

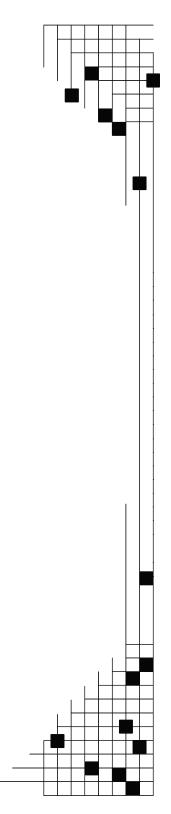
Rounding and Significant Figures

Laboratory Analytical Procedure (LAP)

Issue Date: 07/17/2005

B. Michener, C. Scarlata, and B. Hames

Technical Report NREL/TP-510-42626 January 2008


Rounding and Significant Figures

Technical Report NREL/TP-510-42626 January 2008

Laboratory Analytical Procedure (LAP)

Issue Date: 07/17/2005

B. Michener, C. Scarlata, and B. Hames

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

DISCLAIMER

These Standard Biomass Analytical Methods ("Methods") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute ("MRI") for the Department Of Energy.

Access to and use of these Methods shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute these Methods for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the Methods. Further, the user agrees to credit NREL/MRI in any publications that result from the use of these Methods. The names NREL/MRI, however, may not be used in any advertising or publicity to endorse or promote any products or commercial entity unless specific written permission is obtained from NREL/MRI. The user also understands that NREL/MRI is not obligated to provide the user with any support, consulting, training or assistance of any kind with regard to the use of these Methods or to provide the user with any updates, revisions or new versions.

THESE METHODS ARE PROVIDED BY NREL/MRI "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NREL/MRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THESE METHODS.

Procedure Title: Rounding and Significant Figures

Laboratory Analytical Procedure

1. Introduction

1.1 This procedure describes the rules for rounding numbers for the reporting of analytical data.

2. Scope

2.1 This method describes the application of significant figures for the proper reporting of analytical data

3. Terminology

- 3.1 *Significant Figures*: The number of significant figures in a measured quantity is the number of digits that are known accurately, plus one that is in doubt. Zeroes that appear to the left of the first nonzero digit are placeholders and are not considered significant. Zeros located to the right of the first digit may be considered significant.
- 3.2 *Analytical Data*: Data that represent the measured concentration or value of analytes in a sample aliquot. Sample aliquots include samples, method blanks, calibration verification standard (CVS) and quality assurance samples (QA samples, e.g. NIST standards).
- 3.3 Sample Data. Data that represents the measured concentration of analytes in a sample.
- 3.4 *Method Blank Data*: Data that represent the measured concentration of analytes measured in a all reagents without the addition of a sample.
- 3.5 *Quality control (QC) Data*: Data that represent the measured concentration of target analytes that are elements of QA and CVS samples.
- 3.6 *Quality Assurance Data*: Data the represent the known values in a standard refernce material
- 3.6 Accuracy Data: Data that represent the percent recovery determined from QC data.
- 3.7 *Precision Data*: Data that represent the relative percent difference or relative standard deviation calculated from accuracy data.
- 3.8 *Calibration Range*: The range of a method is defined as the lower and upper concentrations for which the analytical method has adequate accuracy, precision and linearity.

4. Significance and Use

- 4.1 It is the responsibility of each analyst recording analytical data to comply with each of these rules for significant figures and rounding.
- 4.2 It is the responsibility of each supervisor, data reviewer, or QA representative to ensure that these rules are properly applied in the treatment of analytical data.

5. Interferences

5.1 Not applicable

6. Apparatus

6.1 Not applicable

7. Reagents and materials

7.1 Not applicable

8. ES&H Considerations and Hazards

8.1 Not applicable

9. Procedure

- 9.1 All calculations should be completed prior to any rounding to avoid introducing additional error into the analytical result.
- 9.2 Data entry into calculators or computers should include all of the available digits from the analytical instrument generating the data. Some instrument outputs contain an excessive numbers of digits. In these cases data entry should be at least 5 digits (if available) to prevent error due to successive rounding.
- 9.3 The calibration range must be reported using the same rounding and significant figures rules as the associated sample data.
- 9.4 Data below the calibration range prior to rounding should be reported as <(the lower end of the calibration range). Example: If your calibration range is 500 100 ppm, and your instrument reports a value below 100 ppm, the data should be reported as "<100 ppm".]</p>
- 9.5 Results from the measurement of Method Blank samples results should be treated as analytical data and reported with the same number of significant figures as the associated sample data.

10. Rounding Rules

10.1 When the digit following the last the last significant digit is less than 5, the number remains unchanged (round down.)

Example: 1.63 is rounded to 1.6

10.2 When the digit following the last the last significant digit is greater than 5, the digit to be retained is increased by 1.

Example: 2.6 is rounded to 2.7

10.3 When the digit following the last the last significant digit equals 5, the number is rounded off to the nearest even number.

Example: 3.85 is rounded to 3.8, 4.55 is rounded to 4.6

- Note: Some automated systems such as spreadsheets, calculators and data management software always round up a five.
- 10.4 When calculations are complete and two or more figures are to the right of the last the last significant digit, rounding begins at the least certain digit and continues until the correct number of digits remains.

Example: Rounding to two significant figures:

2.4501 is viewed as 2.4(501) and is rounded to 2.5

2.5499 is viewed as 2.5(499) and is rounded to 2.5

10.1 Significant Figures

- 10.1.1 The rounding rules described in Section 10 must be used to report data to the proper number of significant figures. This section describes how to determine the proper number of significant figures.
- 10.1.2 The number of significant figures in a measured quantity is the number of digits that are known accurately, plus one that is in doubt. Zeroes that appear to the left of the first nonzero digit are placeholders and are not considered significant. Zeros located to the right of the first digit may be considered significant. The concept of significant digits applies only to measured quantities and to results calculated from measured quantities. It is never applied to exact numbers or definitions.

Example: $15.8 \sec \div 60 \sec / \min = 0.263 \min$ the answer has three significant figures because the conversion factor is a definition.

10.1.3 A final result should never contain any more significant digits than the least precise data used to calculate it.

11. Calculations

11.1 To report or calculate the relative percent difference (RPD) between two samples, use the following calculation

$$RPD = \left(\frac{(X_1 - X_2)}{X_{mean}}\right) \times 100$$

Where:

 X_1 and X_2 = measured values X_{mean} = the mean of X_1 and X_2

11.2 To report or calculate the root mean square deviation (RMS deviation) or the standard deviation (std. dev.) of the samples, use the following calculations. First find the root mean square (RMS), of the sample using

$$RMS = x_m = mean = \sqrt{\left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2}$$

Then find the root mean square deviation, or standard deviation, using

RMS deviation =
$$\sigma = stdev = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_m)^2}{n}}$$

Where:

 x_m =the root mean square of all x values in the set n=number of samples in set x_i =a measured value from the set

12. Report Format

12.1 Not applicable

13. Precision and Bias

13.1 Not applicable

14. Quality Control

14.1 Not applicable

15. Appendices

15.1 Not applicable

16. References

16.1 The Chemical Technicians Ready Reference Handbook, 4th Ed., Gershon J. Shugar and Jack T. Ballinger, 1996, New York, New York, McGraw-Hill, Inc.