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WIND PLANT CAPACITY CREDIT VARIATIONS: A COMPARISON OF RESULTS USING 
MULTIYEAR ACTUAL AND SIMULATED WIND-SPEED DATA 

ABSTRACT 

Michael R. Milligan 
National Renewable Energy Laboratory 

1617 Cole Boulevard 
Golden, Colorado 80401 

U.S.A. 

Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear 
how significant this effect is on accurately calculating the capacity credit of a wind plant. An important 
question is raised concerning whether one year of wind data is representative of long-term patterns. 

This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The 
results are compared to those obtained with synthetic data sets that are based on one year of data. Although 
the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds 
that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique. 

INTRODUCTION 

Utilities, independent power producers, or other investors in wind power plants must undertake an analysis to 
determine the likely cost and revenue streams for a project. The revenue from any power plant is typically 
provided by the sale of energy, capacity, or both. The relative levels of revenue from capacity and energy sales 
are often specified by contract, and will vary as a function of several variables. Some of these variables include 
the structure of the company that owns the power plant, the terms of the contract(s ), operational practices in 
the control area, and characteristics of the power plant itself. In other cases, the utility may own the wind 
plant, but both capacity and energy must still be valued internally. Wind power plants provide an attractive 
alternative to other power sources because of the free, nonpolluting fuel (the wind itself) that drives the 
generator. On the other hand, assigning capacity credit for wind plants is complicated by the stochastic nature 
of the wind availability. With advances in power electronics, it is likely that wind plant operators will be able 
to exercise greater control over the short-term output of the plant, but this control will still be constrained by 
the nature of the wind resource. From an operational standpoint a wind plant operator would be able to bid 
capacity into a pool (or otherwise make commitments on wind power delivery) if he or she possessed an 
accurate wind forecast for the time period in question. The benefit of accurate wind forecasting is further 
described in Milligan, Miller, and Chapman (1995). 

One significant weakness of most wind plant revenue-stream calculations is that interannual variability in the 
wind resource is not known. Typically, the developer collects wind data for one year or less. Using hourly 
wind-speed data, it is then possible to calculate wind power output for each hour. These data can be 
summarized in a variety of ways and time scales, both in terms of capacity and energy. Estimated future 
energy production is used as input to the financial model, which provides expected rate-of-return and other 
financial measures that are used to decide whether or not to build the wind plant. However, the uncertainty 
that is attached to the estimated wind energy is rarely calculated, and even then, is not likely to be accurate. 
This implies that the potential wind plant investor is exposed to the risk of basing an investment decision on 
an unusual wind-year. In order to overcome this difficulty, an analysis of nearby long-term wind data from 
airports or other meteorological sites can be pursued. This may be the best way to proceed given a lack of 
measured wind data at the site. The risk from limited data cuts both ways. First, the measured data could be 



from a year with unusually low wind, so a good long-term wind site may not be developed. Alternatively, if 
the measured year has an unusually high wind speed, then the realized revenue stream will fall short of the 
projected stream. 

In this paper a 13-year data set is used to calculate the range of energy and capacity-credit values from the 
actual data. Representative years are selected on which a Markov wind-speed simulator tool is applied. The 
wind-speed simulator generates multiple wind-speed series based on the time-scale properties of the original 
data, allowing for the analysis of plausible wind-speed variations and their effect on capacity credit and other 
measures of interest. 

CHARACTERISTICS OF THE 13-YEAR DATA SET 

The data used for this analysis is from an air-quality monitoring site in North Dakota. Data was collected for 
a 13-year period beginning in 1980. This particular site would not likely be chosen for a wind plant because 
of the relatively low annual average wind speed. However, until long-term data such as this does become 
available at potential wind-plant sites, it is useful to examine the data at hand. To compensate for the low wind 
speed, the data were scaled so that the average annual wind speed matched that at Minot, ND (Sandusky, et. 
al., 1983). Figure 1 shows the normalized variation in annual energy production for a fictitious 100 MW wind 
plant. The highest annual energy production for the 13-year period occurred in 1988. During 1981 and 1983 
the wind energy capture was approximately 73% of the 1988 level. Over the 13-year period, the average 
energy capture is about 85% of the maximum, with a standard deviation of 8.7. 

Although there is clearly significant variation from year to year, there is a striking variation that occurs when 
the data is viewed on a monthly basis. Figure 2 plots the monthly energy for three selected years: 1980, 1986, 
and 1990. These years were chosen to represent mean plus or minus one standard deviation of the annual wind 
energy production as shown in Figure 1. The months of March and April show extremely high variation in 
energy output. The month of December exhibits the most agreement between monthly energy levels. 

