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ABSTRACT 

The wind turbine structural dynamics model, FLAP 
(Force and Loads Analysis Program), has been modified 
to include turbulent wind fluctuations based on a 
filtered-noise model, The importance of including the 
effects of turbulent wind fluctuations in the 
structural-loads predictive model has long been. 
recognized. These stochastic loads are the dominant 
fatigue loads for many structural components in 
horizontal-axis wind turbines. 

The turbulence field at the rotor plane is approx
imated by interpolating functions, which allow the 
velocity field to vary quadratically for ·velocity com
ponents normal to the rotor plane and linearly for in
plane velocity components. The velocity field repre
sented in this fashion is constructed to vary randomly 
with time and space and give the proper correlation 
between spatial locations and velocity components. For 
the normal velocity components, the spectral represen
tations of these velocity fluctuations approximate 
those observed from a rotating turbine blade up to a 
frequency of two times per rotor revolution (2P). For 
the less-important in-plane components, the spectral 
representations approximate those observed from a 
rotating turbine blade up to lP. 

The time-domain model described in this paper uses 
a random number generator to construct a white-noise 
time series with uniform spectral density over the fre
quency range of interest. This signal is then filtered 
to obtain the various wind fluctuations, which are used 
as input to the FLAP code. This requires as input only 
the mean wind speed, the turbulence intensity, and an 
estimate for the integral scale. The modeling is based 
on the assumptions that the velocity fluctuations are 
statistically stationary, homogeneous, and isotropic, 
and satisfy Taylor' s frozen field hypothesis. The von 
Karman model is used to characterize the correlation 
between velocities of points separated in space. 

To gain insight into the usefulness of this turbu
lence simulation for predicting stochastic turbine 
loads, the FLAP code was used to model three data cases 
from the 1986 testing done on the Howden 330-kW tur
bine. The FLAP code was run with the wind turbulence 
parameters set to model the actual test conditions to 
generate simulated time series of bending moments. The 

response spectra calculated from these time series were 
then compared with the experimental measurements 
obtained from the field test. Comparing the simulation 
results with actual test measurements generally shows 
good agreement. 

It takes about an hour to run a 450-revolution 
FLAP simulation using an 80386-based personal computer 
(PC) running at 20 MHz. The required knowledge of the 
actual turbulence characteristics is modest. The mean 
wind speed and the turbulence intensity are easily com
puted from time-series wind data. As discussed here, 
the integral scale of the turbulence can be estimated 
from calculations of the longitudinal wind spectrum. 
This type of simulation should become part of the pro
cess of designing wind turbines, It produces time
series results that can be used to determine peak 
loads, and it can be rainflow-counted for estimating 
fatigue damage rates. In addition, the computational 
and data input requirements are within the means of 
even the smallest design team. 

IHTllODUCTION 

Accurately predicting wind turbine blade loads and 
resulting stresses is important for predicting the 
fatigue life of components. There is a clear need 
.within the wind industry for validated codes that can 
predict not only the deterministic loads from the mean 
wind velocity, wind shear, and gravity, but also the 
stochastic loads from turbulent inflow. The FLAP code 
has already been validated for predicting deterministic 
loads (1,2). This paper concentrates on validating the 
FLAP cOde- for predicting stochastic turbulence loads 
using the filtered-noise turbulence model, developed in 
(�), as input. 

THE FILTERED-NOISE TURBULENCE HODEL 

Because the blades of a horizontal-axis wind tur
bine rotate through the wind velocity field, fluctua
tions in the velocity seen from a moving blade occur at 
frequencies that are multiples of the rotation rate 
(lP, 2P, etc.). This effect can be understood by con
sidering a wind velocity field that varies over the 
rotor disk but does not vary with time. As a wind tur
bine blade moves through this field, it encounters dif-
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ferent velocities. After one complete revolution, the 
cycle is repeated, leading to a periodic velocity fluc
tuation. In the actual case, the. time varying veloci�y 
field is convected past the wind turbine by the mean 
flow so that the fluctuations are no longer exactly 
periodic. However, the rotation frequency of the rotor 
is usually much greater than those typical frequencies 
in the fluctuating wind velocity observed at a station
ary point; consequently, the eddy structure in the tur
bulence will remain highly coherent for several rotor 
revolutions as it passes the wind turbine. Therefore, 
the wind velocity seen by the rotating blade will have 
strong fluctuations at a band of frequencies near the 
integer multiples of the rotation rate. The spectral 
density will locally appear as a wide band process with 
an amplitude sinusoidally modulated at multiples of the 
rotation frequency. This rotational effect was 
described in (4) and was modeled by Kristensen and 
Frandsen (5), whose work was based on the earlier work 
of Rosenbrock (6). -There are essentially two approaches to modeling 
the three-dimensional correlation structure of atmo-. 
spheric turbulence. In the first, or "hydrodynamic" 
approach, the fluctuating flow field is assumed to be 
homogeneous, isotropic, and incompressable. The theory 
of such a field is described in (7); the correlation 
structure or its Fourier transform; the spectral den
sity, is completely described by a single function, 
usually given in the frequency domain by the energy 
spectrum. von Karman qp suggested a particular form 
for the energy spectrum that fits the inertial subtange 
described in (9) and approaches a constant spectral 
density at low frequencies. This theory is widely used 
in aircraft flight control and structural-dynamics 
applications ( 10). 

