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TURBULENCE LOADS ON THE HOWDEN 26-m-DIAMETER WIND TURBINE 

Peter H. Madsen 
Susan M. Hock 

Tom E. Hausfeld 

Solar Energy Research Institute 
Wind Research Branch 

Golden Colorado 

ABSTRACT 

Conducted in Palm Springs, Calif., a joint effort 
between SERI and James Howden and Company involved a 
comprehensive test program on the 330-kW Howden wind 
turbine with a three-bladed, fixed-hub rotor 26 m in 
diameter. Part of the measurement analysis is to quan­
tify the turbulence loads during the steady-state pro­
duction modes of operation. Assuming wind turbulence 
to be the cause of the random loads, the turbulence 
loads in terms of blade root-bending moments have been 
determined empirically by isolating the random or non­
periodic part of the load signals using azimuthal aver­
aging. Standard deviations as functions of wind speed, 
as well as power spectra of. the loads, are presented. 

The measured turbulence loads are compared to a 
recently developed model for turbulence loading of wind 
turbines. The model works in the frequency domain and 
uses the standard engineering representation of turbu­
lence in terms of a coherence function and a wind-power 
spectrum at a fixed point in space. The turbulence 
load model accounts for the dominant mode of vibration 
for the load in question and is intended to be simple 
enough to be used for a preliminary load estimate for 
practical design purposes. 

NOMENCLATURE 

Coefficient en 
D Separation 

E{ Expected value 

F (w) Admittance functions n
H(w) System transfer function 

1 Turbulence wave length 

L Turbulence length scale 

m Generalized mass o 
M Bending moment 

p(!,t) External load 

q Generalized modal load 

Q Shear force 

r Radius 

R Rotor radius 

RCd Covariance function 

S(w) Power spectral density 

t Time 

T Modal amplitude 

u Longitudinal turbulence component 

Longitudinal wind speed 

Mean wind speed at hub height 

v In-plane turbulence component 

X Displacement 

Greek symbols 

a Angle 

6 Moment location coefficient 

y(r) Blade mass density 

a Logarithmic decrement 

a( Dirac's delta function 

Damping ratio 

Angle 

A Speed ratio 

� Independent coherence parameter 

v(r) Wind load influence function 

02 Variance 

T Time lag 

�(r) Mode shape function 
2 x(D,w) Coherence function 

w Frequency 
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IHTRODUCTION 

During recent years, considerable attention has been 
given to the� effects of atmospheric turbulence on the 
structural integrity of a wind turbine. Wind turbu­
lence causes temporal and spatial variations in the 
wind speed across the rotor disc and manifests itself 
as a randomly varying aerodynamic load that is super­
posed on the periodic cyclic loads such as those caused 
by wind shear, tower shadow, yaw misalignment, and 
gravity. Thus, due to its random nature, turbulence 
acting on a horizontal-axis wind turbine (HAWT) in 
operation causes both large, but rarely occuring, peak 
loads as well as continuously appearing variable­
amplitude fatigue loads. Theoretical studies (�) and 
experimental investigations (l) have clearly shown that 
the omission of turbulence loads will cause a signifi­
cantly inadequate fatigue design. 

The basic assumption for analyzing and modeling 
turbulence loads during stationary operation is that 
the random loads from turbulence are independent of the 
cyclic, deterministic loads. During data analysis, the 
periodic loads are found using azimuthal averaging (by 
binning the measured load signal in question with 
respect to the azimuthal angle of the rotor). The 
residual, when the averaged periodic signal is sub­
tracted from the original, is then assumed to be the 
turbulence load. The analysis then proceeds with char­
acterizing the statistical properties of the loads in 
terms of variance, spectra, distribution of peaks, 
etc., as functions of environmental and operational 
conditions. 

When modeling the turbulence loads, three major 
problems exist: (l) to quantify the properties of the 
turbulence at a prospective site, (2) to translate the 
information to fluctuations in wind speed along the 
turbine blades, and (3) to go from wind fluctuations to 
aerodynamic loads and internal forces in a dynamically 
active structure. 

Although not complete, a large data base exists tn 
the field of atmospheric science on the properties of 
turbulence for various terrain characteristics and 
atmospheric conditions. The properties of the turbu­
lence are usually expressed in a Eulerian fixed frame 
of reference in terms of spectral densities of the 
velocity components at a fixed point, and coherencies 
and phase spectra to characterize the statistical cor­
relation between velocities at two points. An engi­
neering approximation that uses an exponential coher­
ence function and an identically zero phase spectrum 
has often been used in the dynamic analysis of wind 
excitation of large civil-engineering structures (�).

The effect of moving through the turbulence in a 
vertical plane perpendicular to the wind direction must 
be represented when modeling the local wind fluctua­
tions along the blade. The rapid motion of the blade 
through a slowly varying turbulence causes a redistri­
bution of the wind turbulence spectrum to higher fre­
quencies (5). There is also a theoretical explanation 
(6), where- a model of the spectrum of longitudinal 
t'iirbulence as seen by a rotating blade was developed 
assuming isotropic, incompressible turbulence and a 
Gaussian fixed-point spectrum. Similar models were 
presented (7,8) using the more realistic Von Karman 
model of iso�pic turbulence. 

