq. (78)
are thus negligible, along with the terms of O(x?).

Incorporating the nonlinear corrections (7) into the equation of mo-
ment equilibrium results in a small formal modification of the governing
equations. Let A represent the 4 x 4 coefficient matrix of Eq. (4). The
only significant change due to the geometric nonlinearity is in the (1,3)
component of A:

' Etd cos? ¢ 2FEtc

A = P 2 (®)

where
_ ry(Hcosg+Vsing) _ pr

2FEtc ~ 4FEte

is a dimensionless “pressurization parameter.” For |p| < 1, the effects of
the geometric nonlinearity are negligible, but for |[p| = O(1), the effects are
significant. The value p = —1 corresponds to the classical buckling load for

the shell.

(10)

§4 Asymptotic Solutions

In order to obtain an asymptotic solution to Eq. (4) for the shell of
revolution under axisymmetric load, it is first necessary to write Eq. (4)
in dimensionless form, and to identify a suitable “large” parameter in the
problem. When carried out properly, these steps render Eq. (4) in the
following form:

1dy 1 1 L1 1
-5 T (Aot sA1+ 57A2)y = A(bo+ 3bi + wh) (1)

in which z is the dimensionless arc length coordinate, defined by
z = s/rze (12)
and A is a dimensionless large parameter, defined by
A= (reefc)t > 1 (13)

The quantities 5. and ¢, are the circumferential radius of curvature r, and
the reduced thickness ¢ evaluated at the edge of the shell.



In Eq. (11), the vector y of dimensionless unknowns is defined by

¢ My 3\
(Eto)e
Asin 6. H

y={ Fde | (14)

X/

\  h/re )

where the subscript e denotes that a quantity is evaluated at the edge of the
shell. The 4x4 matrices A(g,;,2) and the 4x1 right-hand side vectors bg ; 2)
in Eq. (11) are also dimensionless; their components are given explicitly in
Steele and Skogh (1970).
The solution y to Eq. (11) can be separated into its particular and
complementary parts:
y = y® 4+ y© (15)

where y(?) denotes a particular solution to Eq. (11), and y(°) denotes the
complementary solution, which satisfies the homogeneous equation

1dy 1 1

In order to obtain a particular solution, it is assumed that y(?) has the
form

1
y(") = A\, + ¥, + X‘I’z + ... (17)
where the vectors ¥y, ¥;, ¥,, ... are unknown functions of the dimension-

less coordinate z. The expansion (17) is then substituted into Eq. (11),
which becomes

AAo¥o—bo] + [A0¥; + ATy — T — by]

1 18
+ X[Ao‘I’2+A1‘I’1+A2‘I’o—‘I"1—b2] + ...=0 (18)

where the superscript ' denotes differentiation with respect to z.

In Eq. (18), the coefficients of each power of A must vanish indepen- -
dently, thus the vectors ¥y, ¥, ¥,,... are obtained by solving the system
of equations

Ag¥y, = by
Ao‘I’]_ = b1 + ‘1’6 - AI‘I’Q
AT, = b, + ‘I’Il -AT - AT (19)



When the particular solution y(® is determined in this manner, it is
found that the bending moment component y; is of O(A~2), but the hori-
zontal resultant component y; is of O(A). This implies that the particular
solution is essentially the membrane solution, since the bending stresses are
negligible relative to the direct stresses. It is therefore not necessary to cal-
culate the particular solution by means of Eq. (19), since the membrane
solution can be obtained directly by integrating the equation of vertical
(y direction) equilibrium.

§5 Asymptotic Solutions for Edge Bending

As mentioned in the previous section, the complementary solution y(¢)

must satisfy the homogeneous equation (16). The complementary solution
is taken in the form

¥y = M[®y + %@1 + %@z + ... (20)
where &, ®,, ®2,..., and £(z) are unknown functions of z which are in-
dependent of the large parameter A. The exponential form (20) allows
for rapid variation with z near the edge of the shell. This is appropriate
for the representation of edge bending, which is the physical phenomenon
described by the complementary solution.

" Substituting Eq. (20) into Eq. (16) gives the following eigenvalue prob-
lem (associated with the leading term in A):

[Ao—€'T] o = O (21)

in which I represents the identity matrix. Setting the determinant of the
coefficient matrix [Ag — ¢'I] equal to zero yields the characteristic equation

4 2
r2C ’ r2C ' =
( T2eCe 6) 2P (v T2eCe E) +1 0 (22)

where p is the pressurization parameter defined by Eq. (10).
The characteristic equation (22), evaluated at z = z., becomes

a' = 2p.,a2+1 =0 (23)
where

a = §(z.) (24a)

pe = p(ze) = P, e, (24d)

Equation (23) has four roots, given by

a ==+ Pe:i:vpf—l (25)



Equation (21) provides the corresponding eigenvector, which is

-

By(z.) = C{ 1, (26)

ad 4 4
a

where C is an arbitrary multiplicative constant.
For the purposes of this report, attention will be restricted to the one-

term approzimation
YO = M, (27)

in which the terms in Eq. (20) of O(A~!) or smaller are neglected. This
approximation is accurate provided that:

(i) A is sufficiently large compared to p. and unity.

(ii) Atan @, is sufficiently large compared to unity.
Condition (i) is the main requirement for the validity of the asymptotic
solution, and condition (ii) assures that the O(A~!) term is negligible.

Also, because the edge bending effects are local to the edge zone, the
functions £(z) and ®o(z) can be approximated by the leading terms of their
Taylor series expansions in z, and Eq. (27) becomes

—-Q

7O & M+ @y (z,) = Cerale=s) 2 ¢ (28)

(4 4

where Eqs. (24a) and (26) have been employed in order to express the
solution in terms of the eigenvalue a.

From the expression (25) for the four eigenvalues (roots of Eq. [23]),
three cases can be identified:

(i) pe £ —1: The roots are purely imaginary. The solutions (28) are
sinusoidal in the meridional direction, which implies local buckling (with
the bifurcation point p, = —1).

(ii) =1 < pe < 1: The roots are complex. The solutions oscillate, but
decay in the meridional direction. This is the typical edge bending behavior
of a shell of revolution.

(iii) pe 2 1: The roots are real, and the solutions decay exponentially
in the meridional direction. This characterizes the edge bending behavior
of a shell of revolution in high tension.

This report focuses on case (iii) above, which is appropriate for states
of relatively high membrane tension due to pressure loads. In this case,
Eq. (25) provides two positive real roots and two negative real roots.

If the dimensionless arc length coordinate z is defined such that z =
0 at » = 0 (see Fig. 1), then the two positive roots correspond to two
solutions of the form (28) which decay as z decreases. For a shell with a



single continuous edge (located at z = z.), the complementary solution can
therefore be written

_al3 _023

y(c) = C erar(z—ze) —‘112 + G eraz(z—z.) _(112 (29)
1 2
ay a9

where

o = o= VAE-T (30a)

a; = \/p,+ p-1 (300)

are the two positive eigenvalues, and C) and C; are multiplicative constants
which must be determined by enforcing two boundary conditions at the edge
of the shell.

The two negative roots of Eq. (23) correspond to edge effect solutions
which decay as the dimensionless arc length coordinate z increases. These
solutions describe the bending response at an inner edge, if one exists. In
this report, attention is focused on shells with one edge (no cutouts); thus
the complementary solution is taken in the form (29).

It is frequently informative to compute the decay distances of the two
exponential terms of the complementary solution (29). The decay distances
61 and 62, defined by

51 = w\/rgec,/al (31a)
82 = T\/TaeCe/2 (31b)

are the distances along the meridian over which the exponential envelopes
of the edge effects decay to about 4% of the maximum values.
For p. > 1, Egs. (31) can be approximated by

81 = 7w\/2peT2eCe (32a)

5 = %pc— (32b)

from which it is apparent that the first term of the solution (29) corresponds
to an edge effect with decay distance §; > /r2.Ce, while the second term
corresponds to an edge effect with decay distance 82 <« /T2.c.. Note that
without the pressurization effect (|pe| < 1), the two edge bending solutions
have decay distances § = O(\/T2.c.). With a large pressurization effect
(pe > 1), the shell is in a state of high membrane tension, and the edge
bending behavior is described by one solution which decays comparatively
slowly along the meridian, and another which decays comparatively rapidly.



§6 Final Form of the Total Solution

This section summarizes the results of the preceding two sections, and
presents the total solution in a form which can be readily applied to prob-
lems where the shell is in a high state of tension due to pressure loading
(i.e., for p. > 1). In view of Eq. (15), the total solution can be written

( My ) (0 Y ( —(Etc)ee; )
(m) Et
" " a1(s — s.) X(EI'I_I)?;:
< b = < ¥ + C) exp f—‘/;.?— < >
X X(m) r2e\ e _/\alz
\ h J \ h(m) / \ TeQ y
(33)
( —(Etc)eC’Q3 )
( ) Et),
agz(38 — S, sin
conefizza) | TG |
2 exp[ T2eCe a2
\ TeQ2 J

in which the first term is the membrane (particular) solution, denoted by

the superscripts (™). Note that M(im) = 0, because the membrane solution
has no appreciable bending stresses. The second two exponential terms are
the edge bending (complementary) solution, obtained from Eqs. (29) and
(14). :

In Eq. (33), the quantities with subscript e are evaluated at the edge
s = 8., and the quantities A, a;, and a2 can be evaluated from the pre-
viously recorded equations (13), (30), (24b), and (10). In order to employ
the solution (33), the following steps are required:

(i) Calculate the membrane solution. The forces and displace-
ments of the membrane solution can be obtained directly from the basic
equilibrium, constitutive, and kinematic relations.

From vertical equilibrium:

vim = ”2—r (34a)

from which it follows that
HM™ = v(Meotg = Z;—-tcoté (34d)
N;'") = v = b _ = B2 (34¢)

sin @ 2sing 2
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From normal equilibrium:

N = =N 4 rp = ‘%(2— ’—2) (35)

™

From the stress-strain relations and Eqs. (34¢) and (35):

(m) (m)
(m) _. Ny " —vNg _ P2 (. T2
£y = i = 55 1-2v+ url (36a)
d Et 2Et 1

where €4 and €4 are the midsurface strains in the meridional and circum-
ferential directions.
From the kinematic relations:

2 .
B = rep = ””—-—22;‘:”‘(2-;:-—1/) (37a)
(m)
(m = m) _ _1 dh
X tees” ~ Tmdds

_%{ (rl) ‘i’; + co tqs[ ( ) —5—+3]} (370)

v = /.(xcoscb + €4sin @) ds
= /' [V (1 ;,,2 sin? qi) + H (1 ;ty? sindacosd:)
+ x cos¢ — h(USin¢)] ds (37¢)

r

Equations (34b), (37b), and (37a) provide the membrane contributions
Hm™) (™ and A(™ in Eq. (33).

(i) Evaluate the constants C; and C,. This is accomplished by
enforcing two boundary conditions at s = s.. For a simply supported edge,
the two conditions are My = h =0, and for a built-in edge, the conditions
are x = h = 0. The results are

C, = o T

= T ]

Simply supported edge : real(:l oz) (38a,b)
C;, = 1231 h(gm)

- reaz(a; — ayl)
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agh{™ [re + x{™ /A
aj(a; — ay)
alhgm)/re + Xgm)/’\
az(az — o)

1
Built—in edge : (39a,b)

C; =

in which h(em) and xﬂm) are the horizontal displacement and meridional
rotation of the membrane solution at the edge s = s..

§7 Example: Paraboloidal Shell under Pressure Load

Consider the parabolic shell of revolution depicted in Fig. 3. The edges
of the shell are either simply supported (M = h = 0) or built-in (x = h =
0), and the shell is subjected to a uniform pressure load. The equation of

the meridian is given by

r?

vy = 7
4f
where f is the focal length of the paraboloid. Equations (1), (2),(3), and

(40) can be used to obtain the following expressions for the radii of curva-
ture:

(40)

ry = 2f/cos® ¢ (41a)
ro = 2f/cosé . (41b)
> T
LT L
-— fe—bl 4f
Vy

Figure 3. Paraboloidal shell with focal length f, subjected
to a uniform pressure load p. The meridian curve is the

parabola y = r2/(4f).

The numerical calculations in this section utilize the geometry data,
material properties, and pressure load given in Table 1. Substituting from
Table 1 into Egs. (1), (415), (10), and (13) yields

1T\ o
¢e = tan l(g) = 0.395 (4211)
r2e = 2f/cosd. = 19.5m (420)
= P o 466 42
Pe = $Etc — * (42¢)
A = (roe/c.)t = 504 (42d)
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Because Atané. > 1 and A > p., the one-term asymptotic solution should
be reasonably accurate (see §5).

Table 1. Specifications for paraboloid, from Murphy (1987).

Geometry Material Properties Load
t=0.254mm E =209 GPa p = 2000 Pa
re = 7.5 m V= 0.3
f=9m

7.1 The Membrane Solution

The membrane solution for the paraboloid is calculated by means of
the equations in step (i) of §6. Equations (34) can be used directly, and
Eqgs. (35-37a) are readily evaluated by substituting the radii of curvature
given by Egs. (41). In order to evaluate Eq. (37b), the relations

ro/r1 = cos ¢ (43a)
drl
- = 3tang (430)
for the parabola are useful.
The results are
[ ag(m) ) ( 0 )
Ad}
H(m) pf
. b = < , _ ) (44a,b,c,d)
x (™) -i[t- sin'¢(4 — sin® @)
2pf2tan o
| A(m) k%@—cos%-v)}

where the angle ¢ is utilized as the independent variable (see Fig. 1). Note
that for the parabola, the angle ¢, radial distance r, and meridional arc
length s are each acceptable independent variables, because the meridian
curve i3 a single valued function of ¢, r, or s.

Also, from Egs. (34c) and (35), the membrane stress resultants for the
paraboloid are given by

N("') = pf/cos¢ (45a)
Nf,m) = pf(2 —cos $)/cos ¢ (45%)

The integral (37¢) for the vertical displacement can be carried out to
obtain the following expression for (™) in terms of ¢:

- - ¢
(™ = pf’ (co ¢ — 2+ 1 2V) ‘ (46)
e

cosp  3cosd o
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7.2 Evaluation of the Total Solution and Discussion of Results

In this subsection, the total solution (33) is evaluated and compared
with finite element results from Murphy (1987). From Egs. (44c,d) and
Table 1,

pf

{m) —_ i _ 2 _ 4 a~ -4
Xe Fromg, (3~ 2c0s” ¢ —cos’g.) = ~5.02 x 107* (47a)
2pf? tan @ ' _
(m) — SPJ 30%e 5 _ 0sldh. —v) = 2. 3
he Et cos b, (2 —cos® g —v) 234 x107°m (470)

And from Egs. (30) and (42¢),

a = \/pe -+vp2-1 = 0.104 (48a)
az = A\[pe+/pi—1 = 9.65 (48b)

From the results (47) and (48), the constants C; and C; in Eq. (33)
can now be evaluated as

Ch -3.01 x10°3

Simply- supported edge : { C, = 372 x 10~ (49a, b)
. . Cl = -3.04 x 10-3

t— . 9 \

Built—in edge {02 ~ 350 x 10-7 (50a, b}

where the expressions (38) and (39) are utilized. The results (42), (48),
(49), (50), and Table 1 provide the numerical values which are required in
order to evaluate the total solution (33).

In Eq. (33), the argument of the exponential factors is the meridional
arc length s. A convenient approximation to the arc length in the edge
zone is

3s—3. = (r—r.)/cos o, (51)

Equation (51) enables the exponential factors in Eq. (33) to be written in
terms of the radial distance r, and is sufficiently accurate for calculations
based on the one-term approximation (28).

Substituting Eq. (51) into the solution (33) provides an expression for
the bending moment My, in terms of r, and the bending stress o4p(r) in
the meridional direction is subsequently obtained as

_ 6M¢ 3 3 al(r—re)
%8 = 7 = —E\/m{cﬂl P[T—— Wevor

ag(r —-r.)
+ Cooferp 22|}

(52)
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The decay distances of the two exponentially decaying contributions, cal-
culated from Egs. (31), are

61 = mreece/a; = 11Tm (53a)
52 = 1?\/7‘2,6,/(!2 = 0.0126m (536)

where 6, and 6, are the distances along the meridian over which the edge
bending stresses decay to about 4% of the maximum values at r = r,.

Consider first the case of a simply supported edge. Figure 4 shows
the bending stress o4p as a function of the radial distance r. The first
exponential term of Eq. (52), with decay distance 6, = 1.17 m, contributes
the slowly decaying component of the edge effect (see Fig. 4). The second
exponential term, with decay distance §; = 0.0126 m, is responsible for the
abrupt change near the edge r = 7.5 m. For the simply-supported case, o4
must equal zero at the edge; thus the contributions of the two exponential
terms in Eq. (52) cancel at r =r,.
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Bending Suress  (MPa)
EN o

e e00ecsePeccccsese®occccece®ecccnececsBoccscccs®ecccccecscvccccccs fuwacsocfoces

[ ¥

0. 1. 2. 3. 4. 5.
r (m)

Figure 4. Asymptotic solution for the meridional bending

stress in a simply supported parabolic shell under pressure

load. The bending stress o4p is shown as a function of the
radial distance r.

The variation of the bending stress in the region 7.3m < r < 7.5m
(very close to the edge) is plotted in Fig. 5. Figure 5a shows the bending
stress o4p for the case of a simply supported edge; the ~ 10 mm decay dis-
tance of the second exponential term of Eq. (52) is clearly visible. Figure 5b
shows the bending stress for the case of a built-in edge. The built-in edge
condition gives rise to very high bending stresses at the edge, but these
stresses are negligible a few centimeters away from the edge (see Fig. 5b).
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(MPa)

Bending Stress

_40' ........................... Pecsssans
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13 74 1.5 13 7.4 1.5
r (m) r (m)
(a) (b)

Figure 5. Asymptotic solution for the meridional bending
stress o4p near the edge of the parabolic shell under pressure

load. (a) Simply supported edge: the bending stress is zero
at the edge r = 7.5m. (b) Built-in edge: the bending stress
reaches a maximum value at the edge.

The rotation x of the meridian, from Eq."(33), is given by

= (™ _ \g2 aifr—re) 1y 2 az(r —r.) =
X=X Aa; Cy exp[cos ¢e\/F2_e?e-] Aay Cy exP[———cos b (54)

in which x(™ is evaluated from Eq. (44c).. Figure 6 shows the rotation
x(r) for the case of a simply supported edge. The solid line represents
the asymptotic result (54), and the cross marks represent the values of the
rotation from the finite element analysis by Murphy (1987) (see Fig. 6).
The two approaches both show the ~1 m decay distance of the edge effect,
but good quantitative agreement is not obtained near the edge (see Fig. 6).

The variation of the meridional rotation in theregion7.3m <r < 7.5m
is plotted in Fig. 7. Figure 7a shows the meridional rotation x for the
case of a simply supported edge; Figure 7b shows the meridional rotation
for the case of a built-in edge. Note that the rotation of the meridian
is essentially the same for both edge conditions, except in the “boundary
layer” region a few centimeters from the edge. In order to enforce the
built-in edge condition, the second, rapidly decaying, exponential term of
Eq. (52) participates significantly (see Fig. 7b).

The meridional stress resultant Ny is given by Eq. (7a), in which H is
obtained from Eq. (33), and V is obtained from Eq. (34a). Note that the
vertical component of the complementary solution must be zero in order to
satisfy vertical equilibrium; thus V = V(™) = pr/2.
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Figure 6. Rotation x as a function of radial distance r for the
@simply supported parabolic shell under pressure load. The

solid line is the asymptotic solution; cross marks are ANSYS
results from Murphy (1987).

Rotation (mr)
o0

g}
~
B
N
g}
~
B
-

(a) (®b)

Figure 7. Asymptotic solution for the meridional rotation
x near the edge of the parabolic shell under pressure load.
(a) Simply supported edge: the meridional rotation reaches a
maximum value at the edge » = 7.5m. (b) Built-in edge: the
meridional rotation is zero at the edge.

The meridional and circumferential strains ¢4 and €9 can now be ob-
tained from the relations
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1—-0v2

Et N¢—V€9 (55(1)
€9 = h/r (55b)

where h is given by Eq. (33). The circumferential stress resultant Ny can
be calculated by substituting Eqs. (55) into the constitutive relation

Et
1 -2

For the case of a simply supported edge, the stress resultants N, and
Ny given by Egs. (7a) and (56) are plotted in Fig. 8 (solid lines). Figure 8
also shows the values for the stress resultants from the finite element anal-
ysis by Murphy (1987) (circles), which agree well with the asymptotic solu-
tion. Note that the meridional stress resultant N4 remains approximately
constant along the meridian, but the circumferential stress resultant Ny
decreases considerably near the edge (see Fig. 8). For the case of a built-in
(or clamped) edge (not shown in Fig. 8), the stress resultants N, and Ny
differ only slightly (less than 1%) from their values for the simply supported
case.

€p =

Ny =

(eq + vey) (56)

4
1

X107 s
E 2.0
3
- LS
E
F
& 1.0
2
Z I

.o ¢ 1 1 ] 1 ] 1
0. 1. 2. 3. 4. S. 6. 7. 8.
r (m)

Figure 8. Stress resultants N, and Ny for the simply sup-
ported parabolic shell under pressure load. Solid lines are the

:Esym totic solution; circles are ANSYS results from Murphy
1987).

The horizontal displacement A, from Eq. (33), is given by

B = B ‘ ay(r—r.) az(r -r,) -
+reciCyexp [cos Per/T2eCe + reazChexp COS Pe+/T2eCe (57)
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in which A(™ is evaluated from Eq. (44d).
The vertical displacement v can be decomposed into the contributions
from the membrane and complementary solutions:

v = o™ 4 0 (58)
where v(™ is given by Eq. (46). The vertical displacement v(®) of the

complementary solution can be obtained by evaiuating an integral of the
form (37¢). Because V(%) = 0, the integral (37¢) for v(°) becomes

v(® = /’ [H(C) (1 -V sin ¢ cos ¢) + x(© cos ¢ — R (zs;ﬂ)] ds (59)

Substituting the complementary part (exponential terms) of the solu-
tion (33) into Eq. (59) yields

: -3, Et), (1-v% .
v(9 = /;{C’l exp[all ize‘: )] [/\(Sln¢e< E: sin ¢ cos ¢)

- afcos ¢ —r.a (Vsincb)]

- - 12
*C”"p[az(iz\/—ec?) [A(sfi:x?; (1E: Si“"‘m"‘)

- ,\azzcosé—r,ag(ysind,)] } ds

Although Eq. (60) appears complicated, the integral can be simplified
by noting that it is of the form

(60)

/ : f(z)e**dz = % flz)e* |7 +0(17?) (61)

where A is large compared to unity and f(z) and its derivatives are inde-
pendent of A. Equation (61), which follows from integration by parts, can
be utilized in evaluating the integral (60). The result is

() 4/ T2eCe al(r - re) 1-—p2 .
v —{01 - exP[cosq&,\/Fz?::][ — sin @ cos ¢

Asin ¢,

..,\af cos ¢ — r.ay (Vs';n ¢)]

62)
/T2eCe [ az(r —r.) ] [ 1-2 | (
+C2 ar exp COS Poy/T2.Ce | | Asin @, sin ¢ cos ¢

_/\022 Cos ¢ — r.on (VSirn ¢)] }
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where terms of O(A~2) are neglected, and Eq. (51) is employed in order to
express v(¢) in terms of r.

The horizontal displacement A, from Eq. (57), and the vertical displace-
ment v, from Eq. (58), are plotted in Fig. 9 (solid lines), for the case of a
simply supported edge. Figure 9 also shows values of the horizontal and
vertical displacement from the finite element solution by Murphy (1987)
(cross marks). The finite element values for the horizontal displacement A
agree well with the asymptotic solution. Near the axis of the paraboloid,
however, the magnitude of the vertical displacement v given by the finite
element solution is greater than that of the asymptotic solution (see Fig. 9).