In the seC:ond, more empirical approach, the spec
tral densities of the velocity components are given by 
an empirical form (such as in (11)] , and the coher
encies between velocities at diffe�nt points are given 
by the Davenport model (12). This approach is often 
used in dynamic analyses involving wind excitations of 
large structures such as towers, smoke stacks, and 
bridges ( 13}. It has also been used for wind turbine 
structures- by Sundar and Sullivan (14) and by 
Veers (15). Dragt (16) also used the Davenport coher
ency model but introduced an expansion of the periodic, 
rotating coherency function in Fourier series. 
Madsen ( 17} also used the Fourier series approach but 
modifiedthe form of the Davenport coherency function 
to eliminate the dips in the rotating spectra at multi
ples of the rotor passage frequency described by Dragt. 
These dips have not been observed experimentally, and 
they result from the inadequacy of the Davenport model 
for frequencies below the limit of the inertial sub
range (as pointed out by Kristensen and Jensen (18)] . 
These approaches have provided useful results but-read 
to certain difficulties. First, the impirical parame
ters for the coherency function must be determined for 
each site, requiring multiple correlations among spa
tially separated anemometers. Second, only the longi
tudinal velocity component (normal to the rotor disk) 
is modeled. Third, the incompressible flow condition 
is not satisfied. For these reasons, the hydrodynamic 
approach using the von Karman isotropic model was 
adopted as the basis for the turbulence model reported 
here. 

Series Approximation for the Rotor Disk Turbulence 
Field 

Consider a disk in the vicinity of the rotor of a 
horizontal-axis wind turbine. The coordinate system 
used is shown in Figure 1. The undisturbed wind veloc
ity is assumed to vary a small amount over the region 

z 

X 

Fig. 1. Rotor disk coordinate'system 

of the rotor disk. Thus, an approximation in terms of 
simple analytical functions is appropriate. Consider 
first the velocity component normal to the plane of the 
rotor disk. Retaining all terms, including quadratic 
variations across the rotor disk of radius R, gives 

vy = V (t) + V (t) rsin� y y,x + v (t) rcos� ( 1) y,z

+ v 2 2(t)(r2-l/2 R ) sin,rr + v (t) r 2� y y,rs

+ v 2(t) r cos2� y,rc

The functions 1, f = rsin�, f = rcos�, (2) 2 3 

r2-l/2 R2
5 = 2, £ r sin2�, and 

are chosen to retain all quadratic variations and give 
the property of mutual orthogonality over the domain of 
the rotor disk. Thus, 

f fj fk dA = 0 
Disk 

In this case, it is possible to determine the terms v , 
which minimize the total square error over the rotbr 
disk in terms of the true velocity. Using the usual 
generalized Fourier expansion, formulas of the follow
ing form are found: 

Vy = � J Vy dA ; Vy,x = � J vy rsin� dA etc. 
nR Disk nR Disk 

(3) 

The complete results are given in (19). 
Similar terms can also be derived for the in-plane 

velocity components. However, in this case we retain 
only linear variations across the rotor disk. Because 
the in-plane components are only of secondary impor
tance in calculating wind turbine blade loads, the con
siderable simplification afforded by neglecting the 
quadratic and higher-order terms seems to be justified. 
Although the in-plane velocity components have only a 
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small influence on blade loads, they may contribute 
significantly to the rotor yaw loads in some situa
tions. The two in-plane velocity components are thus 
approximated by 

Vx = Vx(t) + (E{t)-&(t)] rsin� + [y(t) - y(t)] rcos� 

vz = Vz(t) + [y(t) + y(t)] rsin� + [E{t)+&(t)] rcos� 

(4) 

The six terms appearing in Eq. (4) are given by equa
tions similar to Eq. (3) and can be found in (20). 