There are two basically different approaches to 
calculating turbulence loads: (1) a time-integration 
approach, where the turbulent wind field across the 
rotor disc ts simulated and used as input to the 

aerodynamic and structural model; and (2) a spectral­
analysis approach, which is a statistical frequency­
domain approach. The advantage of the spectral­
analysis method is computational efficiency at the cost 
of linear aerodynamic and structural models. Most 
models (1,2,9) are based on the isotropic Von Karman 
turbulen�del and cannot fully make use of the 
available experimentally determined turbulence informa­
tion. In contrast, the engineering representation in 
terms of a fixed-point spectrum and coherence function 
was used in a recent model ( 1). This model was based 
on the periodicity of the coherence function, as it 
applies to a rotating blade, to obtain a series solu­
tion for turbulence spectra at or between discrete 
points. 

The present model assumes axisymmetric turbulence 
but otherwise uses experimentally determined turbulence 
properties. Like the model described in (�), it 
applies the expansion technique to obtain a sertes 
solution for the load spectrum. However, instead of 
expanding the total wind field, the generalized modal 
load is expanded in the blade azimuth angle such that 
additional terms can be easily included. The model is 
not intended for the final verification of a complex 
design but rather for giving preliminary load values 
for the beginning of the design cycle. The model 
requires only a few basic characteristics of the tur­
bine, assumes linear aerodynamics, and approximates the 
basic dynamic properties of the blade by single-degree­
of-freedom (SDOF) systems, each corresponding to a gen­
eralized load. The model complements that of (lO), 
which is a simple model for rotor loads from turbul�ce 
but has a considerably simpler turbulence load model. 

THE HOWDEN HAWT TEST 

As part of the SERI/DOE Cooperative Field Test Program, 
a comprehensive measurement program has been carried 
out on a 330-kW Howden HAWT near Palm Springs, Calif. 
The measured data include wind data to characterize the 
full wind field in front of the turbine, and wind­
turbine data to map the operational conditions and 
internal structural loads. 

The wind turbine, manufactured by the British 
company of James Howden and Company, Ltd., is owned by 
Southern California Edison and is located at their Wind 
Energy Test Center in the northwest corner of the 
Coachella Valley, 10 km north of Palm Springs. The 
valley floor is a very flat desert with occasional 
scrub extending 3 km to the west, where the Whitewater 
hills rise approximately 300 m. The wind is primarily 
thermally driven, with a strong diurnal cycle; during 
practically all energy production, the wind direction 
is due west. The measurements for this paper were 
taken during September and October 1986, at the end of 
the windy season. 

The wind turbine has a three-bladed, fixed-pitch 
rotor with a diameter of 26 m and a nominal rotation 
speed of 42 rpm. An up-wind machine with active yaw, 
it is rated at 330 kW at 14.5 m/s (at hub height, which 
is 24.1 m). Cut-in and cut-out wind speeds are 6 m/ s 
and 28 m/s, respectively. The structure is basically 
comprised of an untapered tubular tower, a steel bed­
plate, and a wood-epoxy rotor with a solidity of 
approximately 8 percent. The blade 1 s fundamental 
frequencies are estimated to be 1.68 Hz and 4.06 Hz in 
the flapwise and chordwise directions, respectively. 
The blade 1 s mass is 855 kg, with a mass density of 
36.5 kg/m at 70 percent radius. Power control and 
overspeed protection are provided by drag-control using 
2-m-long, variable-pitch tips. The turbine description 
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Fig. 1. The Howden 26-m-diameter, 330-kW wind turbine 

and some results from Howden's analysis of the recorded 
data are given in (�). The turbine is shown in Fig. 1. 

A total of 44 channels were recorded on a Honey­
well 101 14-channel magnetic tape recorder in multi­
plexed form after having passed through 10-Hz low-pass 
active 6-pole filters. Of the 44 channels, 31 were 
used to obtain atmospheric data. Most wind speeds were 
recorded from a vertical-plane array of 3-axis UVW Gill 
propeller anemometers located 21 m west of the tur­
bine. The wind speed at hub height was used as the 
reference for this study. Of the structural measure­
ments, the bending moments at the 1. 5-m radius in the 
flapwise and chordwise directions, and the flapwise 
bending. moment at the 8.25-m radius, were used. The 
recorded analog signals were digitized at SERI using 
the NEFF 720 system with a sample rate of 41.67 Hz. 

A number of digitized bending-moment time series 
of 10 min were selected at various wind speeds and 
averaged against the azimuth angle using a bin width of 
10 degrees for the rotor azimuth-angle signal. A 
sixth-order Fourier series was fitted to the calculated 
average periodic signal. The series was then used to 
extract the periodic part from the total signal to get 
the turbulence-induced part. The residual signal was 
block-averaged to an effective sample rate of 20.83 Hz, 
and statistics and power spectra were calculated. 

