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Key Process Interactions
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Challenges to Deployment
Issues Hindering Commercialization

• Demonstrated market competitiveness
– Compelling economics with acceptable risk

• Established feedstock infrastructure
– Collection, storage, delivery & valuation methods

• Proven societal & environmental benefits
– Sustainable
– Supportive policies



Critical Success Factor
for Pioneer Processing Plants

⇒Accurately estimate cost and performance!*

• Plant cost growth strongly correlated with:
– Process understanding (integration issues)
– Project definition (estimate inclusiveness)

• Plant performance strongly correlated with:
– Number of new steps
– % of heat and mass balance equations based on data
– Waste handling difficulties
– Plant processes primarily solid feedstock

* “Understanding Cost Growth and Performance Shortfalls in Pioneer
Process Plants”, a study by the Rand Corp. for DOE (1981)



Simplified Process Schematic
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Economic Parameter (Units, $1999)
 

 

Value    
 

Min. Ethanol Selling Price ($/gal)
 

$1.30 
 

Ethanol Production (MM gal/yr) 60 
 

Ethanol Yield (gal/dry ton stover) 77.5 
 

Total Project Investment ($ MM) $200 
 

TPI per Annual Gallon ($/gal) $3.34 
 

Net Operating Costs ($/gal) $0.73 
 * Assuming 100% equity financing and 10% Internal Rate of Return (IRR)

Projected Economics – Example
Plant Size Basis:  2000 MT Dry Corn Stover/Day

Assumed Corn Stover Cost:  $35/dry ton
Assumed Enzyme Cost:  $0.11/gallon of produced ethanol



Process Economics Findings

• Production costs dominated by
– Feedstock
– Enzymes - cellulases
– Capital equipment throughout the plant

• Current USDOE, NREL, and ORNL efforts 
focus on decreasing these key cost centers.

⇒ Today’s focus: feedstock and pretreatment cost reduction 
opportunities and progress



Impact of Reducing Feedstock Cost
Corn Stover Case Example
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Towards a Low Cost Feedstock 
Infrastructure

• Apply innovative harvesting & storage methods
– Whole stalk harvest?
– Dry or wet densification? 

• Value the feedstock based on its composition
– In-field or point-of-delivery rapid compositional 

analysis, e.g., using calibrated Near InfraRed
Spectroscopy (NIRS)

⇒Application of NIRS has identified a previously under 
appreciated knowledge gap concerning the magnitude 
and sources of feedstock compositional variability
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Reducing Performance Risk
Demonstrating High-solids Processing

Cost Impact of Pretreatment Reactor Solids Loading
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Reducing Deployment Risk
Demonstrating Base-line Engineering Feasibility 

• Dilute-acid pretreatment showstoppers overcome
– some performance levels remain below targets

Parameter Achieved Target
Catalyst Type Dilute Acid 

30 %
0.75-1.25 min

1.5 %
190 °C
80%
-----

Dilute Acid
Reactor Solids Conc. 30 %

Residence Time 2 min
Acid Concentration 1.1 %

Temperature 190 °C
Xylose Yield 85%

Reactor Metallurgy Incoloy 825-clad

Minimum Pretreatment Performance Targets

• Process samples produced for evaluation
– Pretreated solids and hemicellulose hydrolyzate liquors
– Lignin-rich process residues



Comparative Liquor Concentrations
Corn Stover Dilute-acid Hemicellulose Hydrolyzate

Component
Concentration (g/L)

(20% solids)
Concentration (g/L)

(30% solids)

9.24 17.7
93.6
13.5
7.1
4.1
9.4
2.4
0.5

11.49

59.68
8.81
4.55
2.69
10.93
1.51
0.25

7.06

Glucose
Xylose
Arabinose
Galactose
Mannose
Oligomers
Furfural
Hydroxymethyl 
Furfural 
Acetic Acid



Conclusions
• Good progress being made to reduce process 

costs and risks, but substantial technical 
challenges remain

• Critical knowledge gaps need to be overcome
– Analytical and process chemistry
– Sources of feedstock compositional variability
– Controlling interactions in fully integrated processes
– Life Cycle Analysis and overall sustainability

• Integrated process must be demonstrated
– Expensive, high-risk activity likely to occur via 

industry-led bioenergy solicitation awards

⇒It’s a big task ahead, but we’re on the right path!
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