Once all twelve terms are specified, it is possi
ble to compute the correlation relations among them 
using the von Karman correlation model. As an example, 
consider the autocorrelation function for the term 
V (t). Direct application of the first of Eqs. (3) yg1ves 

2 a 1 n2
E [ Vy(t+T)Vy(t) j = -- I I [ f(E;) + E;f'(E;) ] dA2 2 ldA2 4 2 

� R D2 Dl E; 
(5) where 

2 2 E; n + v2 2 T
2 n = 2 2 r + p - 2rpcos(�-') 

dA rdrd� 1 
dA pdpd' 2 
r,� polar coordinates in Dl (Disk 1) 

p,, polar coordinates in D2 (Disk 2) 

f(E;) von Karman correlation function: 

f'(E;) =.!!.... f(E;) dE; 

r(l/3) 
a = -----,- (=1.339) 

iii r(5/6) 
2/3 2

s = (=0.5925) r(l/3) 

a = standard deviation of the velo;ity components 

integral scale parameter I Ht>dt 
modified Bessel function of o�der 1/3 

ganuna function. 

The terms Dl and 02 refer to the positions of the rotor 
disk relative to the air mass at times t and t + T, 
respectively. Unfortunately, the integrations needed 
in Eq. (5) cannot be carried out analytically. However, 
if the velocities are scaled by the standard deviation 
a, time is scaled by the ratio L/V, and le�gth is 
scaled by the radius R of the rotor disk, the resulting 
correlation function becomes a nondimensional family 
depending on the single parameter R/L. 

To more fully understand how to use these results, 
consider the case of filtered white noise. A stochas
tic differential equation describing filtered noise is 
given by 

x + ax = bw (6) 

where w the white-noise excitation 
x = the filtered response 

a,b = model parameters. 

The autocorrelation function for the filtered response 
is exponential [as in (21)) and is given by 

-a TRx(T) = E[x(t+T)x(t)] i I (7) 

where S is the constant power spectral density of the w 
white-noise excitation. In addition, using the defini
tion of the spectral density function gives 

(8) 

and for the white-noise process of Eq. (6) this gives 

(9) 

where m is the radian frequency and, for convenience, 
a2L Sw = VJ • 

To develop a simple set of simulation equations, 
each of the time-dependent co'efficients in the inflow 
turbulence field Eqs. (1) and (4) are approximated by 
the stochastic differential equation described by 
Eq. (6). The parameters a and b for each of these equa
tions are selected such that the autocorrelation func
tions approximate that required by the von Karman iso
tropic correlation model of Eq. (5). Thus, for the 
uniform velocity fluctuation term V (t) of Eq. (1), it y
is required that 

b2= s
= � w R (T) E(V e V y(t+T)Vy(t)] -aiTI (10) 

y 
The left-hand side of this equation is determined from 
a numerical evaluation of Eq. (5). As previously noted, 
by properly scaling the velocities, time, and length, 
the autocorrelation function Ry (T) can be written as a 
nondimensional family dependingY only on R/L. Thus, a 
and b can be reduced to a similar dependence. This 
same approach is used to determine the a and b values 
for each of the time-dependent coefficients in Eqs. (2) 
and (4). The resulting 24 a and b filter coefficients 
are given in Table 1 as a function of L/R and the seal-
ing variables. 

So far, we have discussed only the autocorrelation 
characteristics of the various terms in the velocity 
field approximation. What about the cross-correlation 
characteristics? Fortunately, because of the assumed 
isotropy of the model and the orthogonal properties of 
the functions f1 • • •  f in Eq. (9), most of the 12 terms 6 
in the velocity approximation are entirely uncorre
lated. It turns out that there is a small correlation 
between V and V and a mo e important relation y y�rr �. between V and the ln-plane d1lat1on term E· This latY. ter relation arises as a consequence of mass continu
ity. The E term is a radial flow term in the plane of 
the rotor for horizontal-axis wind turbines and con
tributes almost nothing to the aerodynamic forces. 
These two correlations are neglected for this model. 

The development and discussion of the turbulent 
inflow modeling presented here have been by necessity 
brief. The reader interested in a more detailed devel
opment is referred to (�) and (20). 
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Table l. Filter Coefficients 

No. Ter• Coefficient Equation* 

a 

10 

II 

u 

Vy 

vy,rr 

• 

vy,a 

vy,x 

v.,,rc 

v.,or• 

v. 

v. 