Preliminary results on the azimuth-averaged wind­
turbine signals as a function of wind condition can be 
found in (Q}. 

MODELING THE WIND TURBULENCE 

Unless deeply in stall, the primary effect of wind 
fluctuation is the change in the angle of attack of the 
relative wind with respect to the blade profile. 
Ignoring induced velocities, the angle of attack can be 
written as 

U0 + u 
a = arctan [ I - 80 (1) war + v 

where U 0 is the mean wind speed, u and v are the longi­
tudinal and in-plane wind fluctuations, respectively, r 
is the radius, w is the rot at ion frequency in rad/ s, R 
and 8 0 is the pitch angle. Since u and v are generally 
small compared to U0 and w r' the following pertur­R
bation expression for changes in a from wind fluctua-

tions is obtained as the first-order term in a Taylor 
expansion: 

A2 6a (A� :::___) (2) 
l+A2 Uo llo 

The speed ratio A is given by 

A = w r/U (3} R o 

For the highest loaded outer part of the blade, A 

is typically of the order of 3-5; since v/U is 75 per­0cent or less of u/U in magnitude (13}, the dynamic 
wind loads from turbu�ence are primarily caused by the 
fluctuations u in the mean wind direction. The wind 
field acting on the turbine rotor will therefore be 
described as 

U (::,t) (4) 

U (::) is the 10-min average wind speed, which varies 0wtth height and depends on the terrain roughness, 
atmospheric stability, and local topography. The tur­
bulent longitudinal fluctuation u will be modeled as a 
homogeneous and stationary random field across the 
rotor disc. The field has a zero mean and a cross 
covariance, which may be calculated from the cross­
spectrum as 

(5) 

The site is located 1n a very flat and smooth desert 
area, with hills and mountains beginning at a distance 
of 3 km. The wind is thermally driven with due west as 
the prevailing wind direction. The extreme thermal 
radiation makes it questionable whether neutral strati­
fication of the atmosphere is found across the rotor 
disc, even for higher wind speeds. This and the prox­
imity of the mountains invalidates the usual assump­
tions for turbulence intensity, length scale, and 
coherence decay factors for a homogeneous terrain and 
neutral atmosphere. 

The turbulence properties used in this paper are 
based on the analysis of wind data from the vertical 
array 21 m due west of the wind turbine. Data from 
seven 3-axis propeller anemometers were used; one was 
centered in the array at hub height, and the other six 
were evenly spaced around the first at a radius of 13 m 
(corresponding to the blade length). 

A one-sided power spectrum (i.e., defined for 
positive frequencies only with a value of twice the 
standard two-sided power spectrum) with the analytical 
form (14) 

' (6) 
(1+1.5 wL/U0)5/3 

was fitted to the calculated power spectra from low-, 
medium-, and high-wind-speed data series measured by 
the hub-height anemometer. L is the turbulence length 
scale. The data series were selected as representing 
neutral or slightly unstable atmospheric conditions. 
Spectra of signals from anemometers at other heights 
showed only minor deviations, and equation (6), with 
parameters L = 192 m and a 

�
/U0 = 0.15, is assumed to be 

representative for the f xed-point spectrum of the 
longitudinal turbulence component for all points in the 
rotor disc. 
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Coherence functions < i phase spectra were esti­
mated with 135 statistical degrees of freedom between 
the hub-height anemometer and the anemometers in the 
13-m-radius ring and between anemometers symmetrical 
with respect to the hub. All phase spectra showed a 
random scatter around zero, and all coherence functions 
showed a reasonable agreement when plotted with 

(7) 

as the independent parameter. D is the separation 
between anemometers. 
turbulent longitudinal 
plane perpendicular to 
posed to have the form 

The cross spectrum, between the 
wind fluctuations at points on a 
the mean wind direction, is pro-

with Su(w) given in equation (6) and 

x(D,w) = exp[-2. 07 �
2/(0. 66+u)J 

(8) 

(9) 

The parameters 
using a least-square 

in equation (9) were estimated 
fit of x2 to the measured coher-

encies. The proposed square root of the coherence 
function in equation (9) only deviates from the simple 
exponential model of Davenport (15) for small values of 
w. A significant difference is that, unlike the 
Davenport model and in agreement with the Von Karman 
isotropic turbulence model, the model discussed in (9) 
does not predict a coherence of one at zero frequency 
and a nonzero separation. This becomes extremely 
important for correctly predicting the peaks at 
multiples of the rotation frequency at rotationally 
sampled turbulenc� spectra (16). 