Figure 3 was constructed by taking the maximum, minimum, and mean energy production from the 13-year 
data set for each month. For example, the maximum series in the graph represents a composite that consists 
of the maximum energy taken from all 13 January energy values, the maximum from all February energy 
values, and so on. 
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MODELING WITH THE ACTUAL DATA 

After calculating the energy production for the 13 years of data, I calculated the capacity credit for each year 
for a 100 MW wind plant. Elfin is a production-cost/reliability model that has been described in another 
publication ( Milligan, 1996a), and is a product of the Environmental Defense Fund. The model used a load 
duration curve approximation to calculate costs of energy based on an optimal dispatch strategy that minimizes 
costs. The model can also be used to calculate capacity credit, which is based on a system reliability index 
such as loss-of-load expectation (LOLE). Using actual utility load and generator data for Tri-State Generation 
& Transmission, Association, Incorporated (Milligan & Parsons, 1997), the model was used to calculate the 
effective load carrying capability (ELCC) for each year of wind data, using a target LOLE of 1 day in 10 
years. Figure 4 illustrates the results of these calculations, along with the graph i>f annual energy production 
for ease of comparison. As indicated in the diagram, capacity credit and energy production tend to move 
together, but not always. The reason is that higher energy production may occur in hours of high reliability. 
In this case, the capacity is not provided when it is most needed to support system reliability and causes a lesser 
positive impact on capacity credit. This effect was also observed by Milligan and Parsons (1997). As 
indicated in the figure, there is a relatively high correlation between energy production and capacity credit. 
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Table 1 shows the variation in energy and capacity credit, as measured by the coefficient of variation (COV), 
defined by the ratio of the standard deviation to the mean. The ELCC has a higher variation than energy 
because relatively small shifts in the timing of wind energy delivery can have a significant impact on system 
reliability, and thus the capacity credit of the wind plant. 

TABLE 1. CAP A CITY CREDIT AND ENERGY FROM ACTUAL DATA 

Data Average Standard Maximum Minimum Coefficient of 
Deviation Variation (%) 

Energy (GWh) 291.7 30.0 343.3 250.0 10. 3 

ELCC (MW) 39. 1 5.4 50. 5 31.3 13.8 



MODELING WITH THE SIMULATED DATA 

Using the actual wind-speed data from each of the 13 years, I selected 3 years to represent high-wind (1990), 
low-wind (1980), and mean-wind (1986) cases. The high and low years approximate one standard deviation 
above and below the mean, respectively. Using these three years, a Markov wind-speed simulation tool was 
used to generate 100 time-series of wind power for each selected year. This process has been described in 
Milligan (1996b) and resulted in a total of300 wind power time-series. Figures 5 and 6 illustrate two of the 
state-transition matrices calculated from the actual data for July 1980 and July 1981, respectively. The 3 large 
spikes at the high wind-speeds in Figure 6.illustrates a much higher probability of high-wind events than in 
1980. The large variation in state-transition matrices is consistent with that found in the wind-speed and wind­
power data illustrated by some of the previous graphs. 

State-transition matrices such as those shown in Figures 5 and 6 were used to generate the synthetic wind-speed 
data for the 300 time-series. Using actual wind-speed data, a state-transition matrix was calculated for each 
month. The resulting distribution was sampled to create a large number of time-series of wind-speed data. 
Each of these series consists of one year of hourly wind-speed data which was then used to calculate hourly 
power output for the hypothetical wind plant. Each of these 300 data series was then· processed by the Elfin 
production-cost model. Elfin was executed repeatedly for various utility load levels to determine the ELCC 
of each of the 100 wind power time-series for each of the 3 selected years. The discussion separately considers 
each of the three years, followed by some observations of the combined results. 
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Figure 7 shows the results for the high-wind year, 1990. The graph shows the ELCC results for each of the 
100 cases for the year. The average ELCC for the 100 cases is 42.3 MW, which very closely approximates 
the ELCC that was calculated from the actual data, 42.7 MW. Using the Markov approach does result in years 
with varying capacity credits, in this case ranging from a minimum of30.5 MW to a maximum of 52.5 MW 
Both the maximum and minimum are close to those calculated from the actual data, as displayed above in 
Table 1. Figure 8 shows the convergence of the high-wind simulations. The convergence factor is the ratio 
of the cumulative standard deviation to the cumulative mean (see Milligan, 1996b). Inspection of the 
convergence factor indicates that the stability of the results is still in doubt until about 70 Markov iterations 
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have been performed. It would be useful to provide the model with convergence criteria instead of a fixed 
number of iterations. However, as discussed in Milligan (1996b) this cannot be accomplished with the Elfin 
model. Billinton, Chen, and Ghajar (1996) find that convergence is achieved after approximately 6,000 
iterations using an integrated auto-regressive moving-average (ARIMA) process to model wind speed. Figures 
9 and 10 show further results :from the 1990 simulations. Figure 9,illustrates the :frequency distribution of the 
ELCC values. The bin sizes correspond to the standard deviation of ELCC, and the middle bin contains all 
ELCC values within� standard deviation either side of the mean. Figure 10 shows the energy obtained by the 
Markov simulation process for each of the 100 cases. As was the case with the actual data, there is more 
variation in ELCC than energy. The mean energy value is very close to the actual energy for 1990, as one 
would expect. 