(mm)

Displacement

2. - B

0 L

| Horizontal disp. h —/

-1.
-2 B
3 F Vertical disp. v
4. F \
@ ®
-5. (2] ®
-6. 1 [l 1 1 1 @ e 1
0. 1. 2. 3. 4, S. 6. 7. 8.
r (m)

Figure 9. Horizontal displacement A and vertical displace-
ment v for the simply supported parabolic shell under pres-
sure load. Solid lines are the asymptotic solution; cross marks

are ANSYS results from Murphy (1987).

Note that the only difference between the solutions for the simply
supported and built-in edge conditions is the equation (Eq.[38]or Eq.[39])
which is employed in the evaluation of the constants C; and C;. For the
case of a built-in edge (not shown in Fig. 9), the displacements 4 and v differ
only slightly (less than 1%) from their values for the simply supported case.
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Abstract

A tenth-order formulation is presented for non-axisymmetric deforma-
tions of shells of revolution. The formulation includes transverse shear de-
formation, as well as the nonlinear moderate rotation terms which become
important in the presence of high initial prestress. Asymptotic solutions
are then obtained for non-axisymmetric edge bending effects in a pressure-
loaded paraboloidal shell. It is shown that for thin shells, two types of edge
effects may occur: one with a short decay distance relative to the square
root of the radius to thickness ratio, and one with a long decay distance.
For the membrane and inextensional behavior, solutions based on shallow
shell theory are employed.

The asymptotic solutions and shallow shell results for the paraboloid
have been incorporated into a FORTRAN computer program which runs
in a few minutes or less on a PC. The analysis of a thin paraboloidal dish
is discussed, and examples are presented which demonstrate the effect of
prescribing circumferential harmonics of edge displacement, and the effect
of an asymmetric pressure load.
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§1 Introduction

The present investigation is concerned with non-azisymmetric defor-
mations of shells of revolution, and is an extension of a previous report
(Steele and Balch, 1987), in which asymptotic solutions for axisymmetric
edge bending were discussed. In order to analyze general non-axisymmetric
deformations, the circumferential dependence of the displacements and
stresses is expressed as a Fourier series of circumferential harmonics. The
shell equations are derived from a mixed variational principle of the Reiss-
ner type, which leads to a state vector (matrix) form of the equations for
the nth circumferential harmonic.

The general response of a shell to prescribed edge deformations and ap-
plied loads consists of a combination of membrane, inextensional, and edge
bending behavior. Membrane behavior is characterized by direct stresses
which are much greater that any bending stresses, while inextensional be-
havior is characterized by direct stresses which are negligible relative to
the bending stresses. Edge bending effects involve coupled membrane and
bending behavior and are typically local to the edge zone, decaying rapidly
with increasing distance from the edge of the shell.

In the present work, asymptotic solutions to the shell equations for the
nth circumferential harmonic are obtained using the asymptotic expansion
discussed by Steele (1980). These solutions describe edge bending, and are
valid for edge effects with decay distances which are small in comparison to
the shell radii of curvature, and for perturbations from a nominal state of

membrane prestress. Solutions for membrane and inextensional behavior
are obtained independently, using shallow shell theory.

The analysis of the paraboloidal dish collector discussed by Kutscher
et. al. (1988) is the primary motivation and concern of the present work.
The membrane, inextensional, and edge bending solutions are therefore de-
rived for the paraboloidal shell. These solutions have been incorporated
into a FORTRAN computer program which can be run in a few minutes
on a PC. The output of the program consists of the displacements, sur-
face rotations, and stresses at a predetermined set of grid points on the
shell. Several examples are discussed which illustrate the response of a pa-
raboloidal shell to non-axisymmetric edge conditions and loading. For the



analysis of asymmetric pressure loading, a “wind load” membrane solution
with cos § (n = 1) circumferential dependence is employed.

§2 Reference Coordinate System and Notation

Figure 1 shows an element of a shell of revolution. The radial, circum-
ferential, and axial coordinates (r, §, z) are used.

Figure 1. Shell element, coordinate system, and reference
basis vectors.

Figure 1 also shows the local basis vectors {e,,eq, ez} in the meridional,
circumferential, and normal directions. The stress and moment resultants
which- act on the shell element are commonly expressed relative to this
basis. Figure 2 shows the stress and moment resultants and their directions
of positive action.

Figure 2. Stress and moment resultants acting on a shell
element.

For some purposes, it is convenient to utilize the basis {e,,e;, eq}
shown in Fig. 1, and to decompose the stress resultants and displacements
in terms of radial and vertical components:

N.=N,cos¢+ Q,sin¢

Nz=N,Sin¢-Q‘cog¢ (lavb)
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Ur = U, c'osdt + Unsin g (2¢,d)
U; = u,sin® — U, cos d

where N and u denote stress resultants and midsurface displacements in
the directions indicated by the subscripts, and the angle ¢, given by

¢ =tan™’ (i—;’) (3)

is the angle between the normal to the meridian and the z axis (see Fig. 3).

Figure 3. Meridian of a shell of revolution and meridional
arclength coordinate s. The distances r; and r; are the radii
of curvature in the meridional and circumferential directions.

The principal kinematic degrees of freedom to be considered are de-
picted in Fig. 4. The two rotation angles x(,,¢) of the normal to the mid-
surface are considered in addition to the three midsurface displacements
Y(r,z,0)- Lhis Reissner-type of kinematic approximation incorporates the
effect of transverse shear deformation.

Figure 4. The kinematic degrees of freedom along an edge
s = const. consist of the radial, vertical, and circumferential
displacements u,, u;, 49 and the meridional and circumferen-
tial rotation angles x,, x¢ of the normal to the midsurface.
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As a consequence of these kinematics, a complete specification of the
boundary conditions requires the enforcement of five conditions along the
edge of the shell. Either a displacement quantity or its corresponding force
quantity may be prescribed. Along an edge of constant s, the five force
quantities which correspond to the five kinematic degrees of freedom shown
in Fig. 4 are the two moment resultants M, and M,y and the three stress
resultants N, N;, and N,y.

§3 Formulation of the Shell Equations

The governing equations for the shell of revolution can be detived by
applying a mixed variational principle of the Reissner form, which can be
written

2% pay
0 T

+M,5, + Morg +2Mo9500 + Qs(xs — Bs) + Qo(x 0 — Bo)

1
- EEIN.Z —2VN.N0+N02 +2(1 +V)N.2. (4)

- %{Mf — UMM + M} +2(1 + v)M3)]

- 5%(03 + Q%) — Psus — Pouto — Prtin}rdsdd = 0.

where ¢,, €9, and ¢,¢ are the midsurface strains; x,, x¢, and x,9 are the mid-
surface curvature changes; 3, and B¢ are the midsurface rotations; p(,,¢,n)
are the components of the distributed load; v is Poisson’s ratio; and the
shear flexibility factor u is given by

pa12(1+v)/5 (8)

for isotropic materials.

Because the shell kinematics involve five degrees of freedom, it is pos-
sible to write Eq. (4) in terms of the five displacement quantities shown in
Fig. 4 and the five corresponding force quantities. This leads to a modified
form of Eq. (4) in terms of ten independent unknowns. The algebra re-
quired to achieve this can be carried out systematically by means of matrix
operations. The symbolic manipulation program MACSYMA (1983) was
utilized to derive and check the results.

First, consider the constitutive relations for linear elastic behavior:

& =[52 B[] ©
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in which the vectors F(; 2) and D, ;) are defined by

- M" a K’ ‘
M, 2K40
F, = Qa i Di=|Xs— ﬂa (707 b)
N, €
N NJO o . 2530
M, K¢
Qs| i Da2=|xe—Pe (8a,d)
Ny €9

and the symmetric matrix I is given in Appendix A for the case of isotropic
behavior. The matrix relation (6) can be partially inverted to obtain

®,, ‘1’12] ]
[ ] [‘1’21 ®2; | | D2 ®
where
&, = I'} (10a)
P,, = f-l‘l‘lll“m = -Qg; (106)
®2; = 2 =TT (10¢c)

Making use of the definitions (7,8) and Eq. (9), it is possible to rewrite
the variational equation (4) as

2x pag
=6 / [FT(D, + ®1,D2) + = D2 &,,D,
(11)

- EFl <I>uF, - DTP)rdsdd = 0

where the superscript 7 denotes transposition. In Eq. (11), the dependent
force quantities F'; have been eliminated from the integrand, and the vectors

X 0"
Xo 0

D=|u, ; P=|p, (12a, d)
Uz Pz
. Uug . . Do -

in the final load term of the integrand are the dlsplacement and load vectors
relative to the {e,,e;, ey} basis.
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The next objective is to express Eq. (11) in terms of the five displace-
ment quantities in the vector D and the five force quantitities in the vector

F, defined by

rM.
rM,e
F=|rN, | = rGTF, (13)
rN;
rNge
where the transformation matrix G, is
"1 0 O 0 0
o1 O 0 0
Gy = |0 0O sing —cosgp O (14)
0 0 cosp sing O
00 O 0 1

In order to express D; and D; in terms of the vector D, kinematic
relations which relate strains and curvature changes to displacements and
rotations are required. Consider a deformation with cos né circumferential
dependence, for which

" M™ cosné ] & Jcoe nd
MY sinnd 2~ ) sinnd
Fi=|Q™cosng| ; Di=|( " B("))coa né (15a, b)
f") cosné - &M cosnd
L N9 sinng | L 2Dsinng .
[ M™ cos nd | [ klVeosng ]
F; = Q sinné ; Da= (X(o")- BS"’ ) sinné (16a, b)
LN, (o cosné | | &M cosnd
and
[ rM™ cosnd’ "x$™ cosné” T 0
er,)smnO x(, ) sinnd (n) 0
F= rN(")cosno i D=|y™cogng| 3 P=|pr cosnd
rN coa né u(") cosnéd p( )-cos nd
| NG PV )sinnd _ui") sinné . bp(, )sinnd .

(17a, b,¢)
where the superscript () denotes a Fourier coefficient which is independent
of 6.

The kinematic relations given by Fligge (1973) can be written in the
matrix form

(»)
D{" = GI? + G{MD™ (18a)
D{" = G{"D" (18b)
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where D(®), D(l"), and D§"’ are the vectors of the Fourier coeficients in
Eqs. (15b), (16b), and (17b), and the matrices G{™ and G{™ are given by

0 0 0 0 0
| Fn/r —cosd/r 0 0 0
G = | 1 0 0 0 0 (19q)
0 0 0 0 0
0 0 Fncosd/r. Fnsing/r —cosd/r.
[cosd/r +n/r 0 0 0
Gg") = 0 1 Fnsing/r xncosd/r —sing/r (19%)
| o 0 1r 0 +n/r

The upper sign of {£, F} in Eqs. (19) applies for the circumferential de-
pendence represented by Eqs. (15-17), and the lower sign applies for sinnf
dependence, which would be represented by Eqs. (15-17) with cosines and
sines interchanged.

For the nth harmonic of circumferential variation, the integration with
respect to 6 in Eq. (11) just leads to an overall multiplicative factor of = (or
2, for the axisymmetric case n = 0). Dividing through by this constant
then leaves the variational equation

2 omT n n 1 T n
6T = 6 / F"(D{ + #5,D{) + 2D 8,,D{”
N r (20)
- 3F" 8y F - DWTPM]rds = 0
in which the § dependence has been eliminated, and F(l") and P(") are the
vectors of the Fourier coefficients in Eqs. (15a) and (17c¢).
Inverting Eq. (13) yields
1
F{ = ~G,F™ (21)
Substituting Eqs. (18) and (21) into Eq. (20) now provides the final varia-
tional equation in terms of F and D:
. (n)
5T = & / "ETR" | peTgmEm _ LpmTopm
" ds 2 (22)
+ %D(..)TK(,.)D(..) ~D™TB™)ds = 0

where the matrices E(®, C, K™, and the load vector B(®) are given by

T
E™" = GT(G™ + 8% G\ (23a)
1
C = ;Gf@llGl (23b)
T
K™ = rG{"" %,,G{” (23¢)
B(®) = ,p(n) (23d)
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The explicit forms of E(™), C, and K(™ for the case of isotropic material
behavior are given in Appendix B. Note that the matrices C and K™ are
symmetric.

As pointed out by Steele (1988) in deriving the fourth-order system for
axisymmetric deformations, a varational principle of the form (22) leads
to the self-adjoint system

£ R

The state vector equation (24) is a tenth-order system of governing equa-
tions for the nth Fourier harmonic. It will be seen that the form (24) of
the shell equations is convenient for obtaining asymptotic solutions for edge
effects.

§4 Initial Tension Due to Pressure Load

The nonlinear equations for finite axisymmetric deformations of shells
of revolution were first derived by Reissner (1950). Asymptotic solutions to
Reissner’s equations are presented by Ranjan and Steele (1980). From these
and other previous works, it is seen that “prestress,” or initial membrane
tension or compression, contributes an important geometric nonlinearity
which can significantly affect the edge bending behavior of a shell.

For an analysis of a shell with prestress, the moderate rotation terms

%N,,sg + %N.ﬁz + N.oB.B0 (25)

must be added to the integrand in Eq. (4). For isotropic or transversely
orthotropic materials, the constitutive relations

Q = %—(x.—ﬁ.) (26a)
Qo = %t'(xo-ﬂo) (26b)

can be used to express the moderate rotation terms (25) as

1 1
3 X3+ §Nox3 + NooXxaXo (27)
provided that
{NnNO’NsO} < Et/l‘ (28)

In general, the inclusion of the terms (27) in the integrand of Eq. (4) leads
to a nonlinear system of governing equations.
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For the purposes of the present investigation, which concerns prestress
due to pressure load, the nonlinear terms (27) are linearized to obtain

1 - -
SVl + Nox) (29)

where N, and Ny denote the nominal state of membrane stress due to the
pressure load. The quadratic terms (29) are the linearized strain energy.
terms associated with perturbations relative to the nominal state of tension.
Note that the pressure load produces no membrane shear stress.

When the linearized moderate rotation terms (29) are added to the
integrand of Eq. (4), the resulting system of equations (24) remains the
same, except for the first two diagonal elements of the matrix K™, which
become

K = kP +r¥, (30a)
K& = K& + r¥ (30)

The system of equations to be considered in the subsequent analysis is
therefore Eq. (24) with the modifications (30).

§5 Asymptotic Solutions

For the analysis of edge effects, we consider the homogeneous case of
Eq. (24), which can be written

daY
-5 +AY =0 (31)

where Y is the unknown state vector and A is the coefficent matrix which
depends on the meridional coordinate s.

In order to obtain solutions to Eq. (31) which are of a relatively sim-
ple form, the formal asymptotic expansion introduced by Steele (1980) is
employed. In this approach, the solution Y is represented by the series

Y = exp( / 5(3)ds) [Yo(s) + Yi(s) +...] (32)

where £(s) is an unknown function and the Y; are unknown vectors which
are slowly varying functions of s. The form (32) is appropriate for edge
effects which decay rapidly with increasing distance from the edge.

The expansion (32) satisfies the governing equations (31) if £ and the
Y, satisfy the relations

(A—Ié)Yo =0 (330)
(A-1Y; = TEL (21 (335)
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where I is the identity matrix. The function £ and vector Y, are therefore
an eigenvalue and corresponding eigenvector of the coefficient matrix A.
The Y; are determined recursively from Eq. (335).

In the present work, as in the previous investigation (Steele and Balch,
1987), the one-term asymptotic solution is considered. This provides an
approximate solution of simple exponential form:

Y(s) & Cefl)(=2)y,(s,) (34)

where C is an arbitrary constant and £(s.) and Yy(s.) are an eigenvalue
and corresponding eigenvector evaluated at the edge s = s.. The one-term
asymptotic solution therefore requires the calculation of the eigenvalues and
eigenvectors of A(s,).

Because the matrix A is non-symmetric and of tenth order, it has, in
general, ten complex eigenvalues £, which satisfy the characteristic equation

|A-X¢| =0 (35)

It can be shown, however, that if £ is an eigenvalue of a matrix which is of
the form of the coefficient matrix in Eq. (24), then —¢ is also an eigenvalue.
The solutions which correspond to the five eigenvalues with positive real
parts decay with decreasing s (see Fig. 3), and represent edge effects at an
outer edge. The solutions which correspond to the five eigenvalues with
negative real parts decay with increasing s and represent edge effects at an
inner edge. For a shell with a single edge (no internal cutouts), we need
therefore consider only the five edge effect solutions for the outer edge.

For qualitative discussion of the behavior of the edge effects, it is useful
to define the decay distance § by '

§ = =/[Re({(s.)]l (36)

which is the distance from the edge at which the envelope of the edge effect
bas decayed by about 4%.

The five roots of Eq. (35) with positive real part can be determined
numerically. For isotropic material behavior, the five roots can be catego-
rized as follows:

(i) The largest root is of O(t™!), where ¢ is the shell thickness. This
root corresponds to a very localized transverse shear edge effect with a
decay distance § = O(t).

(ii) The next two largest roots correspond to edge bending effects.
Figure 5 shows the decay distances of the two edge bending solutions as a
function of the dimensionless harmonic index

i = nv2rc/(2r) (37)
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where r; is the circumferential radius of curvature and c is the reduced
thickness, defined by
c = t/[1201 - )} (38)

where t is the shell thickness and v is Poisson’s ratio.

For zero prestress (solid line in Fig. 5), the two edge bending solutions
have equal decay distances § = O(y/r2t). For high prestress (dashed and
dotted lines in Fig. 5), one bending edge effect decays rapidly and one
decays slowly relative to the bending edge effects without prestress. Initial
membrane tension in the shell therefore affects the edge bending behavior
dramatically, as pointed out in the previous report (Steele and Balch, 1987)
for the case of axisymmetric deformations (n = 0).

)

t i 1 1
V=T -
«a - -
o T r 7
&
k = -
D
-~
[P}
N -
- e )
- e ecereencant ettt ee e ot et et bt et e era et bt ot eot ettt et e
0 0.2 0.4 0.6 0.8 1

ny/2rzc/(2r)

Figure 5. Decay distance § as a function of n for the two edge

ing solutions, with nominal prestress N,r;/(2Etc) =
Nory/ ?Etc) = 0 (solid line), 4 (dashed line), and 40 (dotted
line). The longest decay distance occurs for the axisymmetric
case n =0.

(iii) The lowest two roots of Eq. (35) correspond to a membrane solu-
tion, for which the direct stresses are much greater that the bending stresses,
and an inextensional solution, for which the direct stresses are negligible
relative to the bending stresses. With the present formulation, the asymp-
totic solution (34) provides accurate approximations to the membrane and
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inextensional solutions only for very high harmonics # = O(1), for which
the response of the shell approaches that of a flat plate.

Because the lower harmonics are of particular interest in the present
investigation, solutions valid for general n based on shallow shell theory are
employed to represent the membrane and inextensional response. This is
discussed in the next section

§6 Shallow Shell Solutions for the Paraboloid
A shallow paraboloidal or spherical shell can be described by
z(r) = r?/(2R) (39)

where z(r) and R are the axal coordinate and radius of curvature of the
undeformed meridian.

For the paraboloid, the homogeneous form of the shallow shell equa-
tions, from Wlassow (1958), p. 381, can be written with respect to the
coordinates in Fig. 1 as follows:

1 1
FrA0¢+ plu, =0 (40a)
Etc*AAu, — NAu, — %Ad» =0 (408)

in which E is the elastic modulus, V i the nominal state of membrane ten-
sion; ¢ is the Airy stress function for perturbations relative to this nominal
state, 1.e.,

19 1 3%
N =N+ ;‘6—'. + 7507 (41a)
- &
Ne = N+ 57';?. (415)
0 (19¢
and A is the harmonic differential operator defined by
@ 10 18
A=gatietawm (42)
Substituting the circumferential variation
¢=¢M™cosnd ; u;=ulcosnd (43a,b)
into the equations (40) yields the coupled ODE's
1 1
— (n) L _ (n) —
EtA"A"¢ + RA,.u, 0 (44a)
EtFAnAnul™ — NAu™ — %A,.w) -0 (443)
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where

@2 1d n?
b= Ftirm ()
The solutions to Eqs. (44) can be separated into three families:
(i) Edge bending solutions, which satisfy
2 x Et (ﬂ)
(Etc*AnAn — NA, +'E) u™ =0 (46)

Since asymptotic solutions for edge bending were obtained in the previous
section, the solutions to Eq. (46) will not be discussed.
(ii) Membrane solutions, which satisfy

And™ =0 (47)
(iii) Inextensional solutions, which satisfy
Anu™ =0 (48)

The membrane and inextensional solutions for the paraboloid are there-
fore simple harmonic functions, given by

¢ =Cyr™ + Cyr " (49a)
ul™ = Cir" + C4r—" (49a)

where C, C2, C1, and C} are arbitrary constants. For the present analysis,
only the first terms in Eqs. (49) need be considered; the second terms are
singular at r = 0 and must be omitted for the case of a paraboloid with
a single edge. From Eqs. (49), the constitutive relations (6,A.1-3), and
the kinematic relations (18), all the components in the state vector Y of
Eq. (31) can be calculated.

The results for the membrane solutions are:

Pl o0 1 W] [

rM.y 0 xs" 0

PN =N [t | W™ =N | SR | (s0)
PN r3/R uf? SR

A rNS:) ] . dr 1 _ug") . _?%_

where Ny is an arbitrary constant, r, is the radial coordinate of the edge,
and 7, defined by
T = 1'/ Te (51)
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is a dimensionless radial coordinate. In Eq. (50), the upper sign of {£, F}

corresponds to cos nd circumferential dependence of ¢(™ and u{™, and the
lower sign corresponds to sin né circumferential dependence.
The results for the inextensional solutions are:

" ,.Msn) . ’ Etc'(l-u):.(n-l)r"'i . . x(...) 9 . % 1
r ME:) + Ete?2(1 -v):.gu-l)r'"‘ x(‘,.) s ,,,:.-1
TN | = 0 s | ul™ | =v | —55 :::;
rN™ 0 ul™ "
NP 0 SN N P
(52)

where vg is an arbitrary constant.

For the case n = 1, the solutions (50) and (52) describe rigid body mo-
tions of the shell. Equations (50) and (52) provide the remaining solutions
which are required for analyzing edge effects in a paraboloidal dish.

§7 Membrane Solutions for Asymmetric Pressure Load

In this section, we discuss membrane solutions for a paraboloidal shell
subjected to asymmetric pressure loading such that

p=p™cosnd ; N,=N™cosnd (53a,b)
Ny = N:") cosné ; Ny = Nf:) sinné (53¢, d)

where p is the pressure in the e, direction in Fig. 1. The primary concern
of the present analysis is the “wind load” distribution which corresponds
to the n = 1 harmonic.

For a shallow paraboloidal shell, the membrane equations of equilib-
rium can be written

%(rm) +(1+n)Ny =Rp™(1 +n) (54a)
:—;(rN..) +(1=n)N_ = Rp™(1=n) (54b)
N = g™ _ N (54c)
where
Ny=N®™ 4 N® (55a)
N_=N®™ _N® (558)
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(see Flugge[1973], p. 43). The solutions for N; and N~ are then given by
Ni = R(1 £ n)r~?¥" /p(")rli" dr (56)

The membrane strains can be determined directly from the constitutive
relations (6,A.1-3), and the displacements, from the kinematic relations
(18), are given by

-
ul® = / e{™ ds (57a)
(n) e (

‘u;‘ =[) EE.") ds (576)
ug") = (reg —u,)/n (57¢)

Forn =1, Eqs. (55) and (56) yield

N® =N = pr-3 / 2 gp! (58)
0

In the subsequent analysis, the solution (58) is used to represent the mem-
brane stresses due to an asymmetric pressure load.

§8 Solution Procedure

As in the previous investigation (Steele and Balch, 1987), the total
solution is decomposed into particular and complementary solutions. For
the nth harmonic,

Y™ =Y + v (59)

where Yg") is the particular solution which satisfies Eq. (24), but does
not in general satisfy the boundary conditions at the edge s = s, and
(™ is the complementary solution, which is the general solution to the

homogeneous equation (31).

In the present work, the particular solution is taken to be zero for all
n 2 2. For n = 0, the particular solution is taken to be the axisymmet-
ric membrane solution for uniform pressure loading (see Steele and Balch,
1987). For n = 1, the particular solution is taken to be the “wind load”
solution (58), which is evaluated by assuming a piecewise linear radial pres-
sure distribution, with pressure data from a set of sample points along the
meridian of the paraboloid. The displacements are determined by numerical
integration of Eqs. (57).