LOAD AND RESPONSE 

We shall assume that all turbulence-induced 
internal forces needed for the structural design are 
caused by turbulence loads on the blades only. 
Furthermore, we shall assume that the considered blade 
response is associated with one degree of freedom or 
one mode of vibration. To set up the equations for the 
blade Loading and response, consider a frame of refer­
ence that rotates with the blades. Hence, the blade 
displacement can be expressed by 

x(r,t) = �(r) T (t) , (lO) 

where •(r) is the mode shape function and T(t) is the 
modal amplitude. In terms of T(t), the equation of 
motion is 

in which w0 ts the modal frequency in rad/s, � is the 
structural damping ratio, p (r,t) is the �xternal 
loading, and m0 is the generalized mass, given by 

m0 = J y(r) •(r)2 dr 
R 

(12) 

where R is the blade length and y(r) 1s the mass den­
sity along the blade. 

Assuming Linearity between the turbulent wind 
fluctuations u(!:,t), the load p(E:,t) can be expressed 
as 

1n which 
is the 
equation 

(13) 

xf(r,t) is the flapwise displacement and v(r) 
wind load influence function. From 

(13), the modal load becomes 

(14) 

where qe(a,t) is the effective generalized load and � 
is the aerodynamic damping ratio for a f1apwise modaf 
vibration 

and 

R 

'J(r) :p(r)2 dr 
R 

v(r) u(r, a,t) •(r) dr • 

(15) 

(16) 

Note that qe(a,t) 1s a function of the blade azimuth 
angle a. Clearly, at a given instant t, qe is periodic 
in a and can be expanded in a Fourier series. Thus, 

with the coefficients given by 
R 2" 

qo(t) = 2n J r J v(r) u(r,a,t) •(r) da dr 
0 0 

J v(r)•(r)
u( r, a,t) dA 2n disc r 

and 

qc( t) cos na n 
J v(r)<jl(r) u(r,a,t) 

rr disc r 
qs(t) sin na n 

(17) 

(18) 

dA (19) 

For periodic loading and stationary random vibration, 
the equation of motion (ll) is conveniently solved in 
the frequency domain, where the Fourier transforms of 
T(t) and qe relate as 

T(w) H(w) qe(w) (20) 
mowo2 

where w is the frequency in rad/s and H(w) is the modal 
transfer function 

(21) 

In equation (21) , use is made of the logarithmic decre­
ment of the damping 6 ; 2 n(�0 + �a). Note that for 
w<<w0 or when 6 1s large, H(w) can be conservatively 
set to one. 

By applying an 1nverse Fourier transform to T(w), 
the modal amplitude and hence the blade displacement 
from equation (10) is obtained as a function of time. 
In principle, the internal forces, such as bending 
moments and shear forces, can be obtained from differ­
entiating the displacements; however, using an esti­
mated mode shape function may produce significantly 
inaccurate results. A more robust method consists of 
applying fictitious static external loads that would 
cause the blade to deform in its assumed mode shape 
(!I). This fictitious inertia-type loading 1s given by 

(22) 

from which blade root moments M and root shear forces Q 
are calculated as 

M = T 

and 

R 2 J w r y(r) ¢l(r) dr 
0 

0 
(23) 



5 

TP-3269 

R 2 Q = T f w y ( r) � ( r) d r • ( 24) 0 
0 

Since the turbulent wind field is modeled as a 
random field, we shall characterize the modal ampl i­
tudes and hence the internal forces bv mean values and 
covariance functions. From equati�n (20) and the 
definitions of mean and covariance (�), the mean value 
of T is 

E{T} 0 

and the covariance 1s 

RT(T) 
(mowo2)2 f 

where the spectrum of the 

f E{p(r,t)} •(r) dr 
R 

I H(w) 12 Sq (<.,) eiWT dw, 

generalized load is given 

(25) 

(26) 

by 

Sq(w) 2n J Eiqe[a( t+T), t+Tjqe[a(t),tJ} e-iwTdT 

w (27) 

Introducing the expansion in equation (17) in cal­
culating R (T), we find that R (T) is composed of the 
covariance� of t.he expansion �oefficients. Assuming 
that the turbulence field is axisymmetric with respect 
to the mean wind direction, the symmetry has, as a 
consequence (�), 

R R 21r 
Cn f f f v(rl)v(r2)�(rl)�(r2) 

0 0 0 

where R is the covariance function of the turbulent 
wind fi�ld (1), E=(r,a), a = a1-a2 and 

c n 
1! 

for n=O 

for n>O • (29) 

Covariances between terms of different order and 
between cosine and sine terms are identically zero. 