MEAN-WIND YEAR RESULTS 

Figure 11 shows the capacity credit results for the mean-wind year. As expected, the average, maximum, and 
minimum ELCC values are less than those of the high-wind year. The coefficient of variation is somewhat 
higher than the high-wind case because of a smaller mean and slightly higher standard deviation. Figure 12 
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shows the convergence factor for 1986. Relative stability appears to be reached after about 70 
iterations-about the same point as for the high-wind year. 

Figures 13 and 14 show the ELCC distribution and energy results from 1986. With the exception of a few 
outliers in the left-most bin, the shape of the distribution is nearly symmetrical. The mean, maximum, and 
minimum energy values are less than those of the high-wind year, as expected. 

LOW-WIND YEAR RESULTS 

Figures 15-18 show the results from 1980, the low-wind year. The average ELCC value for this year is about 
4.5 MW less than the mean case. The results from the low-wind case parallel those of the other cases, with 
correspondingly lower ELCC and energy values. 
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Tables 2 and 3 gather the results from the various simulations discussed in the previous sections. Table 2 
shows the ELCC results for each of the high-, mean-, and low-wind years. The actual data results are included 
in the first row for convenience. The variation of the simulated ELCC values as measured by the range 
overestimates the variation in the actual data. Conversely, the coefficient of variation from the simulated data 
sets underestimates the variation in the actual data set. The simulated energy ranges in Table 3 all significantly 
understate the variation in the actual data, as do the coefficients of variation. 

What are the implications of this work? If data has been collected for a single year that nearly matches a long­
term mean year, then the Markov approach does a reasonably good job of predicting the likely range of ELCC 
values, but underpredicts variations in annual energy. To accurately predict energy variations another method 
would be required. 

If a single year of wind data is collected, the important question is whether that is a typical-, high-, or low-wind 
year. In some cases data for the measured year can be compared with other long-term data records to establish 



TABLE 2. ELCC SIMULATION COMPARISONS 

Wind Data Average Standard Maximum Minimum Range CN(%) 
Deviation 

Actual 39. 1 5.4 50. 5 31. 3 19.2 13.8 

High-Wind Year 42.3 3. 6 52.5 30. 5 22. 0 8. 6 

Mean-WindY ear 40.9 4.1 51.3 28.7 22.6 10.1 

Low-WindY ear 36. 4 3. 4 46. 3 25.3 21.0 9.5 

TABLE 3. ENERGY SIMULATION COMPARISONS 

Wind Data Average Standard Maximum Minimum Range CN(%) 
Deviation 

Actual 291. 7 30.0 343. 3 250. 0 93. 3 10. 3 

High-Wind Year 317.6 13.9 354.5 277.2 77.3 4. 4 

Mean-WindY ear 300. 6 15. 7 342. 6 268.3 74.3 5. 2 

Low-WindY ear 268. 1 14.6 306.5 227. 9 78. 6 5.4 
/ 

how the measured year compares to a longer period. Once this determination is made, the Markov method 
could be used to calculate the estimated variations. 

Several caveats should also be pointed out. First, these results may not be robust to other wind sites. The 
North Dakota data used in this report does not have a significant diurnal component, as the wind is primarily 
caused by synoptic-scale weather events. This data was obtained from an air-quality monitoring site that would 
not be utilized for a wind power plant. Second, it is likely that a significantly longer data set should be used 
to establish the wind-speed characteristics of a site. Finally, all capacity credit calculations are sensitive to the 
correlation between the utility load and wind resource and to the specific utility resource mix during peak and 
off-peak periods. ELCC is also sensitive to the level of the risk-target chosen by the utility management and 
whether the LOLE or energy-not-served or other reliability measure is chosen as the appropriate risk measure. 

CONCLUSIONS 

This paper has presented a method to estimate capacity credit variations of wind power plants, using synthetic 
data generated with a Markov process. The state-transition matrices are based on actual wind-speed data. 
Although there is room for improvement, the method does a reasonably good job of providing an estimate of 
capacity credit, as measured by ELCC. This method is not particularly effective for estimating energy 
variations, an area that needs further investigation. 
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