1 

a1 • (I - 1.113 (R/L)(1. - .0790 R/L)/(1 + 2.048 R/L))(V/L) ,. 
• (1.414 2.113 (R/L)(I + .0159 R/L)/(1 + 2.051 R/L))(V2/L) b2 -

• (1.091 L/R + .0276 + .0686 R/LHV/L) a2 
• (.5508 (R/L)-.25 + .6473 - .1365 R/L)(VZ/LR2) b2 

a3 • (1.654 L/R + 1.069 + 2.154 R/L)(V/L) 
bl • ( .3546 (R/L)-.25 + .3951 + .2593 R/L)(V2/LR) 

a4 • (.3266 L/R + .5953- .1142 R/L)(V/L) 
b4 • (.2811) (R/L)-.25 + .6450 - .1500 R/L)(V2/LR) 

a:) • •4 
bs • b4 

a6 • (1.081 L/R + .0279 + .0685 R/L)(V/L) 
b6 • (.3897 (R/L)-.25 + .4567 - .0948 R/L)(V2tLa2) 

.1 • •& 
b7 • b6 

a8 • (2 - 2.894 (R/L)(I - .1383 R/L)/(1 + 2.049 R/L))(V/L) 
b • (2 - 3.290 (R/L)(1 + .0270 R/L)/(1 + 2.054 R/L))(V2/L) a 

a • •g a 
b9 • b8 

(.4343 L/R + .9170 - .1532 R/L)(V/L) a10 • 
(.2579 (R/L)-.25 + .6467- .1093 R/L)(V2/LR) b10 • 

•11 ( .5342 L/R + 1.276 - .2147 R/L)(V/L) 
bll (.1167 (R/L)-.25 + .77Jl- .1284 R/L)(VZ/LR) 

* L • integral •cale� R • rotor radius equation. 

Discrete Time Simulation Equations 

To simulate the effects of a dynamic fi 1 ter, a 
differential equation is often simulated; this is done 
on a computer using a numerical approximation and 
involving a discrete time step. If the variables do 
not vary greatly over the time step chosen, the numer
ical approximation is considered adequate. White 
noise, however, contains all frequencies by definition. 
Therefore, no matter how small the chosen interval, the 
white-noise excitation will vary appreciably over the 
interval. This variation will destroy the accuracy of 
the numerical approximation. 

To overcome this difficulty, we will use an ana
lytical approach. Equation (6) can be solved analyti
cally for piecewise continuous input and constant 
parameters a and b. This is done by using the class
ical exponential impulse response, 

A -aA x(t+A): x{t)e + fbw{t+<)e-a(A-T)d, {11) 
0 

where A is the time step. In the case when w is white 
noise, it is not piecewise continuous, but the integral 
can be interpreted as a stochastic integral (22). 
Applying Eq. (11) repeatedly yields the result 

x(k+1) : � x(k) + r f;(k) (12) 

where 
-a A e 

A 
r f;(k) f be-a(A-•) dw(<) 

0 

The parentheses denote evaluation at the kth time step. 
Because w is assumed to be Gaussian white noise, the 
sequence rf;(k) is found to be sequentially uncorrelated 
with Gaussian statistics. Thus, f;(k) can be chosen to 

be independent random samples from a Gaussian distribu
tion with unit variance. The coefficient r is then 
given by 

(13} 

where the noise power spectral density has been chosen 
to be a2L/v3 

• 

Computer Simulation 

The discrete time model given by Eq. (12) is 
readily simulated on the computer. Two factors must be 
considered. First, because � is nearly 1 for most sim
ulation time steps, the coefficient r will be rela
tively small. Thus, as time progresses, the state var
iable will reflect the sum of many random increments, 
which, because of the law of large numbers (23), means 
that the state variable will be asymptotically-Gaussian 
for a sequence f;(k) from any reasonable distribution. 
Thus, the f;(k) need only be roughly Gaussian for x(k) 
to have statistics that are much more nearly Gaussian. 
The second factor to consider is that many computer 
simulation codes allow A to vary from time to time . •

Examination of Eqs. (12) and (13) shows that � and r 
must be recomputed whenever A is changed. 

Using the discrete time model for computer simula
tion depends on the ability to generate sequences of 
independent random samples from a roughly Gaussian dis
tribution. This roughly Gaussian distribution can be 
obtained by summing three random samples from a uniform 
distribution. Suppose E is uniform on the inter
val [0,1] . Then, define 

(14) 

where e1, e , and e are three independent samples from 2 3 the uniform distribution. Simple results from proba
bility theory give the mean and variance: 

E[E] : 2(E[Etl + E[E ) + E2 [EJ] ) - 3 0 (15) 

The independent samples from the uniform distribu
tion can be generated on the computer using the linear 
congruence method. Understand that any computer proce
dure for generating random numbers cannot be truly 
random because a specific deterministic procedure is 
always used. Therefore, these methods are often called 
"pseudo-random" number generators. In particular, the 
linear congruence method utilizes modular arithmetic. 
Thus, consider 

n(k+l) Mod[c·n(k), m) (17} 

where 

n(k) : a sequence of integers 
c the multiplier 
m = the modulus. 