Hence, Rq is given by the series 

Rq(a,T) = R�(w) + L
n=l 

cos na • (30) 

While transforming equation (30) to the frequency 
domain to give the generalized load spectrum, it should 
be noted that for a rotating blade 

( 31) 

where w.R is the rotation frequency in rad/s. Since 
multipl1cation in the time domain corresponds to convo­
lution in the frequency domain, and 

(32) 

1n which 6( ) 1s the Dirac delta function, we get 

(33) 

Using the the wind-turbulence cross spectrum in equa­
tion (8), the component spectra in equation (33) are 
given by 

Sn(w) = Su(w) [f v(r)�(r) drj2 Fn(w)cn (34) q R 
1n which Fn acts as an aerodynamic admittance function 
and has the form 

Fn(w) = [f v(r)�(r)drJ-2 
R 

0 

2rr R R 
f f f v(rl)v(r2)�(rl)�(r2) 

0 0 

TURBULENCE BLADE LOADS FOR DESIGN 

(35) 

Based on the presented theory, we shall now 
develop a simple expression for the turbulence blade 
loads in the flapwise and the chordwise directions, 
based on additional simplifying assumptions. Assume 
first that the out-of-plane aerodynamic load distribu­
tion is proportional to the radius, whereas the in­
plane Load distribution is constant with the radius. 
This is a reasonable assumption, as shown in Fig. 2, 
where the aerodynamic load distributions are in both 
directions at two different wind speeds. The distribu­
tions were calculated using SERI's blade element code, 
PROPPC. Secondly, assume that the flapwise mode shape 
can be given as the simplest polynomial that satisfies 
the static and kinematic boundary conditions of a 
fixed-free cantilevered blade. Turbulence loading in 
the chordwise direction is of lesser importance and, 
since some flexibility in the drive train is expected, 
the in-plane mode shape is simply assumed to be Linear 
in the radius. The mass distribution of a blade is 
usually highly nonuniform, with mass concentrated at 
the hub. The mass density does not vary much for the 
outer half of the blade, which experiences the Largest 
amplitude motion; we shall therefore assume a constant 
mass density corresponding to the density at 70 percent 
radius. Finally, the aerodynamic damping in the chord­
wise direction is assumed to be zero. These assump­
tions, and the resulting generalized mass and the flap­
W1se aerodynamic damping, are summarized in Table 1. 

Using the mode shapes and the aerodynamic Load 
distributions, Fn(w) can be calculated numerically from 
equation (35). The modal admittance functions are 
functions of one parameter, namely 

(36) 
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and can thus be tabulated once and for all. The modal 
admittance functions for flapwise and chordwise bending 
are shown in Fig. 3 for ascending orders n=O,l, 2, 3 (the 
top curve represents the Oth order and the bottom curve 
represents the 3rd order). These functions are also 
tabulated in the appendix. 

Note that the admittance functions act as filters, 
selecting a band of frequencies in the turbulence spec­
trum and hence a band of eddy sizes. In terms of tur­
bulence wavelength, which for frozen turbulence LS 
defined as 

(] 7) 

we can see that the generalized Load component q (t) is 
caused primarily by turbulence with wavelengths �reater 
than the rotor diameter. The component that causes a 
load variation that is periodic with the azimuth angle 
comes from turbulence with wavelengths centered around 
the rotor diameter. The load variation that is peri­
odic with twice the azimuth angle comes from turbulence 
with wavelengths of the order of the blade Length. The 
load variation with three times the azimuth are from 

Table 1. System Description 

Flapwi se Bending Chordwi se Bending 

v(r): •J0r/R "o 
4 3 <? ( r): <1> [(r/R) 4(r/R)o -

+ 26(r/R) ] 1>0 r/R 

y(r): (70% radius) Yo = y (70% radius) Yo = y 

2 2m R o: 2.311 0.333 Yo 0 R <jlo Yo <1>

1; • 0.927v0/(y0w0) 0 a· 

turbulence with wavelengths of the order of 2/3 of the 
blade Length. At high values of and hence small --,-u'' 
wavelengths, the admittance functions coincide and de­
crease as 11''-2 The modal admittance functions for 
flapwise and chordwise bending are rather close 1n 
spite of significant differences in mode shape and 
aerodynamic load distribution. This means that the 
results in terms of the turbulence Load power spectra 
must be rather insensitive to the representation of 
mode shape and aerodynamic Load distribution. 

Using the fictitious external load from equation (22) 
to calculate the blade bending moment at radius a, we 
get 

(38) 

in which B is given by 
1 

8 = f (y-a/R) (y4-4y3+6y2)dy [flapwise bending] 
a/R 

0.867+1.2(a/R)+O.S(a/R)4 - 0.2(a/R)S + 0.033(a/r)6 

..,-(39) 
and 

L 
B = J (y-a/R)y dy [chordwise bending] 

a/R 

0.333 - 0.167(a/R)2 - O.S(a/R) • (40) 

10 
� � Solid line - Flap-wise 

j ----.
. ·.. Dashed line - Chord-wise 

1 •••• Order 0-3 

rn � '-��, � § /---------�> 1 !0 ·1 //,u��\, 
� //·/.>}:' \ < 1 0 ·Z:: ,' I / 1 ,/ \ I 

' ' !/ 1/ 
j/ 1/ I 

?' ? I 10 -3 � J 1 1 111\ I ] I ilj I I J I lj o ] I I I II 
10 -· 10 -I 1 10 10 • 

f-L 

Fig. 3. Modal admittance functions 
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The covariance, and hence .he power spectrum, of the 
modal amplitude T is defined in equation (26). Using 
the the expansion of S (w) from equations (33) and 
(34), the power spectrum �f the bending moment, defined 
from -m to +m, becomes 