The complementary solution Y™ can be expressed

Y& = VYR + CVYER, + OV YR,

+CMYEE + OV YR ¢
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where Yg'ﬁ) is the asymptotic solution for the local transverse shear edge
effect; Yg‘n)l and Yg'B)2 are the asymptotic solutions for the rapidly decaying
bending edge effects; Y&% and Y‘n'}) are the membrane and inextensional
shallow shell solutions; and the C{™ are unknown constants.

The five unknown constants C,(") are determined by enforcing five
boundary conditions along the edge s = s.. The conditions are

XM =x; or M™ =M (61a)
(") =Xy Or ME:) = M, (61d)
us.") =u? or N™ =N (61c)
u®=u? or N™ =N7 (61d)
w=u; or N =N, (61e)

where the superscript * denotes a prescribed value at the edge. Note that
either a displacement quantity or its corresponding force quantity can be
prescribed.

Equations (61) provide a linear algebraic system in the five unknowns

C,(") for each harmonic. This system can be expressed

o (n) .Cl. (n) o (n)

M ¢| =R (62)

where M and R are a known coefficient matrix and right-hand-side. The
matrix M is well conditioned when the boundary conditions are given
as prescribed displacements. If all the boundary conditions are given as
prescribed forces, however, conditioning problems may arise for very thin
shells, due to the extremely low stiffnesses associated with the inextensional
deformation modes.

§9 Examples and Discussion

The numerical results presented in this section were obtained from the
DISH computer program, which is described in Appendix C. The program is
a computerized implementation of the solutions and the solution procedure
discussed in the preceding sections, and is capable of analyzing several
harmonics of deformation in a few minutes or less on a PC. Examples are
presented for a thin steel paraboloidal dish, with the geometry, material
properties, and nominal pressure load given in Table 1.
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Table 1. Specifications for paraboloidal dish.

Geometry Material Properties Load
t =0.254mm E =209 GPa p = 2000 Pa
re=75m v=0.3
f=9m

9.1 Prescribed Radial Edge Deformation
Consider a prescribed radial edge displacement of the form

u, = ul™ cosnd (63)

with
W =10mm ; XV =xg” =u® =uf =0 (64)

at the edge. This can be envisioned as a cosné radial perturbation of a
nominal axisymmetric configuration in which the edge of the paraboloid is
clamped. Note that the paraboloid is also subjected to the pressure load
P = 2000 Pa.

The displacements 4, and u, are plotted in Fig. 6 for the case n = 2.
For comparision, the displacements for the nominal axisymmetric-case of a
clamped edge is shown (solid lines in Fig. 6). For 8 = 0° (dashed lines), the
radial displacement u, equals 1.0 mm at the outer edge, and the magnitude
of the vertical displacement is less than for the axisymmetric case. But
along the radial line § = 90° (dotted lines), the magnitude-of the vertical
displacement is greater than for the axisymmetric case. This is the expected
behavior of an n = 2 deformation mode.

The rotations x, and x4 for the case n = 2 are plotted in Fig. 7. For
6 = 0° (dashed line) the peak meridional rotation x, is smaller than for
the nominal axisymmetric case (solid line), but for § = 90° (dotted line),
the magnitude of the peak meridional rotation x, is greater than for the
axisymmetric case. Note that the maximum circumferential rotations y,,
which occur along the radial line § = 45° (dot-dashed line in Fig. 7), are
much smaller than the maximum meridional rotations.

Because zero meridional rotation is prescribed at the edge, the values
of x, drop abruptly from their peak values to zero within the outer few
millimeters of the edge (see Fig. 7). This indicates a rapidly decaying edge
bending effect. A much more slowly decaying edge bending effect with a
decay distance § ~ 1m is also evident.

Figure 8 shows the stress resultants N, and Ny for the case n = 2.
The values of the stress resultants for the nominal axisymmetric case are
shown for comparison (solid line). Along 8 = 0°, the meridional stress N,
associated with the n = 2 edge deformation is uniformly greater than for the
axisymmetric case, and the circumferential stress Ny exhibits a relatively
smaller drop near the edge (dashed lines). But along § = 90° (dotted lines),
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Figure 6. Radial displacement u, and vertical displacement
u; as functions of r for a paraboloidal shell subjected to a
cos 20 prescribed radial edge displacement. Results shown for
0 = 0° (dashed lines) and § = 90° (dotted lines). The results
for the axisymmetric case of a clamped edge -are shown for
comparison (solid lines).
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Figure 7. Rotations x, and xy as functions of r for a pa-
raboloidal shell subjected to a cos26 prescribed radial edge
displacement. The meridional rotation Y, is shown for § = 0°
(dashed line) and § = 90° (dotted line), and for the axisym-
metric case of a clamped edge for comparison (solid line). The
arcumferential rotation x¢ is shown for § = 45° (dot-dashed
line). Note the large mendional rotations near the edge, and
the abrubt drop to zero due to the clamped edge condition.
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Figure 8. Stress resultants N, and Ny as functions of r for
a paraboloidal shell subjected to a cos26 prescribed radial
edge displacement. The stress resultants are shown for § =
0° (dashed lines) and § = 90° (dotted lines), and for the
axisymmetric case of a clamped edge for comparison (solid
lines). Note the significant drop in the circumferential stress
Ng near the edge i%TO = 90°.
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the meridional stress is uniformly less than for the axisymmetric case, and
the drop in circumferential stress near the edge is quite pronounced.

Note that the effect of the n = 2 edge deformation on the meridional
stress IV, is not local to the edge zone, but is distributed uniformly over
the shell. This is due to the participation of the n = 2 membrane solution,
which can be characterized approximately as a state of uniform tension
along 8 = 0° with uniform compression along § = 90°.

The radial and vertical displacements u, and u, are shown in Fig. 9
for higher harmonics of prescribed radial edge displacement, corresponding
to n = 4 (dashed lines), n = 16 (dotted lines), and n = 64 (dot-dashed
lines). Again, the displacements for the nominal axisymmetric case of a
clamped edge are shown for comparison (solid lines). It is evident that for
higher harmonics of edge displacement, the edge effects decay more rapidly,
becoming more localized to the edge zone.

For a given amplitude u™ of edge displacement, the stresses grow
with n (not shown). This reflects the greater stiffness of the shell for higher
harmonics of edge deformation. Because the present analysis is based on
the linearized moderate rotation terms with no nonlinear update of the
membrane stresses, the accuracy will therefore deteriorate as n is increased

while u{™ is held fixed.

9.2 Prescribed Vertical Edge Deformation

Now consider the case of a prescribed vertical edge displacemerit of the

form
uy = u{™ cosné (65)

with
¥ =10mm ; xW=x"=uP=u"=0 (66)
at the edge.

Figure 10 shows the radial and vertical displacements u, and u, for the
case n = 2 and Fig. 11 shows the meridional and vertical stress resultants
N, and Ny. Figure 12 shows the displacements u, and u, for n = 4, 16, and
64. For brevity, detailed commentary will not be included outside of the
captions, since the results are qualitatively similar to those of the previous
example in which the radial edge displacement was prescribed.

9.3 Asymmetric Pressure Loading
For the final example, we consider a “wind load”
Pn = pysin g cosé (67)

where p, is the normal pressure on the shell, p,, is a known wind pressure,
and ¢ is defined in Fig. 3. The form (67) is borrowed from Fligge (1973).
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Figure 9. Radial displacement u, and vertical displacement
u; along the line § = 0° for a paraboloidal shell subjected to
cosnf prescribed radial edge displacements. Results shown
for n = 4 (dashed lines), n = 16 (dotted lines), and n = 64
(dot-dashed lines). The results for the axisymmetric case of
a clamped edge are shown for comparison (solid lines). With
increasing n the edge effects decay more rapidly; outside the
edge zone, the displacements approach those of the axisym-
metric case.
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Figure 10. Radial displacement u, and vertical displace-
ment u, as functions of r for a paraboloidal shell subjected to
a cos 26 prescribed vertical edge displacement. Results shown
for @ = 0° (dashed lines) and § = 90° (dotted lines). The re-
sults for the axisymmetric case of a clamped edge are shown
for comparison (solid lines).
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Figure 11. Stress resultants /N, and Ny as functions of r for
a paraboloidal shell subjected to a cos 26 prescribed vertical
edge displacement. The stress resultants are shown for § =
0° (dashed lines) and § = 90° (dotted lines), and for the
axisymmetric case of a clamped edge for comparison (solid
lines). Note the significant drop in the circumferential stress
Ny near the edge.
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Figure 12. Radial displacement u, and vertical displace-
ment u, along the line § = 0° for a paraboloidal shell sub-
jected to cosné prescribed vertical edge displacements. Re-
sults shown for n = 4 (dashed lines), n = 16 (dotted lines),
and n = 64 gdot-dashed lines). The results for the axisym-
metric case ot a clamped edge are shown for comparison (solid
lines). With increasing n the edge effects decay more rapidly;
outside the edge zone, the displacements approach those of
the axisymmetric case.
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The edge of the paraboloid is taken as clamped (all displacements and
rotations are prescribed to be zero), and the nominal pressure is 2000 Pa.

Figure 13 shows the meridional stress resultant IV, (solid line) and the
circumferential stress resultant Ny (dashed line) evaluated along § = 0°
for the case p,, = 1000 Pa. The marks in Fig. 13 were computed using the
membrane results for the spherical shell from Fligge (1973), p. 4. Good
agreement is observed except near the edge, where edge bending effects are
significant due to the clamped edge conditions. Note that much of the load
is carried by the circumferential “hoop” stress.

Figure 14 shows the radial and vertical displacements u, and u. along
the radial line 8 = 0°, for p, = 0, 1000, and 2000 Pa, and Fig. 15 shows
the meridional rotation x,. As py is increased, the rotation x, near the
edge at 6 = 0° also increases, although the qualitative behavior of the edge
effects along 8 = 0° remains the same (see Fig. 15).

§10 Conclusions

A tenth-order matrix formulation was presented for non-axisymmetric
deformations of shells of revolution. The formulation includes the moder-
ate rotation terms which become important in the presence of high initial
prestress. Based on this formulation, asymptotic solutions were obtained
for non-axisymmetric edge bending effects in a pressure-loaded paraboloi-
dal shell. For the membrane and inextensional responses to edge loads,
solutions were derived using shallow shell theory. Membrane solutions for
asymmetric pressure loads were also derived.

The various solutions for the paraboloidal shell were incorporated into
a computer program which can be run in a few minutes on a PC. A thin steel
parabolic dish was analyzed, and examples were presented which demon-
strate the effect of prescribing circumferential harmonics of edge displace-
ment, and the effect of an asymmetric pressure load. For low harmonics
of deformation, the decay distances of the bending edge effects were found
to be comparable to those for the axisymmetric case. This is due to the
extremely large radius-to-thickness ratio of the shell which was analyzed.

For problems involving prescribed edge displacements, membrane so-
lutions contribute significantly. In particular, the membrane stresses due
to an n = 2 edge deformation do not decay appreciably with increasing
distance from the edge. For asymmetric pressure loading, the results of the
present analysis agree with membrane theory, except near the edge, where
edge bending effects become important.
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Figure 13. Stress resultants NV, (solid line) and Ny (dashed
line) along 6 = 0° for a clamped paraboloidal shell subjected
to the asymmetric load p, = pyw sin ¢ cos §, with p,, = 1000 Pa
and a nominal pressure load of 2000 Pa. The circles and dia-
monds are the membrane solution from Fligge (1973), which
agrees with the present analysis except near the edge. The
present analysis includes the rapidly decaying edge bending
effects, which account for the abrupt drop in the circumfer-
ential stress /Ny near the edge.
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Figure 14. Displacements u, and u, along 8§ = 0° for a pa-
raboloidal shell with a clamped edge subjected to the asym-
metric load p, = p,, sin$coefd, for p, = 1000 Pa (dashed
lines) and p,, = 2000 Pa (dotted lines). The displacements of
the axisymmetric solution with the nominal pressure load of
2000 Pa are shown for comparison (solid lines).
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Figure 15. Meridional rotation x, along § = 0° for a parab-
oloidal shell with a clamped edge subjected to the asymmetric
load p, = pw sin¢ cosb, for p,, = 1000 Pa (dashed line) and
Pw = 2000 Pa (dotted line). The rotation x, of the axisym-
metric solution with the nominal pressure load of 2000 Pa is

shown for comparison (solid line).
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Appendix A: Constitutive Matrices for Isotropic Behavior

For isotropic behavior, the constitutive matrices I'y;, I';2, I'2;1, and
22 in Eq (6) are given by

2 0 0 0 0 7
0 8= 0 o0 0
ry,=E|0 0 L 0 0 (A1)
0 0 0 £y o0
[ 0 0 0 0 gnyl
ve2 00 0 O
Iy =L =Et|0 00 0 O (A.2)
0 00 %5 0
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¢ 0 0
Iy = Et|0 & 0 (A4.3)
0 0 =~

where E is the elastic modulus, v is Poisson’s ratio, ¢ is the shell thickness,
and c is given by Eq. (38)

Appendix B: Coefficient Matrices for Isotropic Behavior

The coefficient matrices E(®), C, and K™ in Eqs. (22) and (24) can
be calculated from Eqs. (23). For isotropic behavior, the explicit forms of
the matrices are

"vcosd  Fn rsin ¢ —rcos ¢ 0
1 +tvn —cos¢ 0 0 0 ,
E™ == 0 0 vcos ¢ vsing Fncos¢| (B.1)
| .0 0 0 0 Fnsin ¢
0 0 +vncosd *vnsing —cosd .
" dr 0 o - 0 0
1 |0 =i 0 0 o
C= E 0 0 psin? ¢4+(1=v2)cos® ¢ (1=wv3=pu)sinpcosd 0
0 0 (1=v3 =u) sin p cos & s cos? ¢+(1-v3)sin? ¢ 0
. 0 0 0 2(14v)
(B.2)
K™ =
" ¢3 c;);’ é + nt’lczoa é 0 0 ‘0 b
n_’t_f_+ﬁ 4:m-sing 4 Brcoed _rsing
Et 1 g n3 sinr.t n? sin‘; cos ¢ gi_n_’”_g
— . . e tn(.“ +1)
. n ) ¢ cos ¢
(Symmetric] : = F 'f": b0
i sin’¢ a2 ]
(B.3)

where the upper sign of {+, ¥} corresponds to cos né circumferential depen-
dence, and the lower sign corresponds to sin nf circumferential dependence.
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Appendix C: Description of the DISH Computer Program

This appendix provides a brief description of the DISH computer pro-
gram for the analysis of paraboloidal shells. The program is written in
standard FORTRAN-77 and can be run on an IBM PC. A sample input
file is shown in the following table.

Table C-1. Sample input file for the DISH program.

Input File DISH.IN, for the DISH structural analysis program.

T RE FL GEOMETRY
2.54E-4 7.5 9.0
E NG ] MATERIAL PROPERTIES
209.E9 0.3 3.12
NFOUR “NPTS RANGE r, theta(d) NPTSW "MESH ANALYSIS PARAMETERS
2 4,2 6.,7.5 0.,90. 16 10

(1 = Disp.; 2 => Force) BOUNDARY CONDITION FLAGS
CHIS/MS CHIt/Mst Ur/Nr Uz/Nz Ut/Nst
1 1 1 1 1

(ICS=1 => CO3; ICS=2 => SIN) BOUNDARY CONDITIONS
NHARM ICS CHIs/Ms CHIt/Mst Ur/Nr Uz/N2z Ut/Nst
0 1 0. 0. 0. 0. 0.
1 1 0. 0. 0. 0. 0.
PNOM PRESSURE LOAD DATA
2000.

(WINDAT(I),I=1,NPTSW)
0. 0.277778E+02 0.555556E+02 0.833333E+02 0.11111l1E+03
0.138889E+03 0.166667E+03 0.194444E+03 0.222222E+03 0.2S50000E+03
0.277778E+03 0.30SSS6E+03 0.333333E+03 0.361111E+03 0.388889E+03
0.416667E+03

Table C-1 shows an input file for the analysis of a paraboloid with
clamped edges and wind loading. The first line of numbers contains the
thickness T, edge radius RE, and focal length FL. The second line of num-
bers contains the elastic modulus E, Poisson’s ratio NU, and the shear
flexibility factor MU (see Eq. [51).

The parameters in the third line of numbers are

NFOUR: The total number of Fourier harmonics in the analysis, in
this case 2 (n =0 and n =1).

NPTS: Adjusts the density of the grid of output points. In this case,
4 points in the radial direction by 2 in the circumferential.

RANGE: The first two numbers are the minimum and maximum r
values of the output interval, in this case 6.0 < r < 7.5. The second two
numbers are the minimum and maximum 6 values (in degrees) of the output
interval, in this case 0 < 8 < 90.

NPTSW: The number of pressure data points for an n = 1 wind load
analysis. Set to 0 if no wind load is included.
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MESH: A mesh parameter for the numerical integration which deter-
mines the displacements of the wind load solution. Any integer greater
than 5 will yield adequate convergence in most cases.

The next line of input is the five integers under “Boundary Condition
Flags.” Each must be set to 1 or 2, where 1 indicates that a displacement
or rotation is prescribed, and 2 indicates that the corresponding force or
moment is prescribed. In the input file shown, the flags are set to 1, which
indicates that both rotations and all three displacements will be prescribed
at the edge. To prescribe the meridional moment rather than the rotation,
set the first flag to 2. Note that conditioning problems may arise if all the
boundary conditions are chosen to be prescribed forces (see §8).

. Under “Boundary Conditions” are one line of input for each harmonic
in the analysis; in this case there are two lines. Each line includes

NHARM: The first integer in the line is the harmonic number; 0 for
axisymmetric, 1 for n = 1, etc.

ICS: The second integer should be set to 1 for a cosine harmonic, and
2 for a sine harmonic.

Boundary Conditions: The next five real numbers are the prescribed
edge conditions for the harmonic specified at the beginning of the line. In
this case, all are set to zero in order to get a clamped edge. To prescribe
a radial displacement, set the number under “Ur/Nr” to the desired value,
with the corresponding “boundary condition flag” set to 1.

To specify the loading condition, assign pressure values to

PNOM: The nominal pressure load acting on the parabola, in this case
2000.

WINDAT: This is an array of pressure values from NPTSW equally
spaced sample points which are distributed along the meridian § = 0 from
the center r = 0 to the outer edge r = r.. The circumferential variation
is assumed to be cosd (n = 1). The program will linearly interpolate the
pressure between sample points. If no asymmetric pressure load is desired,
set NPTSW to 0 and leave this array out.

When the program is run, it reads the input file DISH.IN, and gener-
ates the output file DISH.DAT, which is essentially an echo check of the
input data. DISH.DAT includes some additional information, such as the
dimensionless pressurization parameter RHO. High prestress is associated
with a value of RHO which is large relative to unity. DISH.DAT also lists
the roots of the characteristic equation (35), which are the decay constants
of the asymptotic solutions. The DISH.DAT file generated by the input file
in Table C-1 is listed in Table C-2.

The displacement and stress data is written to a second output file
DISH.OUT. The DISH.OUT file generated by the input file in Table C-1
is listed in Table C-3. The current version of the DISH program records
13 quantities at each of the grid points specified in the input file. The
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13 quantities are the two rotations x, and xs of the normal, the three
displacements u,, 4., and ug, the three moment resultants M,, My, and
My, and the five stress resultants N,, N,, N,, Ng, and N,.

Table C-2. Sample output file DISH.DAT, from the DISH program.

Output File DISH.DAT, from the DISH structural analysis program.

Echo of Input Data:

T RE FL Edge Angle
0.254000E-03 0.7S0000E+01 0.900000E+01 22.620 deg
E NU My
0.209000E+12 0.300000E+00 0.312000E+01
NFOUR NPTS (R, THETA) NPTSW MESH

2 4 2 16 10
R RANGE THETA RANGE
0.600000E+01 0.750000E+01 0.00 90.00
BCFLAG

1 1 1 1

NHARM ICS BCDAT
o 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0..000000E+00

Nominal Pressure PNOGM = 0.200000E+04
Pressurization Parameter RHO = 0.465947E+02

WINDAT

0.000000E+00 0.277778E+02 0.555556E+02 0.833333E+02 0.1l11111E+03
0.138889E+03 0.166667E+03 0.194444E+03 0.222222E+03 0.250000E+03
0.277778E+03 0.30S556E+03 0.333333E+03 0.361111E+03 0.388889E+03
0.416667E+03

Decay Constants for N = 0

( 0.249333E+03, 0.000000E+00)
( 0.267569E+01, 0.000000E+00)

Decay Constants for N = 1

0.124581E+05, 0.602718E-24)
0.249333E+03,-0.281823E-24)
0.269064E+01,-0.302915E-24)
0.123103E+00,-0.576263E-24)
0.105319E-13,-0.113360E-07)
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Table C-3. Sample output file DISH.OUT, from the DISH program.

THETA = 0.00
R

CHIs

Ms

Mt

0.600000E+01
=0.372910E-03
0.291311E-03
0.873933E-04
0.650000E+01
. 0.501614E-03
0.114779E-02
0.344337E-03
0.700000E+01
0.433097E-02
0.454936E-02
0.136481E-02
0.750000E+01
0.331125E-09
-0.160607E+01
-0.481822E+00
THETA = 90.00
R
CHIs
Ms
Mt

0.600000E+01
=0.205794E-03
0.222784E-03
- 0.668353E-04
0.650000E+01
0.457426E-03
0.876113E-03
0.262834E-03
0.700000E+01
0.337925E-02
0.346588E-02
0.103976E-02
0.750000E+01
0.367917E-10
=0.123113E+01
=0.369339E+00

CHIt
Mst

0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+0Q0
0.000000E+0Q0

0.000000E+00
0.000000E+00

CHIt

0.228067E-03

=0.229369E-05

0.217589E-03
=0.909341E-05

0.172585E-03
-0.362657E-04

0.000000E+00
0.247579E-01

.225217E-02
.194057E+05
. 204572E+05

. 235940E-02
.194601E+05
.206985SE+05

. 205859E-02
.193603E+05
.208114E+05

00O OO0 oOoOoo

-0.494389E-10
0.186526E+05S
0.203817E+05

.168506E-02
.179865E+05
.189609E+0S

.178054E-02
.179471E+05
.190879E+05

.156313E-02
.177906E+05
.191181E+05

000 OO0 OoOoo

-0.147167E-09
0.17167SE+05
0.18731SE+05
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Uz
Nz
Nt

=0.635162E-02
0.647442E+04
0.250153E+05

-0.632946E-02
0.705223E+04
0.248189E+05

-0.529811E-02
0.763551E+04
0.215466E+05

=0.701342E-10
0.822610E+04
0.611449E+04

Uz
Nz
Nt

Ut
Nst

0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00

0. 000000E+00
0.000000E+00

0.000000E+00
0.000000E+00

Ut
Nst

-0.498809E-02 -0.118490E-03

0.600000E+04-
0.205971E+05

0.149612E+04

-0.492355E-02 -0.808127E-04

0.650000E+04
0.202682E+05

0.160963E+04

-0.408951E-02 -0.406835E-04

0.700000E+04
0.175897E+05

0.168870E+04

0.306566E-17 -0.735834E-10

0.750000E+04
0.561946E+04

0.162932E+04
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1.0 Introduction

This report summarizes work performed for SERI under Consultant Agreement No.
CJ-8-00632-1, during the period June 20, 1988 through August 26, 1988. The primary
purpose of this report is to document software for dish membrane structural analysis
which was developed during the contract period. Topics to be discussed include the
special purpose structural code DISH for the analysis of paraboloidal dish membranes, the
analysis of ring/membrane interaction using DISH and the finite element code
SUPERSAP, and coupled optical/structural analysis using DISH and the ray trace program
OPTDSH. Example results are included in order to demonstrate the capability of the
software, and to highlight some aspects of dish behavior.