The function Mod(.,,) is the remainder when the first 
argument is divided by the second. When the sequence 
n(k) is examined, we find that only m different values 
of n are possible. Thus, the sequence will repeat at 
least every m times. To obtain a long Eeriod of repe
tition, Whitney (24) suggests that c > lm and m must be 
a prime number. Uniform real numbers for the interval 
[0,1] are generated by the fraction 

n(k) 
E : (18) m-1 



For the particular program written here, the following 
values have been implemented: 

31 m 2 - 1 = 2147483647 

c = 46341 

Computation is made with double-precision, floating
point arithmetic to prevent unwanted periodicities from 
round-off error, 

The actual FORTRAN implementation of this algo
rithm is quite simple. Figure 2 is a flow chart that 
shows the calculation scheme, and Figures 3 through 6 
show the FORTRAN code used to model the turbulence in 
the FLAP code. With this turbulence simulation scheme, 
the FLAP code can run a 456 revolution simulation for 
the Howden turbine; this can be done in 50 minutes on a 
Compaq 386/20 PC using a single-blade mode shape calcu
lating loads at 10" increments. A run of 456 revolu
tions takes about 10 minutes of operational time for 
the Howden machine, so the computer simulation takes 
5 times longer than the actual run time, 

THE FLAP CODE 

The FLAP code is a PC-based model for predicting the 
dynamic loads and flapping motion of an individual wind 
turbine blade. It accounts for the blade bending 
deformation about the smallest blade inertia axis. The 
rotor is assumed to operate at a constant speed, and 
the hub is allowed to move in a prescribed yawing 
motion, Rotors that are tilted and yawed relative to 
the mean wind can be analyzed. FLAP can be used to 
model simple teetering-rotor hubs, but not a delta-3 
hinge or underslung rotors. 

The model operates in the time domain, and the 
blade acceleration _equation is integrated via a modi
fied Euler trapezoidal predictor-corrector method. The 
method incorporates a set of low-order relations, is 
self-starting and stable, and allows frequent step-size 
changes. The procedure is entirely automated within 
the computer program. Results of the blade loads anal
ysis are printed dn tabular form and include the 
deflection, slope, velocity, flapwise shear and moment, 
edgewise shear and moment, blade tension, and blade 
twisting moment for any point along the blade axis. 

The program, written in FORTRAN 77, is in the pub
lic domain and was developed for easy end-user modifi
cation and customization. The code contains its own 
documentation through the extensive use of comments 
within the program. Readers interested in more infor
mation concerning the FLAP code should consult (!), 
(�), and (25). 

COMPARISON OF SIMULATIONS WITH FIELD TEST MEASUREMENTS 

The FLAP code was initialized to model the Howden 
330-kW horizontal-axis wind turbine located near Palm 
Springs, Calif. , in San Gorgonio Pass, The turbine, 
manufactured by James Howden and Company, is a three
bladed, upwind machine with a rigid hub and wood/epoxy 
blades. It is rated at 330 kW in a hub-height wind 
speed of 32.4 mph (14. 5 m/s) and was designed to oper
ate in cut-in to cut-out wind speeds of 13.4 to 
62.6 mph (6.0 to 28.0 m/s), respectively. The rotor 
diameter is 85.3 ft (26 m), and the rotor speed is 
42 rpm. The blades are tapered and twisted, with a 
maximum chord of 4. 8 ft (1. 47 m) and a maximum twist of 
16"; the blade tapered to a 2.6-ft (0. 8-m) chord and o• 
twist at the blade tip. The blade airfoil section is a 
GA(W)-1, 17% thick. The rotor axis centerline is 
79.1 ft (24.1 m) above the ground, and the rotor coning 
angle (precone) is o•. The tower diameter is 5. 9 ft 
(1.8 m), and the distance from the yaw axis to the 
rotor plane is 11. 5 ft (3. 5 m), 
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A detailed description of the modeling inputs used 
for the aerodynamic and structural-dynamic parameters 
are given in (2). For the turbulence simulations 
reported here, only a single flap mode shape is used, 
and the natural frequency for that mode is set at 
1.40 Hz (or 2P); this modeled the deterministic blade 
responses quite well (�). However, the gravity excita
tion and the wind-shear input are both set to zero to 
compute only the stochastic responses and the mean wind 
response, which is constant. The mean wind input is 
necessary to establish the mean angle of attack, about 
which turbulence causes perturbations. This approach 
assumes that the deterministic and stochastic response 
can be summed in a simple linear manner, and that there 
are no interaction effects. However, the validity of 
this assumption has never been verified. 

In this paper, turbulence loads computed by FLAP 
are compared to measurements for three different 10-min 
data cases, which were taken from (26). Operating con
ditions for these three cases are shown in Table 2. 