I cn[Su(w-nwR) Fn(w-nw2) 
n=O 

+ s (w+u nwR) F nw ) (41) n (w + R I 

for flapwise bending and 

S (w) = [1.5 2 BvM oR2]2 /H(w)/

I cn[Su(w-nwR)F (w-nwR) n
n=O 

(42) 

for chordwise bending. The variance of the turbulence­
induced blade moments are found by integrating the 
spectra with respect to frequency from -m to +m, 

Note that the information needed to obtain an 
estimate of the bending moments due to turbulence ts 
limited to (l) an estimate of the modal frequency w 
and the modal structural damping ratio ' , (2) a char� 
acteristic mass density for the blade, an� (3) an esti­
mate of the aerodynamic load as a function of the wind 
speed. For a fixed-pitch machine, the last estimate 
can be derived from the rotor thrust and torque. 
Otherwise, an aerodynamic code, such as a blade element 
code, must be used. 

COMPARISON BETWEEN PREDICTED AND MEASURED BLADE 
RESPONSE 

A number of 10-min time series conta1n1ng blade 
bending moments have been selected so that the opera­
tional wind-speed range is reasonably represented. As 
described earlier, the periodic part has been removed 
and the standard deviation and power spectrum of the 
residual have been calculated. 

The structural data for the model were taken from 
(11) , and the modal frequencies were set to 10.55 rad/s 
and 20 rad/s for flapwise and chordwise bending, 
respectively. The characteristic blade mass density is 
chosen as 36.5 kg/m. The mean flap-bending moment at 
the 1.5-m radius given in (11) grows linearly with the 
mean wind speed with a slope-of 5 kNm/(m/s), from which 
v0 0.108 kNs/m. Using the power curve for wind 
speeds less than that rated, and using an efficiency of 
0.95, the in-plane aerodynamic load density is 
estimated to be 0.035 kNs/m. The aerodynamic damping 
1s calculated to be z; = 0.11 for the flapwise a vibration, and a structural damping ratio of 0.02 is 
assumed for the edgewise motion. 

The standard deviations of the turbulence flap­
bending moments, which are proportional to the standard 
deviation of the turbulence fluctuations u, are shown 
in Fig. 4 as a function of wind speed. The model pre­
dictions (the solid line in the figure) are based on a 
turbulence intensity o /U = 0.15, and the data points 
are scaled from the �ac,?ual turbulence intensity to 
0.15. The series solution for the spectra was trun­
cated after n=6. The agreement is rather good, both at 
the 1.5-m and 8.25-m radii, which supports the assump­
tion that the vibrational pattern ts dominated by a 
single mode. 
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Fig. 4. Flap-bending moment as a function of wind speed 
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Fig. 5. Power spectra of flap-bending moments at a wind 
speed of 10.7 m/s 

Fig. 5 shows the one-sided power spectra of the flap­
bending moments at the 1.5-m and 8.25-m radii at a wind 
speed of 10.7 m/s. The experimentally determined 
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spectra are calculated by dividing the data serie� into 
three segments and averaging the resulting spectra. 
The number of points in the spectrum is reduced from 
1024 to 200 using logarithmic averaging. The wind 
speed 1s below the rated wind speed. and the turbine 
operates as a fixed-pitch machine with an inactive 
pitch-contro l mechanism. The model predictions are 
shown 1n E'ig. 5 with a dashed Line. Note that the 
rotational sampling causes distinct peaks at one and 
two times the rotor speed, while peaks at three times 
the rotor speed and higher are hardly discernible. The 
agreement is better for the moment near the root than 
at the 8.25-m radius. Near the tip, however, devia­
tions between the actual and assumed aerodynamic load 
distribution have more influence on the bending moment. 

E'ig. 6 shows the experimenta l and theoretical 
power spectra of flap-bending moments at a wind speed 
above the rated wind speed. The agreement is sti ll 
fair, although discrepancies are noted particularly at 
low frequencies. This is because the bandwidth of the 
active pitch control system acts to remove low­
frequency variations in the power output. The aerody­
namic load distribution is thus varied actively near 
the tips. As could be expected, the differences be­
tween data and the model, which does not account for 
the variable pitch, are largest at the 8.25-m radius. 
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Fig. 6. Power spectra of flap-bending moments at a wind 
speed of 16.6 m/s 

E'inally, E'ig. 7 shows the one-sided power spectral 
density of the edgewise bending moment at the 1.5-m 
radius and a wind speed of 10.7 m/s (i.e., inactive 
pitch control). Overall agreement is quite good, al­
though the experimentally determined spectrum is some­
what irregular. Note that the turbulence loading in 
the edgewise direction is an order of ma�nitude smaller 
than 1n the flapwise direction. Again, the response 
seems to be dominated by a single mode of vibration. 
However, the amplification at the resonance is over­
estimated, possibly because of an unaccounted damping 
in the drive train. Above the rated wind speed, the 
pitch control strongly affects the edgewise response 
and the model is apriori considered insufficient. 