2.0 The DISH Program for Paraboloidal Membrane Structural Analysis

The initial version of the DISH program for the non-axisymmetric analysis of thin
paraboloidal shells was developed under Subcontract No. HX-8-18012-1 with Shelltech
Associates. The program has been substantially restructured and enhanced during the
present contract period in order to facilitate interfaces with other phases of the dish
concentrator analysis.

The program relies on analytical solutions in the form of asymptotic series expansions.
The governing shell equations and asymptotic solution methodology are discussed in
detail by Steele and Balch (1987) and Balch and Steele (1988), and will not be elaborated
on in the present report. It is reiterated here, however, that the theory places the
following limitations on the applicability of the DISH program:

(i) thin shells;

(i) small strains;

(iii) small displacement perturbations from the nominal membrane solution;

(iv) edge effects should die out with decay distances which are small relative to

the radii of curvature, since the validity of the asymptotic solutions depends
on this rapid decay;

(v) the edge angle should be less than about 30 degrees, since shallow shell
solutions are employed for pure membrane and inextensional behavior.

The DISH program models membrane and bending behavior, and accounts for the

geometric nonlinearity associated with the initial prestress due to pressure
stabilization. Non-axisymmetric deformations are treated by a Fourier decomposition of
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displacements and forces in terms of circumferential harmonics. The response of the
dish to general edge deformations can therefore be analyzed, usually in a matter of
minutes or seconds on a PC.

A flowchart showing the input/output links between the DISH program and other
processors is shown in Figure 1. Figure 1 provides an overview of the software to be

discussed in this section.
2.1 Compiling and Linking

The FORTRAN source code for the DISH structural program is stored in two files:
DISHI.FOR, which contains the main structural analysis routines; and DISH2.FOR, which
contains canned routines for the eigensolver. Both files can be compiled with the Lahey
F77L compiler. The code is essentially FORTRAN 77 standard, although a few minor
modifications in DISHI.FOR may be necessary for other compilers. Once compiled, the
object modules DISHI.OBJ and DISH2.0BJ should be linked to obtain the executable
DISH.EXE.

2.2 Preparation of Input

The input to the DISH program consists of geometric parameters, material properties,
boundary conditions, and loads, and is read from the input file DISH.IN. A sample input
file, to be discussed in detail, is shown in Table 1. Typically, a copy of an old input file
can be quickly edited to produce a desired new input file. The input read statements are
unformatted, so that no special format is required within a given line of data. Note that
some lines are merely label or spacer lines. DISH expects these lines to be there, and
strips them off during input. The input file in Table | is now discussed item by item.

Run Title: The first line of input is taken to be the run title, and can be any ASCII
string up to 80 characters long.

T, RE, FL:  The thickness, radius, and focal length of the undeformed dish.

E, NU, MU: Young's modulus, Poisson's ratio, and the shear flexibility factor (see
Shelltech Report 88-2). MU is 6/5 times the ratio of the in-plane elastic
modulus to the transverse shear modulus, which is 12(1+NU)/5 for an
isotropic material.

NFOUR: The number of Fourier harmonics to be included in the analysis; in this
case, two: n = 0andn = 1 (see Table 1).

NFOURT: The total number of Fourier harmonics listed in the input for the boundary
conditions. If NFOUR = NFOURT, then all harmonics which are listed are
used. For NFOUR < NFOURT, only the first NFOUR harmonics are
considered. This feature allows the program to ignore the boundary
condition input for higher harmonics without requiring these lines to be
deleted, since it may be necessary to include them later.

NPTSW: The number of pressure data points for an n = | (asymmetric) wind load
analysis, in this case, 16. Set to 0 if no wind load is included.
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MESH: The number of constant strain "elements" taken between pressure data
points for the numerical computation of wind load displacements. The
total number of elements along the meridian is therefore given by
(NPTSW-1)*MESH, which should be about 100 or greater for a converged
solution. The current Ilimitation on the wind load data is that
(NPTSW-1)*MESH+!1 cannot exceed 301, i.e., a maximum of 300 constant
strain elements along the meridian. Set to 0 if no wind load is included.

The next line of input contains the five integers under "Boundary Condition Flags." Each
must be set to | or 2, where 1 indicates that a displacement (Ur, Uz, Ut) or rotation
(CHIs, CHIt) is prescribed, and 2 indicates that the corresponding stress resultant (Nr,
Nz, Nst) or moment resultant (Ms, Mst) is prescribed. The directions of positive action
for the force and displacement quantities are shown in Figure 2. Note that looking into
the dish, positive theta is clockwise.

In the input file shown, the first flag is set to 2 which indicates that the meridional
moment will be prescribed at the edge, and the next four flags are set to 1, which
indicates that the circumferential rotation and all three displacements will be prescribed
at the edge. Note that conditioning problems may arise if all the boundary conditions are
chosen to be prescribed forces, i.e., all flags equal to 2 (see Shelltech Report 88-2).

Under "Boundary Conditions" are NFOURT lines of input. The first NFOUR lines are
considered in the analysis. Each line includes

NHARM: The first integer in the line is the harmonic number; 0 for axisymmetric, 1
for n = 1, etc.

ICS: The second integer should be set to | for a cosine harmonic, and 2 for a
sine harmonic. In this case, the third line represents sin(2* theta) variation.

Boundary

Conditions: The next five real numbers are the prescribed edge conditions for the
harmonic specified at the beginning of the line. In this case, the first line
specifies an axisymmetric edge pull Ur and simultaneous axial translation
Uz. The third line specifies an n = 2 radial edge deformation of the same
amplitude as the edge pull. Since Ms = 0 for all three harmonics (first
entry of the five real values in each line), the edge is simply-supported, or
hinged.

To specify the loading condition, assign pressure values to
PNOM: The nominal pressure load acting on the dish, in this case 689.7.

WINDAT: This is an array of pressure values from NPTSW equally spaced sample
points which are distributed along the theta = 0 meridian from the center r
= 0 to the outer edge r = RE. The circumferential variation is assumed to
be cos(theta), i.e.,, n = 1. The program linearly interpolates the pressure
between sample points in the radial direction. If no asymmetric pressure
load is desired, set NPTSW and MESH to 0 and leave this array out.
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2.3 Generation and Interpretation of Output

When run, the DISH program reads the input file DISH.IN, and produces two output
files: DISH.ECO, an echo of the input data which serves to verify that the input has been
read properly, and DISH.DAT, an intermediate output data file. (See flowchart in Figure
1.)

2.3.1 The Postprocessor DFCOMP

Displacements and stresses for the deformed dish are obtained by running the program
DFCOMP (Displacement and Force COMPutation). The executable DFCOMP.EXE is
obtained by compiling the two FORTRAN files DFCOMP.FOR and SHAPE.FOR and
linking the two object files. DFCOMP reads the data file DISH.DAT produced by the
DISH program, as well as a small input file DFCOMP.IN, and produces an output file
DFCOMP.OUT which lists the displacements, surface rotations, stress resultants, and
moment resultants over a specified grid of points.

Example DFCOMP.IN and DFCOMP.OUT files are listed in Tables 2 and 3. The input
parameters are

NPTS: Adjusts the density of the grid of output points. In this case, 4 points in the
radial direction by 2 in the circumferential.

RANGE: The first two numbers under RANGE are the minimum and maximum r
values of the output interval. In this case, r ranges from 6.0 to 7.5. The
second two numbers are the minimum and maximum theta values (in
degrees) of the output interval.

The logical flag ITER determines whether the grid is referenced to the undeformed or
deformed dish. Note that the results of the DISH analysis are based on analytical
solutions for which displacements and stresses are referenced to the undeformed dish. If
ITER is set to .FALSE., r and theta values have the conventional Lagrangian
interpretation as the coordinates of a grid point on the undeformed dish. If set to
.TRUE., r and theta refer to a particular point in space, and an iterative process is
invoked in order to evaluate the displacements and stresses at the point of the
undeformed dish which ends up at the grid point (r,theta) after deformation.

The DFCOMP.OUT file shown in Table 3 was generated using the DISH.DAT file
corresponding to the input file DISH.IN of Table 1, and the DFCOMP.IN file of Table 2.
DFCOMP.OUT lists 13 quantities at each of the grid points specified in the input file.
The 13 quantities are the two rotations CHIs and CHIt of the normal (radians), the three
displacements Ur, Uz, and Ut, the three moment resultants Ms, Mt, and Mst (moment per
unit length), and the five stress resultants Nr, Nz, Ns, Nt, and Nst (force per unit length).
The sign conventions are as depicted in Figure 2.

2.3.2 The Subroutine SHAPE

All the calculations pertaining to the deformed dish are performed by the subroutine
SHAPE. The postprocessor DFCOMP is simply a driver which loops over a grid of r and
theta points, calling SHAPE for each point. If the output format of the DFCOMP
processor is not satisfactory, another driver which calls SHAPE and writes the output in
a different format can be created.
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The call parameters and operation of SHAPE are fully documented in the source code
SHAPE.FOR. The first time SHAPE is called, it reads the data from the file DISH.DAT,
and stores it in a common block. On subsequent calls, the data is already in memory, and
can be rapidly accessed in order to evaluate displacements or stresses at different points.

2.3.3 The Postprocessor DINFO

Once the DISH program has been run and the DISH.DAT file has been created, the
program DINFO, which reads the DISH.DAT file, can be run to obtain some basic
information about the "membrane solution" and the deformed dish. The classical
membrane solution of shell theory is the axisymmetric deformation for which the
pressure load is carried entirely by membrane tensile forces, with no edge bending (see,
e.g., Shelltech Report 87-1). Table 4 shows the output from DINFO, based on the
DISH.DAT file corresponding to the input file DISH.IN of Table I. The information is
written to the screen, as well as to the file DINFO.OUT.

Referring to Table 4, it is seen that DINFO provides the "edge pull" and edge rotation of
the membrane solution, the membrane solution center displacement relative to the edge,
the focal length of the membrane solution shape, and the axial displacement of the edge
which is required for the focal point to be the same as for the undeformed dish. Note
that the information associated with the membrane solution is independent of the
boundary conditions specified in DISH.IN. DINFO also provides the decay distances of
the edge effects, as well as the pressurization parameter. A pressurization parameter
much greater than one indicates a high degree of coupling between prestress and edge
effects (see Shelltech Report 87-1).

3.0 Ring/Membrane Interaction: Interface with Finite Element Programs

In order to alleviate the computational demands of an integrated finite element
structural analysis of the membrane and support structure, a hybrid analysis technique
can be employed in which the support structure is modeled by finite elements and the
membrane is modeled by the DISH program.

In this approach, the response of the ring and support structure to a given external
loading is determined by a finite element analysis. The resulting deformations of the
membrane support ring are then used as boundary conditions in the DISH program in
order to determine the membrane response. If desired, the membrane edge forces
computed by the DISH program can be fed back to the finite element analysis to obtain a
first order correction to the loads on the support structure, which yields an updated ring
deformation. This defines an iterative procedure for obtaining the solution to the
coupled membrane/support structural problem. For reference while reading this section,
the flowchart in Figure 3 shows the links between the primary programs and files
involved.

3.1 The Nominal State of the Assembled Concentrator Structure

The total structure to be analyzed consists of a pressure stabilized paraboloidal
membrane which is attached to a support structure such as the ring-spoke-centerpost
design discussed by Kutscher et. al. (1988). Kutscher et. al. also point out that a small
amount of "edge pull" can correct for local distortions near the edge, and that this edge
pull is just that amount needed to obtain the membrane solution.
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Once the edge pull is applied to the pressurized dish, the new shape of the dish is very
close to a paraboloid. The focal length of the deformed dish is increased, however, by
the approximate factor R/S relative to the focal length of the undeformed dish, where R
is the ratio of the edge radius of the deformed dish to that of the undeformed dish, and S
is the ratio of the edge slope of the deformed dish to that of the undeformed dish.

These observations suggest the design of a ring-spoke-centerpost support structure with
the radius of the undeformed ring and pretension of the spokes chosen such .that the
membrane tension contracts the ring to the radius specified by the membrane solution.
The final picture is of a pressure-loaded dish and tensioned support structure in
equilibrium, with the dish held in the shape given by the membrane solution. The
receiver would be located at the focal length of the deformed dish, which is somewhat
greater than that of the undeformed dish. The support structure should be designed such
that external loads do not cause appreciable perturbations relative to this state, which
will be referred to as the "nominal state" of the entire structure.

3.2 Fourier Analysis of Finite Element Nodal Data

In order to evaluate the effect of ring deformation on dish shape, the discrete nodal
displacements and rotations from the finite element ring/support structural analysis must
be converted to harmonic coefficients which are suitable for input to the DISH
program. This is achieved by means of the program FSCOEF. The executable
FSCOEF.EXE is obtained by compiling and linking the source files FSCOEF.FOR and
FOURIER.FOR. (The subroutine FOURIER in the file FOURIER.FOR performs the
discrete Fourier analysis.)

The input to FSCOEF is the file FSCOEF.IN, which should contain the nodal
displacements in the r, theta, and z directions and the nodal rotations about the r, theta,
and z axes arranged as six columns of data. The first row of six numbers corresponds to
the nodal displacements and rotations at theta = 0. The second row of six numbers
corresponds to the adjacent node, moving around the dish in a counter-clockwise
direction, as seen looking into the dish. The total number of rows of data is therefore
equal to the number NPTS of circumferential nodes around the ring. For the purposes of
this input file, theta is defined as counter-clockwise looking into the dish, since most
finite element models will be constructed with this convention.

The output file FSCOEF.OUT contains the lines to be inserted under "Boundary
Conditions" in the input file DISH.IN to the DISH program. FSCOEF computes the
Fourier cosine and sine coefficients for all harmonics up to N = NPTS/2, which is the
highest harmonic which can be reasonably computed based on NPTS circumferential
nodes. In practice, the harmonic coefficients for N greater than NPTS/4 are usually not
very accurate. (For a symmetric analysis, the Fourier sine coefficients (ICS = 2) will all
be negligibly small, so that the lines corresponding to these harmonics can be deleted.)

The DISH.IN file is then created, with NFOURT equal to the total number of lines
included under "Boundary Conditions." All five Boundary Condition Flags should be set to
1 for prescribed displacements. The DISH program can then be run to produce the
DISH.DAT file, and the postprocessor DFCOMP, described in Section 2.3.1, can be run in
order to compute displacements and stresses in the dish.
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3.3 Computation of Membrane Reaction Forces

The postprocessor FCOMPN, which works similarly to DFCOMP, can be used to compute
the nodal reaction forces and moments which the membrane exerts on the ring. The
source code FCOMPN.FOR should be compiled and linked with SHAPE.OBJ. When run,
FCOMPN reads the short input file FCOMPN.IN and the data file DISH.DAT, and
computes the nodal forces and moments by "lumping" the continuous resultant forces and
moments at the nodes. The nodal forces and moments are written to the file
FCOMPN.OUT.

In the input file FCOMPN.IN, ITER should be set to .FALSE.; the number of grid points in
the r and theta directions should be set to 1 and the number of circumferential nodes,
respectively; the upper and lower limits for r should be set to the dish radius; and the
upper and lower limits for theta should be set to the theta angles of the first and last
nodes around the edge of the dish. The unit conversion factors FORFAC and MOMFAC
are scalar multipliers for the forces and moments, and should be set to 1.0 if no scaling is
desired.

3.4 Example: Ring Deformation from a SUPERSAP Analysis

As an example, consider the dish frame analysis by Sallis (1988), for a frame with hinge
points at plus and minus 67.5 degrees subjected to a head-on wind load. The ring
displacements from run SDF4E, which was re-run with SUPERSAP as run ASDF4E, are
listed in Table 5. The integers in the first column of Table 5 are the node numbers
around the perimeter of the ring where the dish is attached. Node | is at theta = 0 node
9 is at theta = -90 (in Figure 2), and node 17 is at theta = -180. Only one half the frame
was analyzed due to symmetry.

3.4.1 Fourier Analysis of SUPERSAP Output

The last six columns in Table 5 are the displacements (in inches) and rotations (in
degrees) relative to a Cartesian coordinate system, where the x and y axes are at theta =
-90 and -180 in Figure 2. The preprocessor R2P can be used to convert this data to the
polar coordinate form required for input to FSCOEF. When run, R2P will first ask
whether the ring displacement data is from a half-model symmetric analysis. If so, then
R2P will compute the displacements and rotations for the remaining half of the ring from
symmetry considerations. R2P then asks if unit conversion is desired. If so, the two unit
conversion factors for the displacements and rotations are read from the file R2P.DAT.
In this case, R2P.DAT contains the two numbers 0.0254, to convert from inches to
meters, and 0.0174533, to convert from degrees to radians.

R2P reads the displacements and rotations in Table 5 from the file R2P.IN, and produces
the file R2P.OUT, which is the r, theta, and z nodal displacements and r, theta, and z
nodal rotations arranged as six columns. The file R2P.OUT, shown in Table 6, is then
renamed FSCOEF.IN, and the program FSCOEF is run in order to obtain the file
FSCOEF.OUT, which contains the Fourier coefficients of the displacements and rotations
(see the flowchart in Figure 3). The file FSCOEF.OUT is shown in Table 7. In each line,
the first integer is the Fourier harmonic number, the second integer indicates a cosine
(ICS = 1) or sine (ICS = 2) harmonic, and the next five numbers are Fourier coefficients.
Note that in this case, because the problem is symmetric, the sine terms are negligible so
that all the lines with ICS = 2 can be deleted.
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3.4.2 Preparation of Input to DISH

The file FSCOEF.OUT, with the sine terms removed, is imported directly into the
"Boundary Conditions" section of the file DISH.IN, which appears as shown in Table 8. In
this case, a 3 mil thick steel membrane is chosen. Note that although NFOURT must be
set to 17, which is the number of lines of boundary condition data, NFOUR is set to 9, so
that only the harmonics up to N = 8 will be used. For 32 circumferential nodes, the
Fourier coefficients beyond about the eighth harmonic are not very accurate. Figure 4
illustrates the accuracy with which the Fourier series through N = 8 reproduces the
SUPERSAP displacements in the z direction at the edge of the dish.

For the Boundary Condition line corresponding to N = 0 in Table 8, the coefficients for
Ur and Uz have been modified in order to account for edge pull and the new focal point
of the membrane solution. The program DINFO was run to determine the edge pull Ur
and edge translation Uz required to give the "membrane solution" shape with the same
focal point as the undeformed dish, and these values were added to the SUPERSAP values
in order to represent the fact that the support structure would be designed with
pretension and ring radius such that the edge pull is adjusted properly in the nominal
state with no external loads. Although spoke pretension was not included in the
SUPERSAP model, the associated uniform radial displacement would just be linearly
superposed on the results in Table 5. The DISH program is now run with the input file
DISH.IN shown in Table 8, and the DISH.DAT file is produced.

3.4.3 Computation of Nodal Loads

In order to determine the nodal loads, the postprocessor FCOMPN is run, with the input
file FCOMPN.IN shown in Table 9. In this case, loads are needed only for the 17 nodes
halfway around the ring. Also, the sign convention for theta used by FCOMPN is
opposite to that in Figure 2, in order to conform to the convention in the finite element
node numbering. To convert from the MKS units used in the DISH analysis, the unit
conversion factors FORFAC and MOMFAC in FCOMPN.IN were taken to be 0.22472 and
8.84723 for conversion from Newtons to pounds and from Newton-meters to inch-pounds.

The output file FCOMPN.OUT shown in Table 10 contains the force and moment reaction
loads that the membrane exerts on the ring. Note that these loads are opposite in sign to
the loads that the the ring exerts on the membrane, and that in applying these loads to
the finite element model, the loads at nodes 1 and 17 should be divided by two due to
symmetry.

Figure 5 shows plots of the meridional stress resultant Ns and the tangential stress
resultant Nst at the edge of the dish due to the deformation under consideration, which
includes Fourier harmonics through N = 8. The stress resultant Ns oscillates about a
constant value of about 6700 N/m, which is the prestress value of the nominal membrane
solution. Near the hinge point at theta = 67.5, the stress is higher, due to bending of the
ring about the hinges, but on either side of the hinge point, the stress drops below the
nominal value. Also note that the edge forces for a steel membrane (solid lines in Figure
5) are significantly greater than those for a composite membrane (dotted lines).

3.4.4 Perturbations about the Nominal State
The nodal loads given in Table 10 are the total loads which the membrane exerts on the

ring. From the comments of Section 3.1, however, it can be inferred that the frame will
be designed in such manner so that in the nominal state with no external loads, the force
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exerted on the dish by the ring is exactly that which is necessary to maintain the
paraboloidal "membrane solution" shape. This nominal value of tension would be
achieved by means of a small increase in the radius of the undeformed ring, combined
with pretensioning of the spokes. These effects, though not included in the SUPERSAP
analysis, could be included easily by linear superposition.

In order to account for the fact that these "DC" terms have been omitted from the finite
element analysis, only the difference between the membrane reaction forces of Table 10
and the reaction forces of the membrane solution should be fed back to the finite
element model. This yields a more realistic view of how the membrane and support
structure will interact if the edge pull is properly adjusted in the nominal state.

In order to obtain the change in load relative to the membrane solution, the DISH
program is run a second time, but with the input file DISH.IN shown in Table 11. This
input file specifies the membrane solution, since the radial edge displacement in the
boundary conditions is adjusted to the proper edge pull for the membrane solution. Now
the program FCOMPN is run in order to obtain the nodal loads associated with the
membrane solution.

To obtain the difference in loads relative to the membrane solution, run the program
FSUBTR (Force SUBTRact). FSUBTR takes two input files FSUBTR.IN! and
FSUBTR.IN2 of the form shown in Table 10, and subtracts the loads of the second from
those of the first, and writes the resulting changes in loads to FSUBTR.OUT. With
FSUBTR.INI chosen to be the file shown in Table 10, and FSUBTR.IN2 chosen to be the
nodal loads of the membrane solution corresponding to the DISH.IN file of Table 11, the
file FSUBTR.OUT shown in Table 12 is obtained. The effect of feeding back these
incremental membrane reaction forces to the finite element model is discussed by
Schreiner (1988).

4.0 Coupled Optical/Structural Analysis using OPTDSH and DISH

The ray trace program OPTDSH is capable of a non-axisymmetric optical analysis of a
deformed paraboloidal membrane, using shape information from the DISH structural
analysis program. OPTDSH computes the paths of incoming rays which reflect off the
dish surface, and provides graphical information describing the focusing characteristics
of the deformed dish. More detailed documentation pertaining to the structure and
features of the OPTDSH program is provided in Appendix A.

4.1 Interface between the Optical and Structural Codes

The interface between the OPTDSH optical code and the DISH structural code is based
on the subroutine SHAPE described in Section 2.3.2. Once the DISH program is run for a
particular configuration, boundary conditions, and loading, a DISH.DAT file is produced
which contains all the information necessary for computing shape information. When the
OPTDSH code needs shape information at a particular point of the dish, it calls the
subroutine SHAPE, which in turn accesses the data in DISH.DAT. The speed of the ray
trace operation depends on the number of harmonics included in the structural model, but
a typical analysis with several thousand rays can be carried out in a few minutes on a 286
or 386-based computer.
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4.2 Examples

Examples to be discussed include the effects of pressure changes on the membrane and
prescribed deformations of the edge. In the following examples, the undeformed
membrane is taken to have a radius of 7.5 m, a thickness of 10 mils, a focal length of 9
m, a modulus of 7.93 GPa, and Poisson's ratio 0.3. The stabilization pressure is taken to
be 689.7 Pa, and the appropriate edge pull and axial translation are included so that the
nominal state of the dish corresponds to the membrane solution, with the same focal
point as for the undeformed dish. All graphical output is produced by OPTDSH, based on
a field of randomly distributed incident rays which are parallel to the dish axis.

4.2.1 Head-on and Side Wind Loads

Consider the case of wind blowing head-on into the dish. As a first approximation, this
situation can be represented by a uniform increase in the stabilization pressure. For the
present analysis the value 72.8 Pa corresponding to a 27 mph wind was used; this value
was obtained from Sallis (1988). The DISH program was therefore run with a
stabilization pressure of 762.5 Pa, keeping the edge pull fixed at the value corresponding
to 689.7 Pa. The resulting DISH.DAT file was used by OPTDSH in order to compute the
ray trace results shown in Figure 6.