To compute the proper turbulence filter coeffi
cients (using equations from Table 1) and parameters 
for the discrete time turbulence evolution [described 
in (12) and (13)] , the mean wind speed V, standard 
deviation of wind speed a, and integral scale L are 
needed, The 10-min mean is taken for V, and the stan
dard deviation and integral scale are obtained by curve 
fitting (using the least-squares method) the wind-speed 
spectral density to the von Karman theoretical spectral 
density function, which is given by 

2 1 
1! 

(!! .... 
v 
!q 

S(w) 
It + 

(a L 2� ) ) (19) 5/6 

For the curve fitting, the quantities ! (a2L/V) and 
(aL/V) are treated as unknown parameters � Using the 
10-min mean for V allowed a and L to be computed from 
the curve-fit parameter values. 

The hub-height wind spectrum is computed using two 
5-min time-series segments and then averaging the spec
tral estimates. The wind time-series data were elec
tronically filtered at 1,2 Hz to eliminate unwanted 
noise above the anemometer cut-off frequency. The time 
series were then digitized at 40 Hz for convenience and 
then decimated to about 6 Hz before the spectra were 
computed. The curve fitting is done on the average of 
the two 5-min spectra, but no smoothing is employed 
before the curve fitting. 

Table 2 summarizes the standard deviation and 
integral scales obtained for the three data cases. 
(i'igures 7 through 9- show the computed wind spectra and 
the results of the curve fitting; also shown is the 
corresponding wind spectrum computed from the FLAP sim
ulation for the wind as observed from the tip of the 
rotating blade. This comparison shows the difference 
between experimental and simulated results for the low
frequency region, as well as the rotational effects at 
lP and 2P. The most striking feature of these curves 
is the large data scatter for the experimental spectral 
estimates. This scatter should be expected because the 

Table 2. Conditions for the Three 10-Min Comparisons 

V a/ turbulence intensity = (standard deviation of 
the wind speed) + (mean wind speed) 

Data 
Case 

v 
(ft/s) 

34.3 

a/V 

0.18 

Mean 
Power (kW) 

169 

a(ft/s) 

6.2 

L(ft) 

291 12-7 
3-5 31. 7 0.13 119 3.6 336 

17-1 55.6 0.13 298 6. 6 544 
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DELTVZ(I) 

code segment 1 
(Eq.1, 4) 

Fig. 2. Flow chart illustrating computations 
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: 
Compute tha t"r:bu.lent vind velocity fluctu.at!ODI : 

·····························*0*********************************** 

RETUR!f 
END 

Code segment 1: compute turbulent wind 

4883 
4884 
4885 c 
4886 c 
lt887 c 
t.888 c 
4889 c 
4890 c 
4891 c 
4892 c 
4893 c 
4894 c 
4895 c 
4896 
4897 
4898 
4899 .uoo 
4901 
uoz 
4903 
4904 
4905 
4906 
4907 
4908 
4909 
4910 
4911 
4912 
4913 
4914 
4915 
4916 
4917 
4918 
4919 
4920 
4921 
4922 
4923 
4924 
4925 
4926 
4927 
4928 
4929 
4930 
4931 

SUBilOUfiiiE UHDOH(DSEEDDHa,&) 

DOUBLE PRECISION DSEEil 
DOUBLE Pl!CISION DC 
DOUBLE PRECISION DH 
DOUBLE PRECISION DD 

Hft ��r, 
�=���� l 
SAVE DC 
SAVE DM 
SAVE DD 

em gg�mnagg(7.DOl 
DAU DD/2147483648.D07 
DO 5 1 .,. l,ft 

SUK D o.o 
D04JD1 3 ��� s�M�Dbr£ig'g�D,DKl 

CONtiNUE 
1(1) • (SUK-1.5)*2.0 

5 CONTIIIUI 

RETURN 
END 

Fig. 4. Subroutine RANDOM 

P77L • Lahey FOR'l'UH 77. Version 2.21 05/25/88 09:17t31 
SUJROU'l'I

f
NE
J.l 

1Nt1r .. _ c .. pJ.lin& OptJ.oo••/llJ./NI/HF/H/Hl/NL/NP/HR/S/H't/V/Ia./HO/N7 
Source • L at.u•& 

3360 
l361 
3362 c 
3363 c 
3364 c 
3365 c 
3366 c 
3367 c 
3368 
3369 
3370 
3371 
3372 
3373 
3374 
3375 
3376 
3377 
3378 
3379 
33BO c 
3381 
3382 
3383 
3384 
3385 
3386 
3387 
3388 
3389 
3390 
3311 
3392 
3391 
3394 
3395 c 
3396 
3397 
3398 
3399 
3400 
3401 
3402 
3403 
3404 
3405 
3406 
3407 
3408 
3409 
3410 SUl 
3412 
3413 
3414 

SUBROUTINE IHI'l'U 
........•.•..........•...•.................................. 