CLOSING DISCUSSION 

As can be seen from the spectra, the Howden 26-m 
wind turbine shows a re latively benign behavior with 
respect to turbulence loads. The choice of power regu­
lation causes the flapping resonance to be aerodynam­
ically damped above the rated wind speed. Unfortu­
nately, the fundamental flap frequency is close to two 
times the rotation frequency. As a result, the blade 
bending spectra are dominated by peaks at one and two 
times the rot at ion frequency. The agreement between 
the experimental and theoretical bend1ng-moment spectra 
is good, which for this rather stiff and heavy turbine 
type justities the assumptions of a single dominant 
mode and linear aerodynamics 1n the context of the 
model's simplicity. 

The flapwise bending-moment spectra drops rapidly 
for frequencies higher than two or three times the 
rotation frequency, whereas the higher edgewise 
resonance makes the fourth and fifth peaks visible. It 
1s expected that the senes for the bending moment 
spectra, shown in equations (41) and (42), can gen­
erally be truncated after n=6. This, and the fact that 
no time and computer-storage-demanding digital E'ourier 
transforms are made, makes the model very convenient 
and provides instant answers using a microcomputer. 
The model has the advantage of not assuming isotropic 
turbulence and a certain spectral shape. With this 
additional generality, data of turbulence dependency on 
terrain effects and atmospheric stability can be used 
directly. 
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Fig. 7. Power spectrum of the edgewise bending moment 
at a wind speed of 10.7 m/s 
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The model can be extended to rotor loads (16) by 
adding the blade contributions with the correct 
phade. For a perfectly balanced rotor with three 
blades, the spectra of the rotor loads, thrust, torque, 
tilt, and yaw moment will show peaks at three times the 
rotation frequency (and multiples thereof) in addition 
to the filtered background turbulence. 

The model cannot handle the dynamic effects of 
pitch regulation without further complication. This 
causes the model predictions, especially for the chord­
wise bending, to be conservative for wind speeds above 
the rated power level or when the pitch control becomes 
active. In addition, the model will be inaccurate for 
very flexible turbine types, where two or more blade 
modes become equally excited. In spite of the limita­
tions, the simplicity and the demonstrated agreement 
between model and reality make the model a good tool to 
estimate preliminary turbulence Loads for the first 
round in the design process. 

CONCLUSIONS 

The effect of wind turbulence on the blade-bending 
moments of the Howden 26-m wind turbine has been inves­
tigated. The standard deviation of the flap-bending 
moments increases almost linearly with wind speed. The 
power spectra of the flap-bending moments are dominated 
by peaks at one and two times the rotation speed, above 
which the energy content in the spectra drops 
rapidly. The fundamental flap frequency almost coin­
cides with the seeond peak, which causes a considerable 
high-frequency content in the flapwise response. 

A newly developed model for turbulence blade loads 
is presented and compared to measured data. The model 
accounts for only one mode of vibration and uses only a 
few parameters to characterize the turbine blade. The 
model agrees very well with the data, especially below 
the rated wind speed, where the turbine operates as a 
fixed-pitch machine. Part of the reason for the good 
agreement is that the model uses experimentally deter­
mined wind spectra and coherence functions as opposed 
to the common assumption of isotropic turbulence. 
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APPENDIX - Admitt ance Function Tables 

Flapwise bending 

�* Fa Fl Fz 1.'3 

0.0100 
0.0126 
0.0159 
0.0200 
0.0251 
0.0316 
0.0398 
0.0501 
0.0631 
0.0794 
0.1000 
0.1259 
0.1585 
0.1995 
0.2512 
0.3162 
0.3981 
0.5012 
0.6310 
0.7943 
1.0000 
1.2590 
1. 5850 
1. 9950 
2.5120 
3.1620 
3.9810 
5.0120 
6.3100 
7.9430 

10.0000 
12.5900 
15.8500 
19.9500 
25.1200 
31.6200 
39.8100 
50.1200 
63.1000 
79.4300 

100.0000 

6.29300 
6.28200 
6.26600 
6.24200 
6.20900 
6.16200 
6.09600 
6.00700 
5.88900 
5.73400 
5.53500 
5.28800 
4.98700 
4.62900 
4.21700 
3.75600 
3.26100 
2.75000 
2.24700 
1. 77800 
1.36300 
1.01700 
0.74170 
0.53170 
0.37600 
0.26280 
0.18170 
0.1247
0.08539 
0.05627 
0.03603 
0.02284 
0.01443 
0.00911 
0.00575 
o :oo363 
0.00229 
0.00144 
0.00091 
0.00057 
0.00036 