Figure 6 is a spot diagram which indicates where parallel incident rays hit the focal
plane. The shape of the symbol indicates the radial interval on the dish from which the
ray was reflected. For example, the star symbols indicate rays which hit the dish at a
radius between 6 m and 7.5 m. In this case, the rays which stray the furthest from the
center of the focal spot bounced off the dish within 1.5 m of the edge. This is due to the
fact that the greatest slope changes occur near the edge. The maximum radius and rms
radius of the focal spot are 13.1 cm and 4.4 cm respectively. For comparison, the
stabilization pressure of 689.7 Pa with no edge pull yields a focal spot with an rms radius
of 45.4 cm.

Now consider the case of wind blowing from the side. The pressure load was taken to be
the nominal stabilization pressure (689.7 Pa) plus the cos(theta) wind load distribution
specified under WINDAT in Table 1. Note that the wind pressure varies from zero in the
center to a maximum of 72.8 Pa at the edge. The resulting focal spot, computed by
OPTDSH, is shown in Figure 7. Note the "coma" effect due to the non-axisymmetric
deformation. Since theta = 0 is on the right in Figure 7, the right side of the dish is
under higher pressure than the left, causing the focal spot distortion shown. The
maximum and rms radii of the focal spot are of the same order of magnitude as for the
head-on wind load (see Figure 6).

4.2.2 N = 2 Edge Displacement

The effect on the focal spot of a cos(2*theta) radial edge displacement of amplitude 1
cm is shown in Figure 8. Again, the rays which strike the focal plane furthest from the
center are the ones which bounce off the edge of the dish. Note that the greatest error
is at multiples of 90 degrees, where the maximum slope changes of the dish surface
occur. The rms spot radius of 16.2 cm indicates that this is an undesirable deformation
from the standpoint of optical efficiency.
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4.2.3 Ring Deformation from a SUPERSAP Analysis

If the DISH program is run with the prescribed edge deformation from the SUPERSAP
analysis as discussed in Section 3.4, a DISH.DAT file is produced which can then be used
by OPTDSH to determine the optical effect of the ring distortion. The focal spot
diagram is shown in Figure 9. The distortion is clearly non-axisymmetric, due to bending
about the hinge points at plus and minus 67.5 degrees. The rms spot radius, however, is
only 5 mm, which indicates that the frame is effective in preventing the edge of the dish
from deforming. In fact, the effect of the ring distortion is negligible compared to that
of the overall pressure increase due to the head-on wind load (see Figure 6).

A second type of plot produced by OPTDSH is the "inverse" of the spot diagram, which is
shown in Figure 10. This plot shows the dish surface, and the symbols indicate the region
of the focal plane which is struck by incident rays from that point of the dish. The plus
sign symbols in Figure 10 indicate rays which are reflected to a point very near the
center of the focal plane, and the star symbols indicate rays which stray the furthest
from the center. From Figure 10, it is evident that the left side of the dish is relatively
undisturbed, with most of the rays directed toward the focus. There is substantial
deformation near the hinge points, however, and rays which strike near the hinge points
are deflected away from the center of the focal plane.

5.0 Work in Progress: Integrated Thermal/Optical/Structural Analysis

Current effort focuses on developing the capability to carry out ray trace calculations
for incident rays which are not parallel to the dish axis. A subroutine RADISH has been
implemented which can determine the intersection point between the deformed dish and
an arbitrary ray. RADISH utilizes a rapidly convergent Newton-Raphson type algorithm,
and relies on the subroutine SHAPE.

The capability to trace off-axis rays, when included in the OPTDSH program, will enable
modeling of additional effects such as sun size and random surface slope errors. Once
these effects are incorporated, the optical/structural analysis can be interfaced with the
thermal efficiency analysis, which models the absorption and loss of energy at the
collector.

6.0 Conclusions

The DISH program for the axisymmetric and non-axisymmetric structural analysis of
paraboloidal dish membranes has been implemented and documented, and an interface to
optical analysis software has been provided, based on the subroutine SHAPE and the data

file DISH.DAT.

Software has been developed for transforming nodal displacements and rotations from
finite element programs to the Fourier coefficients required for input to the DISH
program. Software has also been developed for transforming the stress and moment
resultants computed by the DISH program to nodal forces and moments, which can be
applied as membrane reaction loads in a finite element model.

Preliminary optical/structural analyses have been carried out. It has been observed that
the dish shape corresponding to the "membrane solution" of shell theory is very close to a
paraboloid, with a focal length which is somewhat longer than that of the undeformed
dish. For the load case and dish frame considered in run SDF4E of the finite element
analysis by Sallis (1988), analyses based on DISH and OPTDSH indicate that the ring
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distortions do not have a significant optical effect, since the resulting rms focal spot size
is on the order of a few millimeters. On the other hand, the distortions produced by
overall pressure changes due to wind can lead to an rms focal spot size on the order of a
few centimeters, which is non-negligible when compared to other unavoidable sources of
error such as sun size.
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Table 1: Sample input file DISH.IN for the DISH program.

10 mil composite membrane with edge pull, axial transl., and wind load.

T RE FL GEDMETRY
2.54E-4 7.5 9.0
E NU MU MATERIAL FROFERTIES
7.93E9 0.3 3.12
NFOUR NFOURT NPTSW MESH ANALYSIS FARAMETERS
2 S 16 10
(1l =) Disp.; 2 =)> Force) BOUNDARY CONDITION FLAGS
CHIs/Ms CHIt/Mst Ur/Nr Uz /N2 Ut/Nst
2 1 1 1 1
(ICS=1 => COS; ICS=2 => SIN) BOUNDARY CONDITIONS
NHARM ICS CHIs/Ms CHIt/Mst Ur /Nr Uz /Nz Ut/Nst
(o] 1 0. 0. 2.123141E-2 -0.157578 0.
1 1 0. 0. 0. 0. 0.
2 2 0. 0. 2. 123141E-2 0. 0.
PNOM FRESSURE LOAD DATA
689.7

(WINDAT(I),I=1,NPTSW)
0.000000E+00 0.52SS7SE+01 0.104994E+02 O0.157188E+02 0.20902SE+02
0.260389E+02 0.311174E+02 0.361278E+02 0.410606E+02 0.459071E+02
0.Z06596E+02 O0.5S3111E+02 O.S98SSLE+02 0.642879E+02 0.68603I8E+02

0.728000E+02

Table 2. Sample input file DFCOMP.IN for the post-processor DFCOMP.

Input File DFCOMF. IN, for the postprocessor DFCOMF.

ITER NFTS
.FALSE. 4,2

RANGE r, theta(d)
6.0,7.5 0.,90.
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Table 3: Sample output file DFCOMP.OUT for the post-processor DFCOMP.

10 mil composite

THETA = 0.00
R

CHls

Ms

Mt
0. 600000E+01 .

=0.315050E=-02
0.2T9171E-04
0.717S13E-05
0. 650000E+01
=0.231990E-02
0. 3635582E-04
0. 10967%E-04
0.700000E+01
=-0.760159E-03
0.562134E-04
0. 168640E-04
0. 7S0000E+01
0.199067E-02
=0.1T0010E=-0%9
-0.18684BE~-10
THETA = 90.00
R
CHls
Ms
Mt

0.600000E+01
=0.38006BE-02
=0.4703511E-10
-0.1411353E-10
0.630000E+01
=0.406604E-02
=0.702789E-10
-0.2108T7E-10
0.700000E+01
-0.432114E-02
=0.1035600E-09
=0.316799E~10
0.730000E+01
=0.4363B81E-02
0.301742E~-1S5
0.B896346E-16

membrane with edqge pull, axial transl.,

CHIt
Mst

0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00

0. 000000E+00
0. 000000E+00

CHIt
Mst

0.779925E-03
=0.217284E-0S

0.621991E-03
=0.3T2128E-05

0.360464E-03
=0.510692E-03

=0.4B8483I4E-09
0.37791B8E-02

Ur
Nr
Ns

0.173944E-01
0.64T361E+04
0.678771E+04

0.18907ZE-01
0. 6436352E+04
0. 683032E+04

0.202482ZE-01
0.64273ITE+04
0. 690846E+04

0.212314E-01
0.640276E+04
0.69573BE+04

Ur
Nr
Ns

0. 1355925E-01
0. 620730E+04
0.654T07E+04

0.173630E-01
0.620730E+04
0. 6S9962E+04

0.192428E-01
0. 6207T0E+04
0.666016E+04

0.212314E-01

0.a6207I0E+04
0.672453E+04

13-14

Uz
Nz
Nt

=0.13569S52E+0O0
«213778E+04
0.773133E+04

=0.15794ZE+00
0.2T4487E+04
0.7B84220E+04

=0.13B8T14E+00
0.23T32IJE+04

0.786B87BE+04

=0.1357378E+00
0.272309E+04
0.778924E+04

uz
Nz
Nt

=0.132319E+00
0.206910E+04
0.71973BE+04

=0.154108E+00
0.224133E+04
0.736094E+04

=0.153796E+00
0.241393E+04
0.73TS09E+04

=0.157378E+00
0.25863BE+04
0.771934E+04

and wind

1oad.

Ut
Nst

0. 000000E+00

0. NOOOQOE+O00
0. O0O0O000E+00

0. 000000E+0OO
0. 000000E+00

0.000000E+00
0. OO00OOE+QO

ut
Nst

=0.T6973ZE-03
« 2423 6BE+03

=0.2T1932E-03
0.246739E+03

=0.104729E-03
0.241306E+0T

-0.169692E-08

0.221T12E+03



Table 4. Output from the postprocessor DINFO.

membrane Solution Data:

Radial edge displacement
Meri1dional edge rotation
Axl1al displacement at center
Approximate focal length
Edge displacement for same fOCUS ...cc..

Edge Effect Data:

Short decay distance ....cccccecccccs
Long decay distance ....cccocecesecce
Pressurization parameter
Decay distance for zero pressure .....

10 mil .composite membrane with edge pull,

Ur
CHlIs

UZe
FLnew
UZe

DELTAS
DELTAL
RHO
DELTA

axial tramsl.,

and wind load.

0.212714E-01
-0,.456579E-02
0.147406E-011
0.914283E+01
-0, 157S7BE+00

0.84179Z0E-02
0.3ST967E+01
0,42T487E+0Q7
0.172006E+00

Table 5: Nodal displacements and rotations from a SUPERSAP analysis.

VONOCOP AL -

« OOOQDE+DO
-4.187SE-04
=-5.9311E=-04
-4, 6802E=14
~-2.0T4ZE-04
-1.20594E-03
-%.S877E-03Z
-8.8171E-03
-5.S973E-0OT
-2.8290E-03
-1.2876E-03
=-3.22T6E-04

2.721%E-04
3.5920E-04
S.598%5E-04
3.J8%4E-04
+ e« OO0O0OE+00

2.8422E-03
2.4B24E-03
1,S20Z7E-03
J.IT76E-04
-5.9644E-04
-1.3410E-OT
1.6046E-07
1.9564E-0F
1.9951E-03
2.623FE-03
3.460BE-QO3T
4,37B8CE-03
S.22T8E-03
«2T1SE-03
6.983ISE-03
7.4746E-03
7.6442E-03

-2.6178E-02
-2.B1S3E-02
=Z.2760E=-02
-3.54S0E-02
-2.9252E=-02
-1.2163E-02
-1.414SE-07
-2.2027E=-02
-S5.0110E=-02
-6.7B80SE-02
-7.5S8S6E-01Z
-8.0142E=-02
-8.4190E-02
-B8.8444E-02
-9.2099E-02
-9.4462E-02

-9.5263E-02

-1.908SE-02
-1.27SSE-02
7.97ISE-O3
J.6797E-02
4, T7S2E-02
-2.TS20E-0T
-6.606BE-02
-3.0B8B82E-02
-2.274BE-02
=-2.1650E-02
-1,J089E=-02
-4,S939E-03
-2.490TE-QZ
=-4,7290E-03
=-7.0824E-03
-7.9801E-0T
~B. 0BT 6E-OT

1.3-15

< QOOOE+0O

8. 02TTE-04
7. 2646E-03
2. 2876E-02
2.7410E-02
-Z2.0181E-02
=-1.4670E-01
2.6176E-02
4,7994E-02
4, 2S70E-02
1.356S0E-02
-5.8971E-04
=T.3649E-0OT
-1,.5782E-03
=-3.0644E-04
-1.7080E=-0ZS
+« O0O00E+00

« QOOQE+DO
-6. 1526E-14
-1, 0621E-03
=G, 9FS1E-04
-1 .08S8E-0OZ

1. 08%9E-CT
6.2B07E-03Z

1, 24S2E-0Z
=4.2994E-03
=1.92&,2E-0T
=1.4639E-0T
-1.1321E=-03Z
-9.6617E-04
=7.7379E-04
-S.3321E-04
-2.683S9E-04
*© LO00QE+00



Table 6: Input file FSCOEF.IN to the Fourier analysis program FSCOEF.

-0.72192E-04
-0.6T90TE-04
-0.41441E-04
-0.1365ZE-04
0. 8BT4T7E=-0%
0.16264E-04
-0.84192E-04
=-0.2293TTE-03
-0.14217E-03
-0.57477E-04
0.3J4240E-05
0.54972E-04
0.100S1E-03
0. 13950E-03
0.16932E-03
0.18789E-Q3
0.19416E-03
0. 18789E-03
0.16932E-03
0.139S0E-03
0.100S1E-03
0.54972E-04
0.34240E=-0S%
-0.57477E-04
-0.14217E-03
-0.2293%E-03
-0.84192E-04
0.16264E-04
0.88547E-0S
=-0.13653E-04
-0.41441E-04
-0.63902E-04

0.1984T9E-0S
0.8I3932E-06
=-0.51744E-0)5
-0.16162E-04
-0.30098E-N4
-0.34869E-04
0.S50K64E-0S
0.5S0676E-04
0.79370E-04
0.93729E=-04
0. 97009E-04
0.90730E-04
0.76126E-04
0.54743E-04
0.285S9%e-04
-0.16974E-10
-0.2859%E-04
-0.54743TE-04
=-0.76126E-04
-0.90730E-04
=-0.97009E-04
=0.93729E-04
-0.79370E-04
=0.50676E-04
=0.50464E-0S
0.34B6PE-04,
0.30098E-04
0.16162E-04
0.51744E-08
-0.85932E-06&
-0.19439E-0S

=-0.66492E-03
-0.71309E-03
-0.EI210E=-0Z
=0.9004ZE-03
=0.7483T00E=-QZ
-0,Z0897E-03
-1, I5928E-08
~0.55949E-03
-0.12728E-02
-0.17222E=-02
=-0.19267E-02
=0, 203S6E=-02
-0.21384E-02
=0.2246%E-02
-0.233FIE-02
=0.23993E-02
-0.24197E-02
-0.23993E-02
-0.23393E-02
=0.2246%E-02
-0.21384E-02
-0, 20TT6E-02
=0.19267E-02
-0.17222E-02
=-0.12728E-02
-0.S55949E-03
-0.3S928E-08
-0.30897E-03
-0.74300E-03
=-0.9004TE-OZ
-0.83210E-03
-0.715S09E-03

0. OOOOOE+OO
=0.57168E-04
-0.63EB4E-04

0.29183E-04

0.20168E-03

0. 2S8S2E-OT
-0,83S07E-04
-0.33951E-03
=0.3970TE-QT
=0, 22225E-03
=-0.10653E-03
-0.72384E-04
-0.72261E-04
-0.687358E-04
-0.52245E-04
-0.27464E-04

0.12337E-10

0.27464E-04
0.5224%E-04

0. 687S8E-04

0.72261E-04

0.723I84E-04

0. 106STE-03

0.22225E-03

0.39703E-03
0.439S1E-03
0.83SS07E-04
-0.238SIE-03T
-0.20168E-03
-0.29183E-04
0.63884E-04
0. S7168E-04

1.3-16

-0.33310E-03
-0.21%61E-0T
0.17709E-03
0.7S290E-03
0.8782TE-0Z
-0.46079E-03
=0.Z2B0O6BE-02
-0, SSTJTE-OT
0.8I765E-03
0.819SSE-0O3
Q0. ITS77E=-Q3
0.35987E-04
-0. 10794E-04
0.533T23E-04
0.11216E-03
0.136S4E-03
0.14112E-03
0. 136%4E-03
0.11216E-03
0.83T24E-04
-0.10794E-04
0. 35987E-04
0.33T977E-03
0.819SSE-03
0.8T76SE-03
-0.38532TE-03
-0.28068-02
=-0.46079E-03
0.8782JE-03
0.7S290E-03
0.17709E-03
-0.21861E-03

Q. QOUOOE+OO
-0, 10778E~-(4
-0.1E8ST7E-04
-0, 1744SE-24
-0.189%1F-04

0.19022E-04

0. 109EZE~GT

0. 22G8ZE-04
-0.750UT9E-04
=0.3T61FE-04
-0,.255S0eE-04
-0, 197S9E=-04
-0.16867E-04
~0.13508E-04
=-0,.9306TE-0S
-0, 46878E-0T

QL. OOOOOE+00

0.&68B7EE=-CS

0.93063IE-0S

0. 1ZSOSE-04

0.16B63E-04

0.197S9E-04
0.28S502-04
0.33T615E-04
0.7S039E=-04
-0.220ETE-04
-0.10GeZ2-0C3
-C, 190I2E-C4
0.189S1E-04

0. 1744SE-04

0.18S3I7E-04

0.10738E-04



Table 7:

=
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Output file FSCOEF.OUT from the Fourier analysis program FSCOEF.

0,B612998E-09
0.1I72818E=-03
0.220786E-10
-0, 148591 7E-13
-0,IT1991E-10
-0, Z60847E-03
-0.119S88E-09
0. 2T7RR4ATE-04
0.531346E-10
0.73I9720E-03
0, Z09T24E-09
0.51901SE=-03
0,26880L71E=-09
-0, 2%1457E-03
-0,173789E-09
=-0.473TS9E-03
-0.J47427E-09
=0.132462E-03T
-0. 123215E-09
0.201641E-03
0.179508E-09
«209691E-0T
0.181914E-09
-=0.14403T1E-0F
-0.71594BE-11
-0.135691E-03
-0,.201794E-09
-0.107919E-03
-0.1359708E-09
0.356386E-04
0.3597017E-10
0.142169E-03
0.169741E-09

-0.117687E-11
-0.125473E-02
0.105129E-10
0.738268E-04
-0, 106S15SE-10
0.108474E-0OT
=-0.296606E-10
-0, 179477.E=04
0.114SS9E-10
-0,139121E-0T
0,607647E-10
-0.,701S96E-04
0.39743ZE-10
0.39T4T9E-04
-0.20S2T6E-10
0.47606SE-04
-0.375653T6E-10
0.I946T6E-0T
-0.889643TE-12
-0.172T72E-04
0.140674E-10
-0,.82329SE-03
0.106862E-10
0.34%471E-0S
-0,509562E-11
0.428041E-08
-0.2S01S2E-11
0.716461E=-06
0.152310E-13
-0,564S21E-06
0.114441E-11
-0,259086E~-11
=0.139160E-11

0, 6845864E-0S
=0, 106946E-0T
-0.910164E-11

0.93891SE-04

0.191898E-10
=-0.1426026E-04
0.170S98E~-11
=0.8%&T17E-04
-0.20TT46E-10
-0.260993E-04
-0, #4I927E-11
0.202970E=-04
0.14B42BE-10

0. 2ST265E-04

0. 196956E-10
-0, 3T3665STE-O0T

0.136424E-11
=-0.177613E=-04
-0.1002S1E-10
-9.6T9249E-0F
=-0.193TS0E~-11

0.89348SE-0%
0.129892E-10
0.799407E-0S
0.13446S0E-10
-0,.27SS88E-0F
0.252020E-11
=0.621907E-0%
-0.2T018%BE-11
0.I873I2BE-0V6

0. 66869%E-11

0.513071E-0S

0.134879E-10

1.3-17

-0, 135S14E-02
0. 993879E-03
0. 120&50E=09

-0.2782%1E=-03

-0, 5P8OHOZE=10

-0,I14277E=-0Q3

-0.9417S2E-10
0,167202E-04
0.222229E-10
0.28163T1E-03
0, 162TT2E-09
0.129156E-03
0.8961272-10

-0.487114E-04
0.141218E-11

-0,748008E-04

-0.109140E-10

=-0.17713ITE=-04
0.230421E-10
0.234999E-04
0.522910E-10
0.218%62E-04
0.3350018E-10

=0.1477S9E-06
0.460242E-10
=0.13863I2E-04
0.302218E-10

-0,.915986E-0S
0.434080E-10
0.458880E-0T
0.611843TE-10
0.1162¢8E-04
0,.743839E-10

-0, 170ST0E=12
0.452SBE-04
-1, 5704v1E-11
-0, S8T8BRE-"I
O.981:17E-11
0. 75394 2E-0%
-0, 425519E-11
. 170018E=-N4
-, IO10&1F-11
0.SQ1270LE=-US
-0,646787E-11
-0,3459%GSE-0S
0.28775BE-11
-0,48510T7E-CT
0.205457E-11
« 2TT2TTE-O6
0.S58143FE-12
0,242610E-0F
-0.21412SE-11
0.107S96E-0S .
-0.178366E-12
-0, 785687E-06
-0.,4142S4E~-12
=0, 10768IE-0Z
.212828E-11
-0.184729E-0&
-0.90:1249E-12
0. S592670E-06
0.3I7990&4E-12
0.S9301TE-16
-0,184529E-11
0.70216TE-12
0.12221TE-11



Table 8 Inputfile DISH.IN with prescribed edge displacements f rom FSCOEF.OUT.

3 mil steel membrane; ASDF4E Edge Displacements, edge pull, axial tramsl.
T RE FL GEOMETRY
7.862E-3 7.3 .0
E NU [ [V) MATERIAL FROFERTIES
<. 09€E11 0.2 .12
NFOUR NFOURT NFTSW MESH ANALYSIS FARAMETERS
9 17 (6] o]
(1 => Disgp.; 2 = Force) BOUNDARY CONDITION FLAGS
CHIs/Ms CHIt/Mst Ur/Nr Uz /N= Ut/Nst
1 1 1 1 1
(ICS=1 =, COS; ICS=Z =, SIN) BOUNDARY COMDITIONS
NHARM ICs CHls/Ms CHIt/Mst Ur /Nr Uz /Nz Ut/Nst
(o] 1 0.813998E-09 =0.113687E-11 2.69209E-3 -2.11088E-2 -0, 1703ST0E-12
1 1 0.132518E-03 =0. 12347TE-03 =0.106946E-0T 0, 99I879E-0T 0.45STIETE-0V4
2 1 =0.14%917E-03 0.7T826BE=-04 0.9IT891TE-Q4 =0.2762T1E-0OT -0.S8T88BE-04-
S 1 =0.360847E=-03 0.10843T4E=-03 =0.142626E-04 =0.T14277E-0T 0.7T394TE-0S
4 1 0.32B843E=-04 =0.179673E=-04 =0.556T17E-04 O0.167202E-04 0.176018E-04
S 1 0.7I9720E=-03 =0.139121E=-0T =0.26099IE-04 0.2T16T1E-0T 0.S91270E-0T
) 1 0.51901SE=-0T =0.701396E=-0G4 0,202970E=-04 0.1291T6E-0T =0.44T95TE-0T
7 1 -0.291457E-03 < I934S59E-04 0.2TT26ZE-04 =-0.487114E-04 =0.4851GITE-CS
8 1 =0.473IT9E-02T 0.4760635E-04 =0,.2T66TTE-05 =-0,748008E-04 O0.2ITT2T7E-06
L 1 =0. 132462E-03 0.T94636E-0F =0.17761TE-04 =0,1771TTE-04 0O,282610E-0F
10 1 0.201641E=-03 =0.172T72E=-04 =0.6TF249E=-08 O0.2T4999E-04 0.107SS6E-0S
11 b 0.2096931E=03 =0.BIT2FSE~-0S 0.893I48TE-0T 0.218S62E=-04 -0.7ETLETE-06
2 1 =0.1840T1E-0% O0.J3T&T1E-0S 0.799407E-0S =0.147759E-06 -0.107&8TE-0S
pA 1 =0.155691E-0F 0.428041E-0F =0,27TTBBE-0S =0.13I863ZE-04 =0, 1E472GE-06
14 1 -9.107919E=07 0.7104e1E=06 =0.621907E=0F =0.91T9BLE-NT 0.TP2&70E-06
1S 1 0.5563B6E-04 =0,564S21E=06 0,IB73ITBE-06 0.45SEBBHE-OS 0.%FT012E=-0é
16 1 0.142169E=-03 =-0.259086E=-11 0.51T071E-0F5 0.116208E-04 0.702163TE-12
FNOM FRESSURE LOAD DATA
6B8%.7

1.3-18



Input File FCOMFN.IN,

Table 9: Input file FCOMPN.IN to the program FCOMPN.

for the postprocessor FCOMFN.