: �1:t!:t!�:'�g: ��c:t::, '�:l!��;mtY��:"�����=�''tbt:d : 
* aubrour.ino 11 called frog ns�REV to co111pute tbe • : .. ���=����: ... I�1:.����!�:.1:.�:!!:�.��!t.���: •........... : 
REAL IOLREAL, VOL lEAL VSQOL 

I:8tlml :m=ru::mm�Br.:: Icg: 
3��oi: !��iWcif 
10� • DlSO./SCALB 
Coap1.Ate the A coeff1c!suu. 
TAI11 • 11.-1. 713•110L•Al.-.0790•ROLA6'1.+2.041'10L) )•VOL 
¥t J : l:2�1�18t : i.B:: r i�t:t• o kAL��boL 
U � : s.Ut67ROL + .5853 • .1142 • ROLl'VOL 
TA 6 • (1.081/ROL + .0211 +· .0685 * IOL)*VOL 
TAl71 • TA(6) 
TA 8 • �2.-2.894*10L *(1.-.1383*10L)/(1.+2,049*ROL))*VOL 
i��t , •• 

A
l!:l43/.BOL + .1170 .. .  1532 * ROL *VOL 

TA 11 • .5342/ROL + 1.276 " .2147 • aod•voL 
'fA 12 • .1.(11) 
Coap�o&te tbe I coeff.hlltl 

'
'tl(ll 

m lf�U��sl•iof· 71�;•gt*(1.t.0159*10Ll/ 
T8(21 • .5508/ROL ... H + �6473 - .1365•10Li*VSQOL/ & ISKIIDISU 
TBI31 • ! ·3546lROL ... 25 + .3951 + .259l•ROL)•VSQOLlDISKR 
u � : H2:t17ROL ... 25 • •  6450 _ .uoo•aOL)•VSQOL/DISll 
T8 6 • (j897b10L**.25 + ,4567 - ,0948 * ROL)*VSQOL/ 

'
TB (7 • ����R/ ISO 
tB j 8l • f2 •• l .zoo•IIOL•(1,+,0270*10L)/(1.+2.054*10L) )*VSQOL 
il(r �·- ���l79/.1tOLttt�.25 + .6467 - .1093 * IOL *VS OL DISltR 
Talu - ! .U67/IOL**·25 + .7733 - .1284*ROLi•�sqo2/Dlsu. 
fa 12 • b(ll) 
IETUIIII 
END 

Fig. 5. Subroutine for computing filter coefficients 
(VTUR mean wind, DISKR. rotor radius, and 
SCALE = integral scale) 
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SUBIOUTIHK ta.TUU('tiiiiiOV) 

DOUBLE PIEClSIOH DSEEil 
IlEAL XX 
IH!EGU I 
SAVE DSEEil 

IUEtlml :muru::m��Wogr.::Iug: 
INCLUDE 'C•INCLUDE\PDSl'fH,INC' 
Il(TIMIIOV.EQ,O.O.OI.DELTA't(O) .HE.DELTA't(1)) THEN 

U = SIGH.l*SICIU.*SCALI/(2.*vtUI**3) 
DO 10 I • 1,12 

TPHIP! - DEXPJ-Uiii*DELTA'tf1ll COH
f���I " fl(l •SQ 't((l.ODO- PH (1)*•2)*XX/TA(l)) 

EHDlF 
IF('tiHNOV.EQ.O.O) THEN 

DSEED • SEED 
CALL IWIDOH ( DSEEil,lZ, I) 
DO 25 I • 1,12 

25 COH
n��B(I,l) "I(I)*TCAIC(l)/SQ&T(l.ODO-TPHI(l)**2) 

35 

ELSE 
C4LL IWIDOII(DSEEil,12,1) 
I)() !5 I • 1,12 
COH

H�IE(l,l) • TPHI(l) • TSUTE(I,O) + TCAK(I) • 1(1) 

ENDIP 
RE'tURII 
END 

Fig. 6. Subroutine for computing turbulence state 
coefficients for Eqs. (1) and (4) (SIGMA = 

standard deviation of wind speed) 

spectral estimates have been plotted unsmoothed. Usu
ally, wind spectra are heavily smoothed by averaging 
several adjacent estimates or by averaging several 
spectral estimates from consecutive time periods. In 
this case, the unsmoothed spectral estimates have been 
used for curve fitting to obtain the best estimate for 
the spectrum during the 10-min time period of interest, 
rather than an estimate for the average atmospheric 
spectrum. 
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Fig. 7. Comparison of longitudinal wind spectra for 
case 12-7 
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Fig. 8. Comparison of longitudinal wind spectra for 
case 3-5 
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Fig. 10. FLAP simulated lateral turbulence spectra for 
case 12-7 