0.00958 
0.01438 
0.02136 
0.03133 
0.04531 
0.06452 
0.09032 
0.12420 
0.16750 
0.22130 
0.28650 
0.36270 
0.44870 
0.54150 
0.63620 
0.72540 
0.80010 
0.84990 
0.86550 
0.84100 
0.77660 
0.68000 
0.56450 
0.44580 
0.33700 
0.24580 
0.17460 
0.12170 
0.08421 
0.05604 
0.03599 
0.02283 
0.01443 
0.00911 
0.00575 
0.00363 
0.00229 
0.00144 
0.00091 
0.00057 
0.00036 

0.00029 
0.00053 
0.00095 
0.00168 
0.00290 
0.00488 
0.00800 
0.01275 
0.01976 
0.02976 
0.04357 
0.06201 
0.08589 
0.11580 
0.15200 
0.19420 
0.24080 
0.28900 
0.33430 
0.37040 
0.39070 
0.38980 
0.36610 
0.32290 
0.26780 
0.21010 
0.15740 
0.11390 
0.08084 
0.05531 
0.03585 
0.02281 
0.01442 
0.00911 
0.00575 
0.00363 
0.00229 
0.00144 
0.00091 
0.00057 
0.00036 

0.00004 
0.00008 
0.00015 
0. 00029 
0.00053 
0.00096 
0.00170 
0.00292 
0.00486 
0.00785 
0.01228 
0.01859 
0.02731 
0.03892 
0.05392 
0.07268 
0. 09532 
0.12150 
0.15020 
0.17920 
0.20510 
0.22350 
0.23020 
0.22260 
0.20130 
0.17040 
0.13590 
0.10320 
0.07587 
0.05397 
0.03559 
0.02276 
0.01442 
0.00911 
0.00575 
0.00363 
0.00229 
0.00144 
0.00091 
0.00057 
0.00036 

Edgewise bending 

.

�'" �"a Fl Fz FJ 

0.0100 
0.0126 
0.0159 
0.0200 
0.0251 
0.0316 
0.0398 
0.0501 
0.0631 
0.0794 
0.1000 
0.1259 
0.1585 
0.1995 
0.2512 
0.3162 
0.3981 
0.5012 
0.6310 
0.7943 
1.0000 
1.2590 
1.5850 
1.9950 
2.5120 
3.1620 
3.9810 
5.0120 
6.3100 
7.9430 

10.0000 
12.5900 
15.8500 
19.9500 
25.1200 
3 L 6200 
39.8100 
50.1200 
63.1000 
79.4300 

100.0000 

6.27400 
6.26500 
6.25200 
6.23300 
6.20600 
6.16700 
6.11200 
6.03700 
5.93600 
5.80200 
5.62900 
5.41100 
5.14000 
4.81500 
4.43200 
3.99700 
3.51900 
3.01200 
2.49800 
2.00200 
1.54700 
1.15400 
0.83250 
0.58330 
0.39920 
0.26710 
0.17470 
0.11260 
0.07203 
0.04584 
0.02908 
0.01841 
0.01164 
0.00735 
0.00464 
0.00293 
0.00185 
0.00117 
0.00074 
0.00046 
0.00029 

0.00707 
0.01066 
0.01589 
0.02342 
0.03404 
0.04874 
0.06866 
0.09502 
0.12910 
0.17180 
0.22410 
0.28610 
0.35690 
0.43470 
0.51580 
0.59470 
0.66420 
0.71550 
0.74000 
0.73140 
0.68750 
0.61230 
0.51580 
0.41130 
0.31180 
0.22640 
0.15820 
0.10610 
0.06946 
0.04483 
0.02868 
0.01826 
0.01158 
0.00733 
0.00464 
0.00293 
0.00185 
0.00117 
0.00074 
0.00046 
0.00029 

0.00019 
0.00035 
0.00063 
0.00112 
0.00194 
0.00329 
0.00544 
0.00873 
0.01364 
0.02070 
0.03054 
0.04381 
0.06115 
0.08307 
0.10990 
0.14140 
0.17690 
0.21440 
0.25070 
0.28130 
0.30110 
0.30540 
0.29190 
0.26180 
0.22040 
0.17490 
0.13170 
0.09502 
0.06507 
0.04310 
0.02801 
0.01799 
0.01148 
0.00730 
0.00462 
0. 00293 
0.00185 
0.00117 
0.00074 
0.00046 
0.00029 

0.00003 
0.00005 
0.00010 
0.00018 
0.00034 
0.00061 
0.00109 
0.00188 
0.00315 
0.00512 
0.00806 
0.01230 
0.01820 
0.02613 
0.03644 
0.04945 
0.06529 
0.08382 
0.10440 
0.12570 
0.14550 
0.16070 
0.16800 
0.16520 
0.15200 
0.13090 
0.10590 
0.08122 
0.05937 
0.04085 
0.02712 
0.01765 
0.01135 
0.00725 
0.00461 
0.00292 
0.00185 
0.00117 
0.00074 
0.00046 
0.00029 