ITER

.FALSE.

NFTS
1,17

RANGE r,

7.5,7.5

theta(d)
0.,180.

FORFAC
0.22472

MOMFAC
8.847271

Table 10: Output file FCOMPN.OUT of nodal forces and moments from FCOMPN.

~

> mil steel

=7

Node

(3]

“

(L]

16

17

. 50000

Theta

- 0.00
11. 235
22.50

33.75

67.50
78.73
90.00
101.25
112.50

123.75

146.25
137.%0
168.75

180.00

nembrane;

Fr
Mr

=0.206069E+04
0.000000E+00
=0.20422TE+04
0.1635616E-01
=0.197729E+04
=-0.642817E-02
=0.193441E+04
-0.358154E-01
=0.203332E+04
=0.223716E-01
=0.227861E+04
0.138182E-01
=0.231159E+04
0.171054E-01
=0.2063S3E+04
=-0.139511E-01
=0.183742E+04
=0.320S23E-01
=0.1883I60E+04
=0.195724E-01
=0.204491E+04
=0.3509910E-02
=0.207696E+04
-0.80B8S91E-02
=0.2033T33E+04
=0.149586E-01
=0.206840E+04
=0.116173E-01
=0.212329E+04
=0.353B66E-02
=0.208774E+04
. S26288E-QT
=-0.20439TE+04
=0.47605S0E-09

ASDF4E Edge Displacements,

Ft
Mt

0. QOOOOOE+OQ
0.311870E=-01
=0.479022E+02
.230414E-01
-0.63041BE+02
-0.602571E-01
0.B83B122E+02
=-0.1687Z9E+00
0.296873IE+0QT
=-0.449680E-01
«216076E+03

« SO9SBLE+00
-0.18B8623E+0T
0.45S740E+00
-0.4179S7E+03
0.1S8300E+00
=0.176926E+03
=-0.192432E+00
0.1SSS60E+03
=-0.17473TE+00
0.161372E+03
0.51013Z1E-01
0.73I9874E+01
0. 120669E+00
0.192036E+02
0.645797E-01
0.994010E+02
0.985383E-01
0.3J0420SE+02
0.167103E+00
-0.61443BE+02
0.123720E+00
0.4789S2E-04
0.680186E-01

1.3-19

Fz
Mz

-0.859TIT7E+0T
0.000000E+00
-0.B852099E+03
0.690066E-02
-0.B269STE+OT
-0,267840E-02
=0.810606E+03
-0.1492T1E-01
-(0.8S7431E+03
-0:9321S50E-02
-0.943279E+03
. S7S57S9E-02
-0.955T2JE+03
0.71272SE-02
-0.BS9039E+03
-0.581294E-02
-0.771SSTE+0OZ
-0, 13T8S1E-01
-0.789293E+03
-0.81551SE-02
-0.8513522E+03
-0.21244K2E-02
-0.863T9TBE+03T
-0.336913E-02
-0.847210E+0Q3
-8.623T27SE-02
-0.B860746E+03
-0.4840STE-02
-0.8818%2E+03
-0.147444E-02
-0.86B8200E+03
0.13S9S3E-0T
-0.B8S1Z57E+03
=-0.1982S4E-09

edge pull, axial transl.



Table 11: Input file DISH.IN for membrane solution only.

> mil steel membrane with axisvymmetric edge pull &and axial translation.

T RE [ GEUMETRY
7.62E-S 7.5 9.0
E Ry MU MATERIAL FRUFERTIES
2.09E11 0.3 .12
NFOUR NFOURT NFTSW MESH ANALYSIS FARRAMETERS
1 1 0 0

(L = Disp.: 2 = Force) EOUNDARY CONDITION FLAGES
CHIs/Ms CHIt/Mst Ur/Nr Uz /N2 Ut /Nst
2 1 1 1 1

(ICS=! =)> COS; ICS=Z = SIN) BOUNDARY CONDITIONS
NHARM ICS CHls/Ms CHIt/Mst Ur /Ne Uz /Nz Ut/Nst

(¢] 1 0. : 0. 2.6BS24E=T -1.97837E-2 0.

FNOM ) FPRESSURE LOAD DATA
689.7 .

1.3-20



Table 12: Change in nodal forces and moments relative to
the membrane solution, from FSUBTR.

Change in edge forces relative to nominal state.

-

R = 7.30000

Node

P I 7 B 8 |

(4}

o Vv O N o

16

17

Theta

0.00
11.25
2.9
I5.75
45.00
56.25
67.30
78.735
90.00
101.25

112.350

Fr
Mr

=0.652002E+01
0.000000E+00
0.119299E+02
0. 16S5616E-01
0. 768B799E+02
=0.642817E-02
0.119760E+03
=0.3I58154E-01
=0.115015E+01
=0.223716E-01
=0.224340E+03
0.138182E-01
=0.257420E+03
0.1710S4E-01
=0.936011E+01
=0.1393511E-01
0.216730E+03
=0.3T2032TE-01
0.170370E+03
=0.195724E-01
0.925989E+01
=0.3509910E-02
=0.227900E+02
=0.808%91E-02
0. 208400E+02
=0.145386E-01
=0.142T00E+02
=0.116173TE-01
=0. 691201E+02
=0.I53866E-02
=0.335701E+02
0.326288E-03
0.102200E+02
=0.476050E-09

Ft
Mt

0. OOOO00E+VO
0.311870E-01
=0.479022E+02
0.220414E-01
=0.63041BE+02
=0.60Q2571E-01
0.8TB8122E+02
=0.168739E+00
0.296873JE+03
=0.449680E-01
0.216076E+03
0. J093B6E+00
=0.188623E+03
0.433S740E+00
=0.4179357E+03
0.138300E+00
=0.176926E+03
=0. 19243T2E+00
0. 1355360E+03
=0.17473TE+00
0.161372E+03
0.510131E-01
0.7I9874E+01
0. 120669E+00
0. 19203&E+02
0.645797E-01
0.994010E+02
0.985I8TE-01
0. J0420SE~C2
0.167103E~-00
=0.61443T8E+02
0. 123720E+00
0. 478952E-04
0.680186E-01

1.3-21

T mil steel membrane; ASDF4E Edoe Displacements, edge pull, axial transl.

Fz
Mz

=0.3T4TTF6E+01
0. 0000CNE+QO
0.TB80402E+01
0.690066E-02
0. 289S00E+02
=-0.267840E-02
0.4352970E+02
=0.149231E-01
=0.152802E+01
=0.922150E-02
=0.87T760E+02
0.573739E-02
=0. 994200E+02
0.7127235E-02
=0.313399E+01
-0.3581294E-02
0.84TT00E+02
=0.133351E-01
0.666100E+02
=0.8133515E-02
0. 4T8104E+01
=0.212462E-02
=0.805499E~01
=0.33T6913E-02
0.869299E+01
=0.623273E-02
=0.4B84296E+0!
=0.4840S3E-02
=0.2T9890E«C2
=0.147444E-02
=0.122970E+02
0.1I395ZE-O2
0. 456604E+01
=0. 198334E-09



el

DISH.IN
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— | DISHECO
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DISHDAT
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DINFOOUT
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(SPOT DIAGRAM)

Figure 1: Flowchart of data paths for structural and structural/optical analyses.
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Figure 2: Sign conventions for forces, displacements,
moments, and rotations at edge of dish.
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Some other finite element /« .....

program could be used here.

FCOMPN.IN

FSCOEF.IN
! |
P

NFCoMpy_/

‘ l
FSCOEF.OUT FCOMPN.OUT

1 |
DISH.IN |
FSUBTR.QUT | --eseeeevees %
|

DISHDAT

Figure 3: Data path flowchart for enforcing finite element nodal ring
displacements in the dish structural analysis.
®
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Axial Displacement Uz from DAN—KA Run ASDF4E

-0.000 - *
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Figure 4: Comparison of SUPERSAP nodal displacements Uz
with the nine term Fourier series representation.
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Dish Edge Forces, NFOUR = 9
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Figure 5: Meridional and tangential stress resultants Ns and
Nst due to ring displacements.
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16 mil composite memhpane with edge pull, axial transl., and head-on wind load,
Dish Radiusz 7.90; Focal Length‘ 9 B0; Target Distance= 9.00
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Figure 6
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18 nil composite wembrane with edge pull, axial transl,

# RAYS= 1000
[SEED: 111 o ’
MY RAD= 108 "
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Figure 7

and wind load,
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y 1,90

3.00

o0 4.00

6.00

i 190

IGRID=-1
NR= @
NI- @



6T-¢'1

10 nil composite memhpane with edge pull, axial transl,, and 1 cn n=2 llr displ,
Dish Radius= 7.30; Focal Length= 9.80; Target Distance= 9.00

-

/""f } 1.59

' 3,00

TR ﬁﬁiﬁﬁkJL:‘%;:: L 0 4.50

YO, ¥ 6.00

‘\ ¢ 1,50

# RAYS- logd \ [GRID=-1
ISEED= -111 \Hx% NR= @
MAX RAD= 760 NT= @

RAD= .760: RS RAD= .162: RMS DEU= .19

Figure 8
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10 nil composite menhpane, ASDFE edge di5glacenents, edge pull, axial transl,
Dish Radius=  7.30; Focal Length= 3,80, Target Distance= 9.00
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Figure 9
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10 nil composite mewhpane; ASDFAE edge displacements, edge pull, axial transl,
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Non-Axisymmetric Optical Model
of Solar Dish Concentrators (OPTDSH)



Introduction

A previous program developed at SERI (Kutscher, 1987) used a weighted
ray-trace algorithm to provide an optical figure of merit for an axisymmetric
reflector having a shape which deviates from an ideal paraboloid of
revolution. To study the response of dish concentrators to real-world effects
(such as wind and gravity loads, sensitivity to manufacturing tolerances,
etc.), nonaxisymmetric structural models (such as finite element simulations
or analytical representations like the one described in the main body of this
report) are required. In order to quantify the impact of nonaxisymmetric
structural deformations, a nonaxisymmetric optical model (which allows
calculation of thermal efficiency as well) 1s also needed. This section
documents the development and use of a nonaxisymmetric optical computer
program which has been interfaced with the DISH structural code.

General Capabilities of OPTDSH

The present program (OPTDSH) uses a 3-dimensional ray-trace technique as
described by Spencer and Murty (1962). Rays are generated at infinity either
on a uniform (Cartesian) grid or in a random fashion. Each ray is traced to
the dish surface, error terms are incorporated, the resulting direction upon
reflectionis computed, and the ray is then traced to its intersection with the
target plane.

A variety of options have evolved in terms of how the dish surface can be
specified. These are schematically indicated in Figure 3-1. A surface can be
described by a gridwork of points which give the position (height, z) of the
surface as a function of (x,y) or (r,0). Such information is typical output of
standard finite element structural codes. The partial derivatives 0z/dx and
0z/8y of the surface at the intersection point of each incoming ray are also
needed. OPTDSH could be modified to accept these quantities as input, but
presently computes these derivatives and positions between mesh points using a
linear 2-dimensional interpolation scheme as outlined by Press et al (1987).

A mesh of points describing a surface can also be analytically generated by a
simple user-provided driver as indicated in Figure 1. by the program GENDAT.
Two examples of such a program which creates .DAT files appropriate for input
to OPTDSH are shown in Figures 2 and 3. The first line in any of the .DAT
input files to OPTDSH is a Title line of textural information. Next, the dish
radius, focal length, and target distance (in consistent units) are input. The
next line contains a grid flag (IGRID) which tells OPTDSH what type of
subsequent data to expect, the number of radial (or X-coordinate) grids (NR),
and the number of azimuthal (or Y coordinate) grids (NT). These parameters are
further described in Table 1. NR radial (or X) coordinate values and NT
azimuthal (or Y) coordinate values are then entered as free-formatted input.
In the present examples these happen to be on an equally spaced grid, but
unequal grids can be used. The remaining information are the positions
(Z-coordinate) of the surface at each of the grid points. These are entered in



Finite Grid of 3
element positions g
codes and g
slopes
Post _
processor Dish
\V/
Measure-
ments
(SHOT) DAT SHP
S
CONFIG  |_ [ oPTDSH RAY
.OPT
W N\
OUTPUT Graphical THERML
.SAV display .DAT

\\4

Hardcopy
of plots

Figure 1. Logic flow and interfaces of OPTDSH
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C:\DISH-->GENDAT
Enter TITLE:

Perfect parabolic dish; £/D=0.6; Polar grid
Enter IGRID, NR, NT:

1,7,5

Enter dish radius,
7.5,9.

0,9.0

focal length,

and distance to target (m):

Enter name of desired output .DAT file (maximum of 6 characters),
prrefaced by an optional disk drive designator (default is C:):

POLAR

Data File (C:POLAR.DAT )

Stop - Program terminated.

C:\DISH-->TYPE POLAR.DAT=>PRN
Perfect parabolic dish; f/D=0.6; Polar grid

0.

0.
0.
.340278E-02
.340278E-02
.736111E-01
.736111E-01
.906250E-01
.906250E-01
.944444E-01
.944444E-01

OO WWKH &b

7.500001
1

000000E+00
5.000000
-3.141593
3.141594
000000E+00
000000E+00

1.085069
1.085069
1.562500
1.562500

0.

9.000000
7

1.250000

6.250000
-1.570796

000000E+00

.340278E-02
.736111E-01
.906250E-01

.944444E-01

1.085069

1.562500

5

0.

Being Archived

9.000000

2.500000
7.500001

.384186E-07

000000E+00

.340278E-02
.736111E-01
.906250E-01

.944444E-01

1.085069

1.562500

0.

3.750000

1.570797

000000E+00

.340278E-02
.736111E-01
.906250E-01

.944444E-01

1.085069

1.562500

Figure 2. Example GENDAT program which generates .DAT

finite element-like grid points on a polar basis
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C:\DISH-->GENDAT

Enter TITLE:
Perfect parabolic dish; f/D=0.6; Cartesian grid

Enter IGRID, NR, NT:
2.5,5
Enter dish radius, focal length, and distance to target (m):
7.5,9.0,9.0

Enter name of desired output .DAT file (maximum of 6 characters),

prefaced by an optional disk drive designator (default is C:):
CARTSN

Data File (C:CARTSN.DAT) Being Archived
Stop - Program terminated.

C:\DISH-->TYPE CARTSN.DAT:>PRN
Perfect parabolic dish; £/D=0.6; Cartesian grid

7.500001 9.000000 9.000000
2 5 5

-7.500001 -3.750000 0.000000E+00 3.750000
7.500001
-7.500001 -3.750000 0.000000E+00 3.750000
7.500001

3.125000 1.953125 1.562500 1.953125
3.125000

1.953125 7.812500E-01 3.906250E-01 7.812500E-01
1.9563125

1.562500 3.906250E-01 0.000000E+00 3.906250E-01
1.562500

1.9563125 7.812500E-01 3.906250E-01 7.812500E-01
1.9563125 \

3.125000 1.9563125 1.562500 1.953125
3.125000

C:\DISH-->

Figure 3. Example GENDAT program whichlgenerates .DAT
finite element-like grid points on a Cartesian basis

- 24



Table 1. Description of Parameters Contained in Input
Files to OPTDSH ‘

IGRID/
ISURF Meaning NR NT ZA
-1/6 ' Use SHAPE N/A N/A N/A
(0) (0)
0/1 Perfect (analytical) N/A N/A N/A
parabola (0) (0)
1/4 Polar grid of mesh points # R's # 0's z~-coord
(>0) (>0)
2/5 Cartesian grid of mesh # X's # Y's z-coord
points (>0) (>0)
3/7 Parabola with line # Params # Sets Param
Gaussians Values
(3) (14)
4/8 Zernike Monomial . Order of N/A Z-Mono
representation (0) Coeffs
fit
(<=4)

f/D=.6 Parabolic dish represented by Zernike monomials

7.500000 9.000000 9.000000
4 3 0

0.0
0.0
0.0
0.0277778 Figure 4. Example of .DAT input file
0.0 which uses Zernike monomials
0.0277778
0.0
0.0
0.0
0.0



free-format, NT azimuthal (or Y) values for each of the NR radial (or X)
values.

Returning to Figure 1, .DAT information can also be generated by measured
surface data. For example, SERI's Scanning Hartmann Optical Tester (SHOT)
(Wood, 1988) allows optical surface measurements to be analyzed in such a way
that the surface can be described in terms of a series of Zernike monomials
(as discussed by Malacara, 1978). The computed coefficients can then be input
to OPTDSH and used to further evaluate optical performance. An example of such
an input file is presented as Figure 4.

In Figure 4, the third line of input indicates the grid flag (IGRID=4 for
Zernike monomials) and the order of fit to be used (NFIT=3). The number of
coefficients, {, given by:

¢ = (NFIT+1)*(NFIT+2)/2

equals 10. The height on the dish surface is then given by:

NFIT+1 i

2xy) = Y, Y ByxTlyl
=1 =1

1

and the partial derivatives are:

5, NET .
= A 31 i)
rra Y. 2 Biugja ¥y

X =1 el

and

i
(-j+1) By, ;X" yH
i=1 j=1

oz _
Jy

with the 0 coefficients given by:

where:
¢ = [i*(i-1)/2]1 + 3

In the example in Figure 4, the fourth and sixth coefficients (=0.0277778)
represent the y2 and x* terms, respectively. All other terms are zero. This set
of coefficients, therefore, represents a parabolic surface with a focal length
of £=9.
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OPTDSH can also be adapted to study specialized geometries. For example, Figures
5 and 6 show input .DAT files for a perfect parabola (z = r?/4f) and a parabolic

dish with a series of line Gaussians (appropriate for analyzing welded seams of
various amplitudes and widths) respectively.

In Figure 6, the third line of input (after the title and radius, focal
length, and target distance) specifies IGRID=3 (indicating a parabola with line

Gaussians), NR=3 [number of parameters is 3: the amplitude (A), the x-coordinate
of each line Gaussian (M), and the standard deviation (0) associated with each
line Gaussian], and the number of line Gaussians is n = 14. The next 14 lines
contain the amplitude, x-coordinate, and standard deviation of each of the line
Gaussians. The surface height is then calculated as:

z(xy) = (UD*x% + y2) + Y A EXP[-Ya((x—-1,)/6)°]

i=1

A description of the remaining file interfaces shown in Figure 3-1 will be
provided before the interface with DISH is described. A configuration option
file (CONFIG.OPT) is read by OPTDSH to define system configutation options. This
file also contains default analysis parameters which specify error parameters
(sun shape and size, specularity, etc. as outlined by O'Gallagher, 1987) and
thermal parameters as required for computing thermal efficiency (as discussed by
Lewandowski, 1987).

Output Files

The OUTPUT.SAV file contains histogram frequency information of the number of
rays striking concentric annular zones in the target plane. A sample listing of
such a file is shown in Figure 7. The first column (RGRID) gives the radius of
the annular grid used to tally rays; the maximum radial value used is the radius
of the dish. The second column (NBIN) contains the number of rays which
intersect the target plane within the corresponding annulus. The next column
(FREQ) gives the fraction of the total rays contained within each annulus
(NBIN/Total # of Rays). The last two columns (TOTRAY and FRACT) present the
cumulative number of rays and fraction of rays contained within a given radius
respectively.

A THERML.DAT file is also output. This file contains a tabulation of the thermal
efficiencies as a function of receiver aperture radius for each operating
temperature modeled. An example of such an output file is given in Figure 8.
For each temperature of interest, the annular bin number, the radius of each
annular bin, and the number of rays within each bin are tabulated in the first
three columns. The last two columns give the thermal efficiencies for a
collector with a primary only and for a primary with secondary concentrator.
Such efficiencies are calculated as indicated by Lewandowski (1987).



Perfect (analytical) parabolic dish; £/D=0.6
7.500000 9.000000 9.000000
0 0 0

Figure 5. Example of .DAT input file for analytic surface

f/D=.6 Parabolic dish with line Gaussians; A=5mm; 1m wide; s=5mm

7.500000 9.000000 9.000000
3 3 14
.005, -6.5, .005
.005, -5.5, .005
.005, -4.5, .005
.005, -3.5, .005
.005, -2.5, .005
.005, -1.5, .005
.005, -0.5, .005
.005, 0.5, .005
.005, 1.5, .005
.005, 2.5, .005
.005, 3.5, .005
.005, 4.5, .005
.005, 5.5, .005
.005, 6.5, .005

Figure 6. Example of .DAT input file for modeling welded seams
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Focal Length

Number of Rays =
Seed for Ray Generation =

Dish Radius
Distance to Target

Delta X,Y

9.000
500

7.500

-5

9.000

Maximum Radial Intersection of Target Plane =
RMS Radius of Distribution on Target Plane =
RMS Deviation from Mean =

RGRID
07500
. 22500
. 37500
.52500
.67500
.82500
97500
.12500
. 27500
. 42500
57500
72500
.87500
.02500
17500
.32500
47500
.62500
77500
.92500
.07500
.22500
.37500
.52500
.67500
.82500
97500
.12500
.27500
. 42500
57500
72500
.87500
.02500
17500
.32500
47500
.62500
77500
.92500
.07500
.22500
.37500
52500
87500
.82500
.97500
.12500
. 27500
. 42500

NI 000OOOOO OO OO OO AR RRARRWWWWWWWNNNNNNNE =P

NEIN
442
56
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FREQ

.88400
.11200
.00400
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

.05010
TOTRAY
442.
498.
500.
500.
500.
500 .
500.
500.
500.
500.
500.
500.
500.
500 .
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500 .
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500 .
500.
500.

2-9

HEPRRRRHEHPBRRPRRBERHEBEBRBEEBRHRPBRRERRPBRRRREREBRRBRERBPRERERERER R

FRACT

.88400
.99600
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

.31784
.10347

Figure 7. Sample
OUTPUT.SAV file



Temperature =

OO kWN -

.0000
.0059
L0117
.0176
.0235
.0294
.0352
.0411
.0470
.05629
. 0587
.0646
.0705
.0764
. 0822
.0881
. 0940
. 0999
.10567
.1116
.1175
.1234
.1292
.13561
.1410
.1469
.15627
.1586
.1645
.1704
.1762
.1821
.1880
.1939
.1997
.2056
.2115
.2174
.2232
.2291
.2350
.2409
.2467
.2526
. 2585
.2644
.2702
.2761
.2820
.2878
.2937

500.0000 degrees C
J,RVALS(J),DIST(J),ETAVSR(J,1,1),ETAVSR(J,2,1):

8.
19.
41.
44 .
59.
70.
76.
85.
.0000

86.
100.

89.

94.

90.

90.

95.

84.

85.

70.

88.

66.

64.

40.

45.

53.

43.

33.

26.

17.

21.

19.

23.