The FLAP simulation results shown in Figures 7 
through 9 have been smoothed by averaging three adja
cent estimates; this is done primarily to reduce the 
data volume prior to plotting. In each of the three 
cases, the simulated wind spectrum agrees reasonably 
well with the target theoretical spectrum and the 
experimental data. The influence of the rotational 
effect is clearly seen at frequencies of lP and 2P. 
The modeling neglects rotational effects at higher fre
quencies. Figure 10 plots the FLAP simulated lateral 
and vertical spectra for data case 12-7 and compares 
them with the theoretical von Karman spectrum that was 
the target. 

The FLAP simulated rotor bending moments at 10% 
and 65% span are compared with experimental results in 
Figures 11 through 13. The comparison between pre
dicted and measured results is generally quite good. 

The magnitudes of the major features are predicted 
quite well, even for the resonance at 2P. Cases 12-7 
and 3-5 are for about the same wind speed; however, 
case 12-7 has a turbulence intensity of 18%, while 
case 3-5 has a turbulence intensity of about 13%. For 
these two cases, the pitch control system is inactive. 
In case 17-1, which is a high-wind-speed case, the 
pitch control system is active and the tips are con
stantly moving to control power. The FLAP code cannot 
model the control actions, so the agreement between 
predicted and measured results is not expected to be 
particularly good. Figure 13 shows a considerable dis
crepancy for the 65% span location, which is closer to 
the pitchable tip; however, the effect seems to average 
out at the 10% span. The experimental data show a 
response peak at about 3P that may be a tower mode 
excited by turbulence. The FLAP code does not model 
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Fig. 12. FLAP simulation results for case 3-5 (for the 
10% span, aEXP = 7080 ft-lb and aFLAP = 

5590 ft-lb; for the 65% span, aEXP = 129 ft-lb 
and aFLAP = 98.9 ft-lb) 

tower motions 1 nor does the turbulence model provide 
the proper input at this frequency. Therefore, this 
response is absent from the simulated responses. All 
of the structural responses have been lightly smoothed 
by averaging three adjacent spectral estimates before 
plotting. 

CONCLUSIONS 

The filtered-noise turbulence model has been 
incorporated into the FLAP code to predict turbulence-
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Fig. 13. FLAP simulation results for case 17-1 (for the 
10% span, aEXP = 9560 ft-lb and aFLAP = 

8470 ft-lb; for the 65% span, aEXP = 1870 ft
lb and aFLAP = 1740 ft-lb) 

induced blade bending loads. A comparison of simula
tion results with experimental measurements has demon
strated that the resulting stochastic loading is 
predicted quite well for a rigid-hub wind turbin�. The 
filtered-noise turbulence model as implemented in the 
FLAP code has proved that these simulations can be done 
efficiently on a personal computer. This brings the 
ability to estimate turbulence-induced loads within the 
means of all wind turbine designers. 

A word of caution to potential users: The 
filtered-noise turbulence model as currently developed 
underestimates rotational wind inputs above frequencies 
of 2.5P. Therefore, for blades having a first flap 
frequency above 2.5P, or for blades with a lightly 
damped natural frequency above 2.5P, the resulting sim
ulated bending moments are likely to be underpredicted. 
For the comparisons presented in this paper, the Howden 
turbine had a first flap frequency at 2P, which 
resulted in favorable comparisons. 

The success of applying the methods described in 
this paper to the problem of computing a lifetime load
ing histogram depends on knowing the mean wind proba
bility distribution and associated joint probabilities 
for both the standard deviation and the integral scale. 
These data are not available, even for the three major 
California wind sites. In addition, the spectral char
acter of the California wind sites has not been well 
documented. Some feel that the spectral characteris
tics should resemble the text-book empirical formulas; 
the results of this paper don't contradict that asser
tion. However, the joint probabilities that define the 
percentage of the time that a turbine operates in high 
wind and high turbulence (versus high wind and low tur
bulence) or any other combination of conditions are 
s t i 11 unknown • 

Ultimately, the results of analyses like the one 
presented here must be repeated for a variety of turbu
lence conditions that reflect the expected lifetime 
environment for the turbine. The resulting loading 
histograms must be weighted and superposed to obtain 
the lifetime loading histogram from which a fatigue 
life estimate can be made. Although the ability to 
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compute turbulence-induced loads is a major step for
ward, it is only a single step toward the final goal of 
a complete structural design methodology. 
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