12.
.0000
10.
11.
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

101

11

HWFENN®WOS

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000

.0000
.0034
.0114
. 0286
.0471
.0719
.1013
.1332
.1689
.2113
.2473
.2892
. 3264
. 3656
.4031
.4406
.4801
.5149
.5500
.5788
.6151
.6421
.6681
.6840
.7019
.7231
. 7400
L1527
.7623
.7681
.7755
.7820
.7902
.7936
. 7966
.7991
.8019
.8018
.8037
.8030
.8027
.8015
.8002
. 7985
.7975
L7957
.7934
.7910
. 7886
.7865
.7840

.0000
.0023
.0101
.0261
.0433
.0668
. 0946
.1248
.1587
.1990
. 2337
L2739
.3101
. 3487
.3855
.4221
.4610
.4954
.5302
.5593
.5951
.6226
.6493
.6671
.6863
.7086
. 7268
.7410
. 7530
.7612
L7706
L7791
.7884
. 7935
.7983
.8029
.8076
.8094
.8129
.8138
.8149
.81561
.81565
.81563
.8160
.8158
.8149
.8140
.8130
.8124
.8114

Figure 8. Sample
THERML .DAT file



Temperature

J,RVALS(J),DIST(J),ETAVSR(J,1,1I),ETAVSR(J,2,I):
.0000
.0059
.0117
.0176
. 0235
.0294
0352
.0411
.0470
.0629
. 0587
. 0646
.0705
.0764
. 0822
.0881
.0940
.0999
.10567
.1116
.1175
.1234
.1292
.1351
.1410
.1469
.1527
.1586
.1645
.1704
.1762
.1821
.1880
.1939
.1997
.2056
.2115
.2174
.2232
.2291
. 2350
.2409
. 2467
.2526
.2585
.2644
.2702
.2761
.2820
.2878
.2937

WO Ok WNRP-

800.0000 degrees C

8.
19.
41.
44,
59.
70.
76.

85
86

89

95
84
85

53
33
26

19
23
12

11

W NN W

0000
0000
0000
0000
0000
0000
0000

.0000
101.

0000

.0000
100.

0000

.0000
94.
90.
90.

0000
0000
0000

.0000
.0000
.0000
70.
88.
66 .
64.
40.
45.

0000
0000
0000
0000
0000
0000

.0000
43.

0000

.0000
.0000
17.
21.

0000
0000

.0000
.0000
.0000
11.
10.

0000
0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0033
.0111
.0282
.0463
. 0706

0995

.1307
.1657
.2072
.2422
.2831
.3191
.3570
.3931
.4291
. 4670
.5002
.5336
.5604
.5948
.6197
.6435
.6571
.6726
.6913
L7067
.7156
.1224
.7253
L1297
.7331
.7381
.7382
.7378
.7367
.7360
.7321
.7302
. 1256
.7213
.71569
.7104
.7044
.6990
.6926
.6857
.6786
.6714
.6644
.6568

2-11

.0000

L0022
.0099
. 0259
. 0429
.0661
. 0936
.1234
.1569
.1967
.2309
.2705
.3061
.3440
.3800
.4159
.4539
.4874
.5212
.5493
.5840
.6103
.6358
.6523
.6702
.6911
.7080
L7207
.7312
.7378
.7455
.7523
.7598
.7631
.7661
.7688
L7715
.71713
.71726
L7714
.7703
.7683
.7663
.7638
.7620
.7593
.7559
.7524
.7488
. 7455
. 7417

Figure 8 (continued).

THERML.DAT file

Sample



The capability of archiving and re-reading a file which contains the
intersection points of each ray with both the dish surface and the target plane
has been incorporated. The ray information is saved as a binary file to reduce
storage requirements and access time. Roughly 16-19 bytes per ray (depending on
the number of rays traced) are required to archive the data.

Menu Options

An overview of the various menu options which allow the user to access the
capabilities of OPTDSH are shown in Figure 9. The first set of options allows
modification of configuration parameters, analyses to be performed, or
termination of the program. Desired options are specified via Function-Key entry
as shown in Figure 10. Return to the previous menu level can also be achieved
by pressing the Escape key. The main menu is initially obtained by running the
OPTDSH program by entering:

OPTDSH<Enter>

Configuration

Selection of the Configuration option (Fl) allows access to the system, error,

and thermal analysis parameters as shown in Figure 11. The various
specification options associated with each of these parameters are illustrated
in Figures 12 thru 14, respectively. To change a given parameter, enter

parameter(s) and their desired (allowable) wvalue(s) as '"Parameter''="Value".
Multiple changes can be entered at a single time. For example in Figure 12, to
change the default disk drive designation from C to D and to change the graphics
board from EGA to CGA type:

IDRV=D, IGRF=2<Enter>

When all parameters of a given category have been suitably altered a blank line
(<Enter> only) returns to the menu shown in Figure 11. Modifications to default
parameters can be updated to the CONFIG.OPT file (so that these new options will
be used each time OPTDSH is executed) by pressing the F2 key, or modified
parameters can be used locally for the present analysis only by pressing the Fl
key.

Analysis

Once the desired configuration parameters have been set (or the initial default
values are desired to be used), the analysis module of OPTDSH can be accessed
via the F2 key from the main menu (Figure 10). The user will then be prompted
for the type of input file desired (Figure 15) as discussed above under
"General Capabilities'". Once a file type has been selected, the user must
provide a file name to be used. The present example (Figure 15) wuses a file
named PARAB.DAT located on the C: drive. To indicate this enter:

PARAB<Enter>
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Target plane
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Figure 9. Menu options of OPTDSH




Select Option:

Fl1: Configuration
F2: Analysis
F3: End

Enter F-Key Choice: Figure 10. Example of main menu options

Select Configuration Option:

End Configuration:
Fl1: Do NOT Update Configuration File
F2: DO Update Configuration File

Modify Parameters:

F3: System
F4: Error
F5: Thermal
Enter F-Key Choice: Figure 1ll. Example of configuration option menu
SYSTEM PARAMETERS
Parameter Value Description
ISYS 3 SYStem type; 1=PC, 2=XT, 3=AT, 4=Compac
IDRV C default disk DRiVe designation; A-F
IPRT 2 PRinTer type; 0=None, 2=Epson
IGRF 3 GRaPHics board; 2=CGA, 3=EGA

Enter Parameter(s) & Value(s) to be changed (separated by commas) as
Parameter = Value; Null Entry/Carriage Return indicates no further changes:

Figure 12. Example of system parameter specification options
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ERROR PARAMETERS

Parameter Value Description
SLOP 3.000 SLOPe error (mrad); >=0.0
SPEC 1.500 SPECularity error (mrad); >=0.0
SUNS 2.730 SUN Sigma (mrad); >=0.0
TRAK .000 TRAcKer error (mrad); >=0.0
DIST 1.000 error DISTribution; 0=None, 1=Gaussian, 2=Pillbox

Enter Parameter(s) & Value(s) to be changed (separated by commas) as
Parameter = Value; Null Entry/Carriage Return indicates no further changes:

Figure 13. Example of error parameter specification options

THERMAL PARAMETERS

Parameter Value Description
TAMB 20.000 Ambient Temperature (deg. C)
TRC1 500.000 ReCeiver Temperature for analysis #1 (deg. C)
TRC2 800.000 ReCeiver Temperature for analysis $#2 (deg. C)
TRC3 .000 ReCeiver Temperature for analysis #3 (deg. C)
TRC4 .000 ReCeiver Temperature for analysis #4 (deg. C)
NTMP 2.000 Number of TeMPerature analyses to be run (0-4)
ABSR .982 effective receiver ABSoRptance (0-1)
EMIT . 998 effective receiver EMITtance (0-1)
ARAT 5.000 Area RATio of receiver wall to aperture
RSCL 1.000 Receiver aperture SCalLe factor
NBIN 50.000 Number of radial BINs for thermal analysis
RHO1 .900 reflectance of primary mirror
RHO2 .900 reflectance of secondary mirror
BLOK .960 BLOcKage factor (0-1)
DNIR 800.000 Direct Normal IRradiance (W/m"2)
COND L7137 CONDuctive heat loss coefficient (W/m"2-K)
DELF .000 DELta Focal length distance (m)

Enter Parameter(s) & Value(s) to be changed (separated by commas) as
Parameter = Value; Null Entry/Carriage Return indicates no further changes:

Figure 14. Example of thermal analysis parameter specification options



Select Data File Option:
Fl: Finite Element Data (.DAT)
F2: Shape Data (.SHP)
F3: Ray Data (.RAY)
F4: Return to Previous Menu

Enter F-Key Choice:

Enter name of desired .DAT input file (maximum of 6 characters),

prefaced by an optional disk drive designator (default is C:):
PARAB

Data File (C:PARAB.DAT ) Being Read ....

Enter (Approximate) # of Rays (1-10000) to be Traced:

2000

Enter Integer Seed for Ray Generation between *32767
(O=uniform X-Y Grid):

345

Focal Length = 9.000

Number of Rays = 2000

Seed for Ray Generation = -345

Dish Radius = 7.500

Distance to Target = 9.000

Delta X,Y = .0000

Tracing 2000 Rays; Please Stand By

100 Rays Traced

Figure 15. Example of analysis session using OPTDSH

Next, the number of rays desired to be traced must be specified (the present
maximum is 10,000). Enter:

# of Rays<Enter>

Finally, an integer seed for ray generation and error term treatment 1is
required. Any number between -32767 and +32767 can be used (note that positive
numbers will automatically be converted to negative numbers for purposes of
random number generation). A seed of zero (0) will cause a uniform X-Y grid of
rays to be used rather than a randomly generated pattern. Enter:

Seed for Random Number Generation<Enter>

Some information about the specified configuration being traced is echoed to the
computer monitor and the number of rays traced is updated after every 100 rays.



Select Graphics Option:

Fl1: Histogram of Radial Distance in Target Plane
F2: Spot Diagram of Dish Surface

F3: Spot Diagram in Target Plane

F4: Thermal Efficiency Plot

F5: Return to Previous Menu

‘Enter F-Key Choice:

Figure 16. Example of graphical display options menu

Graphical Display

After the specified number of rays have been traced, the graphical display
options menu is presented (Figure 16). It should be noted that OPTDSH uses a
graphics subroutine library named Grafmatics (1984); prospective users wishing
to re-compile the OPTDSH source code must have access to the appropriate version
(in terms of FORTRAN compiler and system graphics hardware) of this commercial
product.

The first graphics option (Fl) generates a histogram plot of the number of rays
contained within concentric annuli in the target plane. This is simply a plot of
the RVALS(J) and DIST(J) columns of data contained in the THERML.DAT file (see
Figure 8). The x-axis can be scaled by the RSCL thermal parameter (Figure
14). A sample frequency histogram plot is shown in Figure 17.

The second option (F2) provides a graphical display of the intersection of rays
with the dish surface. An example of the intersection of 2000 rays with the dish
surface is shown in Figure 18. Symbols are used to indicate the radial zones
in the target plane to which specific rays are reflected. The user can
optionally select the maximum radial value in the target plane to be used for
the zonal grouping of reflected rays. For example, from Figure 17, the radial
distance at which some rays intersect the target plane may exceed 0.3 m.
However, most of the rays are contained within an aperture having a radius of
0.2 m. Figure 18 was therefore generated for concentric radial zones out to
0.2 m.

When the third option is chosen (F3), statistics associated with the intersection
of rays in the target plane are displayed and the radius of the spot diagram in
the target plane can be specified by the user (the default is to use the maximum
radial excursion in the target plane). Once this has been done, a zonal spot
diagram of the rays intersecting the target plane is displayed (Figure 19). As
with the previous display, symbols are used to indicate the radial zone on the
dish surface from which each ray was reflected. The maximum and RMS radius of
the intersecting rays is indicated, as is the RMS deviation.
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Perfect (analytical) parabolic dish; f/D=8.6. Errors Included
-Dish Radius= 7.58. Focal Length= 9.88; Dish Surface Location

# RAYS- 2008

ISEED=

-345

o L1
16

x .28
IGRID= 8

Figure 18. Distribution of randomly generated rays on the dish

surface; zonal binning is out to 0.2 m in the target plane
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Perfect {analytical) parabolic dish: £/D=8.6. Errors Included
Dish Radius= 7.58; Focal Length= 9.88. Target Distance= 9.88
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# RAYS- 2bBA H
ISEEB= -345

MAX RAD=  .325

RAD= .358. RMS RAD= .183. RMS DEVU- .849

Figure 19. Distribution of 2000 randomly
generated rays in the target plane



The final graphics option (F4) plots thermal efficiency as a function of
aperture radius for the number of thermal analyses specified by the NTMP thermal

parameter (Figure 14). Up to & temperatures can be run at a time; these
temperatures (in °C) are the first part of the legend shown at the lower
right-hand corner (Figure 20). The second part of the legend indicates whether

the efficiency curve is for a system with a primary only (1) or a system with
both a primary and secondary (2). Efficiency plots can be generated which
display primary only data, primary with secondary only data, or both primary and
primary with secondary (F1 thru F3 in Figure 21, respectively). The third
piece of information contained in the legend is the radial value at which the
efficiency is a maximum.

If a printer is active (IPRT=2 in Figure 12), optional hardcopy of the various
graphical displays can be generated by responding '"Y" to the '"Hardcopy Desired?"
query. Note that if an EGA graphics adapter is in use (IGRF=3 in Figure 12), a
screen dump utility (such as GRAFPLUS from Jewell Technologies, Inc.) must have
been installed prior to running OPTDSH.

Once the graphics menu is exited, the data file menu is modified to allow
archival of the traced ray information (Figure 22). By choosing F5, a file name
is requested and a .RAY file is created.

Interface with the DISH Structural Code

The interface with the DISH structural code is through files having .SHP
extensions. Typically, these are DISH.DAT files created by the DISH program
which have been renamed to have a .SHP extension. It should be emphasized that
this interface is analytical in the sense that the position and slopes of the
dish surface at each ray intersection point is computed exactly; no interpolation
is required. An example .SHP file is shown in Figure 23. The meaning of the
various input values are described in the main body of this report.
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Select Thermal Efficiency Graphics Option:

Fl: Primary

F2: Primary with Secondary

F3: Primary + Primary with Secondary
F4: Return to Previous Menu

Enter F-Key Choice:

Figure 21. Thermal efficiency plot options

Select Data File Option:

Fl: Finite Element Data (.DAT)

F2: Shape Data (.SHP)

F3: Ray Data (.RAY)

F4: Re-Process Previouly Traced Rays
F5: Archive Traced Rays

F6: Return to Previous Menu

Enter F-Key Choice:

Enter name of desired output .RAY file (maximum of 6 characters),
prefaced by an optional disk drive designator (default is C:):
PARAB

Ray File (C:PARAB.RAY ) Being Archived

Figure 22. Archival of .RAY file
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Axisymmetric edge pull,

2.
3.
0.

3

0.
0.
3.
0.
1.

-6

0.
0.
0.

0

1
540000E-04
000000E-01
000000E+0QO0

3.141593

.846154E-01

423.487000
0
000000E+0QO
000000E+0Q0
330905E-05
000000E+0OQ
227963E-03

.233433E-02
0.
0.
0.

000000E+0QO
000000E+00
000000E+00

1.000000
000000E+00
000000E+00
000000E+0QO0
000000E+00

19397.810000
42764710000

4.

569858E-05

0.
0.
0.

0.
0.
.149304E-01
0.
0.
0.
0.
0.

0.
0.
0.
.042378E-02

1
7.500000
3.120000

.123141E-02
.686390E-05

18.000000
2

1
000000E+00
000000E+00
000000E+00
1.000000
000000E+0QO
000000E+00

000000E+00
000000E+00
000000E+0O
000000E+0QO
000000E+00
751.720200
000000E+0QO
000000E+00
000000E+00

10 mil composite,

10

0
0.
0.

-9.
0.
3.
0.

0.
0.
0.
0.
0.
8.
0.
-9
0.
4.

2-24

5
9.000000
689.700000

.000000E+0QO
.947911E-01

19.500000
1

7.
0.
0.
9.

simply-supported.

0
930000E+09
000000E+00
000000E+00
230769E-01

2014220.000000

1

0.000000E+00

000000E+00
000000E+00
075131E-08
000000E+00
765548E-08
000000E+0QO

1.000000
000000E+0O0
000000E+00
000000E+00
000000E+0QO
000000E+0QOQ
875375E-01
000000E+00
196.523000
000000E+00
042372E-02

0.
0.
0.
-5.
0.
9.
0.
0.
0.
0.
0.

0

1

0.000000E+00

000000E+00
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116470E-04
000000E+00
574924E-01
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00

.000000E+00
0.

000000E+00

46554.750000

0.
0.
0.

000000E+0QO0
000000E+00
000000E+QOQ

Figure 23. Example of DISH.DAT input file used with SHAPE option
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Appendix A

Asymptotic Solutions for
Edge Effects in Thin Shells

presented February 10, 1988
to the SERI Membrane Dish Workshop
by C. R. Steele and C. D. Balch
Division of Applied Mechanics
Stanford University
Stanford, California 94305



Current Work with SERI

Goal:

To develop asymptotic shell solutions and in-
corporate them into design formulas and software
for the stress and displacement analysis of thin
dish reflectors.

Scope:
e Initially curved, thin dish, i.e., a paraboloid.
e Elastic behavior, small strains.

e High prestress due to pressure loading.

e Edge effects due to support conditions.



General Approach to Shell Problems

Total Solution p
(for given load & B.C.’s) J
Particular Solution N N
(Membrane solution:
. P
no bending moment or
transverse shear.)

Complementary Solution — “—H
(Edge effect: has local ¢ -\'M
bending and shear.)

The edge effect is needed to satisfy the B.C.’s.




Axisymmetric Shell Problems

—»
s r

WPN%H,A

‘/M,X

zy

Fourth-order system, similar to a beam:

- M - _ - M- - -
d | H H
_— A = |.P
ds | X " (s) X
_h . - - h. -
-O_
= 8 for edge loads alone
0.

The coefficients A(s) are functions of position.




The Prestress, or Pressurization Effect

Beam: ; w

T—-»x Lup

T <1 1—> T
d*w d?w
e - T___..
Bl dxt P dz?

Shell of Revolution: Modify one compo-
nent of the matrix [A] in the shell equations.

The new nonlinear term contains the dimen-
sionless stress quantity

NR
2F1tc

p:

p>1 = high tensile prestress

—1<p<1 = low to moderate prestress

p=—-1 —=— local buckling of the shell



Asymptotic Solutions for Shell Edge Effects

WKB Method, with large parameter

1= B

Dimensionless solution form:

1 1
= e M0)[Bg + =B + D+ .. ]

S RN

[rapid variation

Steps of the method:

(i) Substitute above form into shell equations.

(ii
(
(

iii) Obtain an eigenvalue problem for £'(s).

) Collect terms in each power of .

iv) Eigenvalues are the decay constants for
the edge effects.



Asymptotic Solutions: The WKB Method

WKB Method: Suited for equations with variable
coefficients and rapidly varying solutions.

Example: High frequency vibration of a string
with variable density m(z).

Equation Td2w + w?m(z)w 0
uation : — =
1 dx?

Seowey

VARYIN G

ENVELOPE

We have the large parameter

WAML
\ =
T

>1

For very high frequencies —
FDM, FEM: Mesh — 0; Cost — oo0.
WKB: Cost — 0.



Decay Behavior of the Edge Effects

O( ):

For low membrane prestress; p

/%.\

A
<—

EDGE
LFFECT
& TRESSES

e
o

DIstavce From £DGE

For high membrane prestress; p = S Tic Etc > 1:

(P '~J/0R;t ~
EDGE \\
grreel —
57‘,?!:'{56/5
)R;e
3\ & 5,"‘ ’/‘o_
=

DIsTAVCE FRomt EDGE

(two edge-effect solutions)



Example: Pressurized Paraboloid

— T 4 f

vy

Paraboloidal shell with focal length f; subjected
to a uniform pressure load p. The meridian curve is the

parabola y = r?/(4f).

Specifications for paraboloid, from Murphy (1987).

Geometry Material Properties Load
t = 0.254 mm E =209GPa P = 2000 Pa
re=7.5m v=20.3
f=9m




(mr)

Rotation

25.
®
20. [
ERLAN
s |
g
25 T
0 & @ - D
_5. 1 |} [] 1 [] [ 1

16.
14.
12.
10.

Rotation of the Shell Surface

0. 1. 2. 3. 4. 5. 6. 7. 8.
r (m)

Rotation x as a function of radial distance r for the
simply supported parabolic shell under pressure load. The
solid line is the asymptotic solution; cross marks are ANSYS
results from Murphy (1987).

------------------------------------------------------------------------

(a) (®)

Asymptotic solution for the meridional rotation
x near the edge of the parabolic shell under pressure load.
(a) Simply supported edge: the meridional rotation reaches a
maximum value at the edge r = 7.5m. (b) Built-in edge: the
meridional rotation is zero at the edge.



Bending Stress (Simply Supported Edge)

Bending Stress (MPa)

12

1.0 freeeeeeteeert, } ........................... éu.

8 feeeeeedeededon, ,

.6 ------------------ :\o-------‘oo-u---t-;\nn----o- -----------------------

4 e feveeennns ......... eeieieens , ........ ferenrnnns PUURNS

2 ELLLITIIE e ......................................................
.0 : . . -

0. 1 2. 3. 4, S. 8.
rr (m)

Asymptotic solution for the meridional bending
stress in a simply supported parabolic shell under pressure
load. The bending stress o4p is shown as a function of the
radial distance r.

.

Displacements (Simply Supported Edge)

(mm)

Displacement

2. B

1. B //&

0. cg

1 F Horizontal disp. h -/

2. r

3 F Vertical disp. v

4, \

@ ®

5. b e e Q e

,6. 1 L 1 1 N 1 -
0. 1 2. 3. 4, S. 6. 7. 8.

r (m)

Horizontal displacement h and vertical displace-
ment v for the simply supported parabolic shell under pres-
sure load. Solid lines are the asymptotic solution; cross marks
are ANSYS results from Murphy (1987).
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Future Work: Non-axisymmetric Behavior

Discrete Supports

Non-axisymmetric Loads, e.g., Wind

S




Preliminary Results
for Non-axisymmetric Edge Effects

Shallow parabolic shell:

1D
GER*
(Ef %C;PTH )

Assume large prestress p > 1.

The shallow shell equations for edge effects
reduce to

DAAw — NAw + %w = 0



Asymptotic Solution
for High Circumferential Harmonics

1
w = cosnb enf(r)(wo + —w; + w2 + ...
n n

(n>1)

\V/

Decay distances of edge effects are:

Rt
5Long ~ \/ }E 1 < VRt

1+ t 2n2p

Rt
5Short ~ \/1+R2£ < VRt

t n2

High circumferential harmonics die out fast,
even with large prestress.

Next Step: Apply this approach to the equations
in matrix form, and solve non-axisymmetric shell

problems by Fourier series.
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Concluding Remarks

e Asymptotic solutions have been derived for
edge effects in thin parabolic shells loaded by pres-
sure. These solutions compare favorably with AN-
SYS finite element results, and capture extremely
rapid stress variations near the edge of the shell.

e The asymptotic solutions provide the “decay
distances” for edge effects, and thus offer physical
insight into the shell’s behavior.

e Prestress, or high tension of the shell, is
found to significantly effect the decay distances.
Preliminary calculations suggest that the most sig-
nificant prestress effects are axisymmetric.

e The membrane and edge-effect solutions for

shells of revolution can be employed for rapid com-
puterized analysis and design studies.
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Appendix B

Non-Axisymmetric Deformations of Thin
Paraboloidal Shells with Initial Prestress

presented May 12, 1988
to the SERI Membrane Dish Research Group
by C. D. Balch and C. R. Steele
Division of Applied Mechanics
Stanford University
Stanford, California 94305



Current Work with SERI

Goal:

To develop analytical solutions for the non-
axisymmetric structural response of a thin, parab-
oloidal shell, and to incorporate the solutions into
design formulas and software.

Scope:

e Initially paraboloidal dish.

e Elastic behavior, small strains.

e High prestress due to pressure loading.

e Non-axisymmetric edge effects.

e Non-axisymmetric loads, e.g., wind load.



General Approach to Shell Problems
Total Solution p
(for given load & B.C.’s) J
Particular Solution N N
(Membrane solution:

. P

no bending moment or
transverse shear.) -

+

Complementary Solution — “~H
(Edge effect: has local {. -\'M
bending and shear.)

The edge effect is needed to satisfy the B.C.’s.




Axisymmetric Shell Problems

»
s r

%,,:N_w

‘/M,x

zy

Fourth-order system, similar to a beam:

d | H H
—_— A = P
ds | X i (s) X
_h . - -h. -
-O-
= 8 for edge loads alone
0.

The coefficients A(s) are functions of position.




The Prestress, or Pressurization Effect

P
T <——£ X U'L 1—> T
2
d*w d2w
Bl =Pt 1y

Shell of Revolution: Modify one compo-
nent of the matrix [A] in the shell equations.

The new nonlinear term contains the dimen-
sionless stress quantity

NR
2Ftc

p =

p>1 = high tensile prestress

—1<p<1 = low to moderate prestress

p=-1 = local buckling of the shell



Non-axisymmetric Problems: Equilibrium




L] 3 < S
Non-axisymmetric Problems: Kinematic
O - .

.r




Non-axisymmetric Problems: Governing Equations

Displacement and Force Quantities:

-Xs-(n) "I'Ms“(n)
X8 T Msp
D= |u, ; F=| rN,
U, rN,
- Ug - _'I‘ng -

Tenth-Order Matrix Form of the Shell Equations:
'F ] i 1 ITF P
+ A(s)
D D 0

_a
ds

The equations include the effects of
e Transverse shear deformation
e Moderate rotation: e(NE) = (L) 4 132

e Initial prestress: Perturbations relative
to a nominal state of membrane tension
are considered.



Response of a Shell to Edge Loads

[. Membrane (Negligible Bending):

III. Edge Effects (Coupled Stretching/Bending):

N Ny
k——v

-
; v
. R
/ .




Asymptotic Solutions

For the tenth-order system:

dY

——+A(s)Y =0
ds

Use the formal asymptotic expansion:

Y = exp </ f(s)ds) [Yo(s) +Yq(s)+...]

(A-I6)Y, = 0

(A-TY: = T (2

Note: This approach is accurate for the edge-
effect solutions, but not for the membrane and in-
extensional solutions.



6/(m/%r70)

DecAY Drstances oF THE
Ebee LFFecTs

0 0.2 0.4 0.6 0.8 1

ny/2rac/(2r)

Decey distance § as a function of n for the two edge
bending solutions, with nominal prestress N,r;/(2Etc) =
Nyor,/(2Etc) = 0 (solid line), 4 (dashed line), and 40 (dotted
line). The longest decay distance occurs for the axisymmetric
case n = 0.



Decay Behavior of the Edge Effects

For low membrane prestress; p = 3 Etc = O(1):

T /,‘\gf« R%

EDGE
EFFECT
& TRESSES

/

—
DIstavce From EDGE

For high membrane prestreSS' p=3 Etc > 1:

7/
EDGE
grreel —
STRESSES
S

D ISTAMCE  FRom EDGE

(two edge-effect solutions)
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The Shallow Shell Equations

For a paraboloidal dish, the equations are
1 1
—AA —Au, =
ol o+ RAu 0
Etc*?AAu, — NAu, — %Aqb =0

Membrane and inextensional solutions to the
above equations take the form of simple harmonic
functions which satisfy

A¢p=0
Au, =0



Thin Paraboloidal Shells with Initial Prestress

Description of the DISH Computer Program

This appendix provides a brief description of the DISH computer pro-
gram for the analysis.of paraboloidal shells. The program is written in
standard FORTRAN-77 and can be run on an IBM PC. A sample input
file is shown in the following table.

Table C-1. Sample input file for the DISH program.

Input File DISH.IN, for the DISH structural analysis program.

T RE FL GEOMETRY
2.54E-4 7.5 9.0
E NU MU MATERIAL PROPERTIES
209.E9 0.3 3.12
NFOUR NPTS RANGE r, theta(d) NPTSW MESH ANALYSIS PARAMETERS
2 4,2 6.,7.5 0.,90. 16 10

(1 => Disp.; 2 =>» Force) BOUNDARY CONDITION FLAGS
CHIs/Ms CHIt/Mst Ur/Nr Uz/Nz Ut/Nst
1 1 1 1 1

(ICS=1 => COS; ICS=2 =» SIN) BOUNDARY CONDITIONS
NHARM  ICS CHIs/Ms CHItMst Ur/Nr Uz/Nz Ut/Nst
0 1 0. 0. 0. 0. 0.
1 1 0. 0. 0. 0. 0.
PNOM PRESSURE LOAD DATA
2000.

(WINDAT(I),I=1,NPTSW)
0. 0.277778E+02 0.555556E+02 0.833333E+02 0.111111E+03
0.138889E+03 0.166667E+03 0.194444E+03 0.222222E+03 0.250000E+03
0.277778E+03 0.305556E+03 0.333333E+03 0.361111E+03 0.388889E+03
0.416667E+03

Table C-1 shows an input file for the analysis of a paraboloid with
clamped edges and wind loading. The first line of numbers contains the
thickness T, edge radius RE, and focal length FL. The second line of num-
bers contains the elastic modulus E, Poisson’s ratio NU, and the shear

flexibility factor MU (see Eq. (5)).



Specifications for paraboloidal dish.

Geometry Material Properties Load
t = 0.254 mm E =209 GPa p = 2000 Pa
re="7.5m v=03
f=9m




Prescribed Radial Edge Deformation: u, = Uy cos 26
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Radial displacement u, and vertical displacement
u, as functions of r for a paraboloidal shell subjected to a
cos 20 prescribed radial edge displacement. Results shown for
0 = 0° (dashed lines) and 8 = 90° (dotted lines). The results
for the axisymmetric case of a clamped edge are shown for
comparison (solid lines).



Stress Resultant
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Stress resultants N, and Ny as functions of r for
a paraboloidal shell subjected to a cos 26 prescribed radial
edge displacement. The stress resultants are shown for § =
0° (dashed lines) and § = 90° (dotted lines), and for the
axisymmetric case of a clamped ed e for comparison (solid
lines). Note the significant drop in the circumferential stress
N o near the edge for § = 90°.
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Radial displacement u, and vertical displacement
u, along the line 6 = 0° for a paraboloidal shell subjected to
cos nf prescribed radial edge displacements. Results shown
for n = 4 (dashed lines), n = 16 (dotted lines), and n = 64
(dot-dashed lines). The results for the axisymmetric case of
a clamped edge are shown for comparison (solid lines). With
increasing n the edge effects decay more rapidly; outside the
edge zone, the displacements approach those of the axisym-
metric case.
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Asymmetric Wind Load
p = 2000 Pa

Axisymmetric cos 6 |
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Stress resultants N, (solid line) and Ny (dashed
line) along @ = 0° for a clamped paraboloidal shell subjected
to the asymmetric load p, = p,, sin ¢ cos 8, with p,, = 1000 Pa
and a nominal pressure load of 2000 Pa. The circles and dia-
monds are the membrane solution from Fligge (1973), which
agrees with the present analysis except near the edge. The
present analysis includes the rapidly decaying edge bending
effects, which account for the abrupt drop in the circumfer-
ential stress Ny near the edge.
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Displacements u, and u, along § = 0° for a pa-
raboloidal shell with a clamped edge subjected to the asym-
metric load p, = py sin ¢cosd, for p, = 1000 Pa (dashed
lines) and p,, = 2000 Pa (dotted lines). The displacements of
the axisymmetric solution with the nominal pressure load of
2000 Pa are shown for comparison (solid lines).
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Concluding Remarks

e The equations for non-axisymmetric defor-
mations of shells of revolution have been derived
in state-vector (matrix) form, including the effects
of initial prestress due to pressue load, and trans-
verse shear deformation.

e Asymptotic solutions for non-axisymmetic
edge bending effects are presented. These effects
involve coupled bending and membrane behavior,
and typically decay rapidly with increasing dis-
tance from the edge. High prestress is found to
affect the decay behavior significantly.

e For the non-axisymmetic membrane and in-
extensional behavior of a paraboloidal shell, solu-
tions are obtained using shallow shell theory.

e A computer program has been developed
which is based on the asymptotic solutions and the
results from shallow shell theory. The program can
be used for axisymmetric and non-axisymmetric
analyses of a paraboloidal dish, and runs on a PC.



Appendix C

Structural and Structural/Optical
Analysis of Dish Membranes*

presented at SERI on August 25, 1988
by Chad D. Balch

*work supported by SERI under subcontract number CJ-8-00632-1,
6/20/88 through 8/26/88.
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Part I: Structural Analvsi

A. Overview of capabilities and limitations
of the structural analysis software

B. Theoretical background

C. The DISH structural code and related
processors, examples

D. Interface with a finite element model

art [I; Coupled Structural/Optical Analvysi
A. Interface with the OPTDSH ray trace code

B. The OPTDSH ray trace code (Jorgensen)

C. Coupled structural/optical analysis;
examples and software demo.

B Wit

Work in Progress; Concluding Remarks



The DISH Program: Capabilities

1. Based on analytical solutions from shell
theory; runs in a few minutes on a PC.

2. Handles the following problems:

A. Arbitrary edge deformation
(under pressure loading)

B. Asymmetric pressure loading

ipu¢;j
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3. Interfaces with OPTDSH for rapid ray trace
analysis.




. Thin shells
. Small strains

. Small perturbations from the "membrane
solution”

. Edge effects should die out with decay
distances small relative to radii of curvature

. Edge angle should be less than about 300,
since some shallow shell solutions are used.



Non-axisymmetric Problems: Kinematics




Non-axisymmetric Problems: Governing Equations

Displacement and Force Quantities:

-Xs-(n) -,,.Ms-(n)

X6 TMsG
D= |u, ; F=| rN,.

U, TNz

-Ug - -T‘ng -

Tenth-Order Matrix Form of the Shell Equations:
_ n) . m) )

F ) F P
+ A(s) =
D D 0

d
ds

The equations include the effects of
e Transverse shear deformation

e Moderate rotation: e(NVL) = (L) 4 %52

o Initial prestress: Perturbations relative
to a nominal state of membrane tension
are considered.



Asymptotic Solutions

For the tenth-order system:

_aY +A(s)Y =0
ds

Use the formal asymptotic expansion:

Y = exp </ §(s)ds> [Yo(s) + Yi(s)+...]

(A-IY, =
(A - I§)Y;

Note: This approach is accurate for the edge-
effect solutions, but not for the membrane and in-

extensional solutions. (Fevr lgres,.d- Lormula 'hbn_)



Response of a Shell to Edge Loads

I. Membrane (Negligible Bending):

1‘

hS—gd
II. Inextensional (Negligible Membrane Strain):
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II1. Edge Effects (Coupled Stretching/Bending):
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Decay Behavior of the Edge Effects
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The Shallow Shell Equations

For a paraboloidal dish, the equations are
1 1
—A — —
o A¢ + RAuz 0
Etc?’AAu, — NAu, — —}:%Aqﬁ =0

Membrane and inextensional solutions to the
above equations take the form of simple harmonic
functions which satisfy

Ap=0
Au, =0
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Figure 1: Flowchart of data paths for structural and structural/optical analyses.



Sample input fije DISH.IN (br the DISH program.

10 mil composite membrane with edoe pull, axial transl., ard wind load.

T RE FL GEOMETRY
-. 94E-4 7.9 9.0
E NU MU MATERIAL FROFERTIES
7.93E9 0.3 3.12
NF OUR NFOURT NFTSW MESH ANALYSIS FARAMETERS
2 3 16 10
(1 =) Disp.; 2 => Force) BOUNDARY CONDITION FLAGS
CHis/Ms CHIt/Mst Ur/Nr Uz /Nz Ut/Nst
2 1 1 1 1
(ICS=1 => COS; ICS=2 => SIN) EOUNDARY CONDITIONS
NHARM ICS CHls/Ms CHIt/Mst ur /N7~ Us/Ns Ut/Nst
(o] i 0. 0. 2.123141E-2 =0.13573578 0.
1 1 0. 0. 0. 0. 0.
2 2 0. 0. 2.12T141E-2 O. 0.
PNOM FRESSURE LOAD DATA
689.7

(WINDAT (1), I=1,NFTSW) .
0.000000E+00 0.S2SS7ZE+01 O0.3104994E+02 O0.157188E+02 0.20902TE+02
0.260389E+02 0.311174E+02 0.361278E+02 0.410606E+02 0.459071E+02
0.506596E+02 0.55T111E+02 0.598SS6E+02 0.642879E+02 0. 6B60IBE+02
0.728000E+02

Sample input file DFCOMP.IN for the post-processor DFCOMP.

lnput File DFCOMF.IN, for the postprocessor DFCOMF.

ITER NFTS RANGE r, theta(d)
.FALSE. 4,2 £.0,7.5  0.,9C.




Z, Nz

/ C-I-_)e I:F Ur, Nr

Sign conventions for forces, displacements,
moments, and rotations at edge of dish.



Sample output file DFCOMP.OUT for the post-processor DFCOMP.

10 mil composite membrane with edge pull,

THETA = G, 00
R

CHIs

Ms

Mt

0. 600000E+01
=0. 31 SOSOE=-02
caw9171E=-04
0.717313E-0S
0. 6S0000E+01
=0.231990E-02
0.365582E=04
0.10967SE-04
0.700000E+01
=0.760159E-03
0.562134E-04
0. 16B640E-04
0. 7S0000E+01
0.199067E-02
=0.130010E-0%
-0.18684BE~-10
THETA = 90.00
R
CHIls
Ms
Mt

0. 600000E+01
-0.3B006BE-02
-0.470%11E-10
=0,141153E-10

0. 650000E+01
-0.406604E-02
=0.702789E-10
=0.2108I7E-10

0. 700000E+01
-0.432114E-02
-0. 10%600E-09
-0.316799E-10

0. 750000E+01
-0.45£581E-02

0.301742E-15
0.876T46E-16

CHIt
Mst

0. 000000E+00
0. 0000OCOE+0O

0. OOCOCOE+O0
0. 000000E+0O

0. 0OQOOQOE+00
0. 000000E+00

0, 000000E+00
0. 000QO0E+00

CHIt
Mst

0.779923E-03
=0.217284E-03

0, 621991E-03

=0.J32128E-03

0.360464E-0T
=0.510692E-0S

=0.4B483I4XE-09
0.37791BE-02

Ur
Nr
Ns

0.173944E-01
0.64TT61E+04
0.678771E+04

0. 189073E-01
0.643632E+04
0.6BS032E+04

0.202483E-01
0. 6427T3TE+04
0. 690B46E+04

0.232F14E-01
0.640276E+04
0.69573BE+04

ur
Ne
Ns

0.155922E-01
0. 620730E+04
0. 654T07E~04

0.173650E-01
0. 62073CE+04
0. 659962E+04

0.192428E-01
0. 6207T0E+04
0.666016E+04

0. 212314E-01
0.&620730E-04
0. 6724%8E+04

asial tranel.,

Uz
N=
Nt

=0. 15£9S2E+00
0. 215778E+04
0. 773133E+04

«0.15794ZE+00
0.234487E+04
0.784220E+04

=0. 1583T14E+00
0. 2ST322E+04

0. 78687BE+04

=0. 1S737BE+00
0.273T09E+04
0.778924E+04

U=
N=
Nt

=0.1352319E-00
0.206910E+04
0. 71973BE~04

=0. 154108E+00
0.22413T3E+0V4
0. 736094E+04

-0. 1 Z5796E+00
0.2413IFSE+04
0.7%IS09E+04

«0. 1STI7BE+00
0. 2T3eTBE+04
0.771934E+04

and wind load.

Ut
Nst

Q. OOOOOOE«O0
0. Q00000E+00

0. 000000E+Q0
0. 000CQO0E+QO

0. OOOCOQ0E+QO
0.000000E+00

0. 0O00000E+CO
0.000000E+00

Nst

=0.36973IE-03
0.24236BE+03

=0.3T1922E-03
0. 246739E+03

=0.104729E-02
0. 24 1S06E~0T

-0.1696F2E-08

0.221312E+03



10 mil composite membrane with edae pull,
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Output from the postprocessor DINFO.

membrame Solution Datas

Radi al edoe displacement
Meri1dional edge rotation
Ri1al cieplacement at center
Anproximate +ocal
Ecdge displ sacement for €ame fOCUS ccooeos

Edoe E+fect Data:

Short decay distanCe .c.cccccccccccce
Long decay diStanCe ..c.ccececccccccce
Pressurication parameter .....c.ccccecceee
Decay distance for cero pressure .....

length

aial tranel., ard wind loe&d.
Ur =  0,212T14E-01
CHls = =0, 356579E-02
eeeee UZe =  (,347406E=-1]
FLriew = (), 914°R&E~-01
Ule = =, 157378E«00
DELTAS = (1.417F20E-02
DELTAL = (0,.JS8T567E~01
RHO = (.42F4B7E+03
DELTA = 0, 17200&E+0@

Nodal displacements and rotations from a SUPERSAP analysis.

o QOODE+QO
=4.157ZE=-04
=8, 9311E=04
=4, 6BOZE-04
-2.0337E=04
-1.2S55<E=-04
-2.S877E=-0O3
-B.8171E=-03

=S.597SE=-Q3

-2.82F0VE=-O3

-1.2876E-03
=3: 22T6E=-04

2. 721SE=-04

S. S820E=-04

S.598SE-04

S.JBF4E=-C4

« OO0QE~00

2.8422E-03
2.4E24E~03.
1.S203E-03
J.3357eE=-04
-b.5644E-04
-1.3410E=-03
1.6048&E-07
1.9564E-03
1.9951E-03
2. 63TJE~0T
T.360BE=-02T
« S78CE=-0T
$.325BE-0O3
6.2T15E=-0T
6.98TSE-0T
7.4746E-03
7.6442E-03

=2.6178E-02
-Z.81T3E=-02
=J.2760E=G2
-:. =T -lnE-(J:
-1.-1&45 0“
-1.4145E-07
=2. 2027E-102
=S.0L10E=-02
=6.7805E-02
=7.38S6E-02
-8.0142E-02
-8.4190E-02
=-B8.8444E~-02
-9.2099E=-02
=0.8462E-02
-9.3263E-02

-1.9085E-02
=-1.2735e-02
7.S73SE-0OT
Z.6797E-02
4,3732E-02
=2.3S20E=-0T
-6. 606BE-02
=-3.0BB2E-0Z
-2.274BE-02
=2.1&350E-02
=1.3089E-02

-4 .3939E-03 -5

=2.4907E-03
=4,7290E=-03
=7.0824E-03
=-7.5B01E-03
=8. 0BJ6E-03

- OOOOE-O00
8. OZSSE-04
7.2646E-03
2.3576E=02
2.7410E=-02
-C.0181E-G2

=1.4670E=-01
=2.8176E=-02
4.7994E-02
4.3370E-02
1.5630E=-02
.B971E-04
=2.3639E=-073
-1.5782E-03
=JZ. 0644E-04
=1.7080E=05
« 0000E+00

« QOOOE+DO
-b. 1526E-04
-1.0621E=-03
-5.9FS1E=-04
-1.08S8E=-0T

1.088FS=-03
6.28BCT7E=GT
1.2652E-0T
-4, 2994E=-QOT
=1.92L2E=-0T
-1.4639E-03
=1.1321E=-03
-9,.6617E-04
-7.:3795-”4
=Z.TT21E=-04
-2.6BT9E=-04
: OO00E-00



Input file FSCOEF.IN to the Fourier analysis program FSCOEF.

=0.721§ZE=-04
=0, 6T90TE=-N4
=0.&41441E=-04
=0.1IeT3E=-04
0.682%475=0%
0. 16264E-04
=-0.85192E-04
-0.229T5E-03
=0.184217E=-03
=0.37477E=-04
Qe J4Z80E=-0S
0.56972E-04
0. 10081E=-03
0. 139T0E=-CT
0. 16932E-03
0.18789E-03
0. 1941 6E=-03
0.18789E-03
0. 165328=-0U3
0.139502=-03
0. 10031E=-0Q3
0.34972E=04
0.34240E=08
=0, 5747 7E=04
=0.18217E=02
=0.29TSE-0T
-0.84182E=-04
0. 1£264E-04
0.B8E547E=-0%
=0.3136TIE=-04
=0.81441E=-048
=0.63902E-04

O, LOOOOE+00
0.19479E=-0T
0.8I832E=-06
=0.51744E=-0%
~0.16162E=-04
=0, MIFBE~14
=0.34B69E-04
0.5G864E=0S
0.50676E-034
0. 79Z70E=-Q4
O, 9S729E=0a
0. 97009E=&
0.90730E=-04
0.76126E=04
0. S4743E=C4
0.285552-04
-0.16574E-10
-0.28295E=-04
=0,854743E=04
=0.76.26E-04
«0.907302-04
=0.970098=04
=0, GT720E=04
-0). 78370=-04
=0.50676E-04
=0.%50464E-0S
0. S486CE-04
0.3J3009BE=04
0.16162E-04
0.8174425=-0%
=0.85S32E-06
=0. 194379E-0S

=0. 664S2E-03
-0, 71T09E=0T
=0.C3210E=-0T
=0, YOOLIE=0T
=0.74T00E=0O3
=), J0B97E=-CO3
-).TE9TBE-0B
=0.535949E-03
-0, 12728E=-02
=0,17222E=-02
=0. 19267E=C2
-0, 20TS6E-02
=0,213B84E=-N02
=-0.228658-02
-0.2T39IE=-02
=-0.2T99TE-02
=0.24167E=-02
=0.23I95TE=-02
-0, 2TI9TE-C2
=0.224865E~-C2
-0, 213J842=02
=0, 203T6E=-02
=0.162672=-02
=C. 17223E=-C:2
-0.1272BE=-C2
=0, $5949=-03
-0.I5928E-08
=0.T0897E-03
=0.7&300E=-03
=0. SO0LIE=-0OT
-9.8°52102=-02
=0.71%092=-03

0. 0Q0O0NE+OO
=0.5716RE=-04
=0.6SEB4E-N4

0.2918TE-04

0.20168E=-03

0.2SAS2E-CT
=0.8ITO7E-04
-0,437518=-03
=0.39703TE=03
-0, 2222T=-03
=0. 1065303
=0.72384E~-04
=0.72261E-04
=0. 667TBE-04
-0, S2248TE-04
=0,27468E=-04

0.123°7E-10

0. 27464E-04

0.52245E-048

0. 687SBE-04

0. 72261E-04

Q. 72384E=-04

0. 106S3E-G3

0. 2222TE-03

€ IP70TE=ST

0.&4T9Z1E-03

0. BSSO7E-04
=0.238S2E-03
=0.2016BE-03
-0.291EZE-04

0.638B4E-C4

0.5716BE-04

=0.33210E-00

=0.21561E=-0T

0.17709E=-0T -

0.7S290E=O3
0.8782TE-0T
=0.46079E-03
-0.2BO6BE=-N2
-0, SS323E-0T
0. BI7&TE-OT
0. 819TTE-C3
0. SIST7E-0T
0. IS987E=-04
=0. 10794E=-04
0. TTT25E-04
0.112162-03
Q. 136T4E=-0T
0.14112E=C3
0. 136T4E=03T
0. 11216E=-33
0. STT25E=-04
=0. 10794Z-04
0. IT9B7E-04
0.IIST7E=CT
0. B19TTE-OT
0. 8376%2=-03
-0,883232=-00
-0.280682-C2
=0.46079E=03
0.8782TE-03
0.73290E=-03
0.17709E-03
=0.21561E-03

0. QOLOOE=DO)
-0), 1OTTBE=(04
0. 1EST7E-04
-0.1784%E='4
-0, 189%1F =04

0. 190Z22E=-04

0. 109e2E-0T

0. S2G82E=048
=0.750LTOE =04
=0.3T61FE=-04
-0.25CTCE=04
=0.197562=04
-0, 168632 -04
-0.1TS0SE=-04
=0, F3086T2=-05
-0, 46E78E-0T

0. OVOOOE-QO

0, &6ETEE=C'S

0. §306TE=-0S

0.1TSOSE=04 -

0.16867E=046
0.1§789E-04
0. 2ETSOz=-048
0.3I561FE=-04

0. 7SG3ITE=04
-0, ZZOEZST=06
-C.10FeZ2=-L3
-C, $QUIZE=-0S

0.1ECTIE-04

0. 17&643E-04

0.18ST7E=-04

0. 1073B8E-04




Prescribed Radial Edge Deformation: u, = Uy cos 26
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Some other finite element /-/ .....

program could be used here.
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Axial Displacement Uz from DAN—-KA Run ASDF4E
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Dish Edge Forces, NFOUR = 9
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Equilibrium of Membrane and Support Structure
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