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Summary

The overall mission of the Institute of Energy Conversion is the development of thin film
photovoltaic cells, modules, and related manufacturing technology and the education of students
and professionals in photovoltaic technology. The objectives of this four-year NREL subcontract
are to advance the state of the art and the acceptance of thin film PV modules in the areas of
improved technology for thin film deposition, device fabrication, and material and device
characterization and modeling, relating to solar cells based on CulnSe, and its alloys, on a-Si and
its alloys, and on CdTe.

CulnSe,-based Solar Cells
High Bandgap CulnSe, Alloys

CulnSe, has a bandgap of 1.0 eV and most Cu(InGa)Se,-based devices have absorber layers with
Ga/(In+Ga) » 0.25 which gives a bandgap of 1.15 eV and results in devices with open circuit
voltages < 0.65V. Higher Ga concentrations to increase the Cu(InGa)Se, bandgap result in a
trade-off of higher open circuit voltage and lower short circuit current which may allow increased
cell efficiency. Further, module performance should be improved due to lower resistive losses,
thinner ZnO with less optical loss and/or greater interconnect spacing with reduced associated area-
related losses.

We have previously demonstrated Cu(InGa)Se, solar cells with 15% efficiency for Ga/(In+Ga) £
0.5 or bandgap (Eg) £ 1.3 eV [101, 102]. With higher bandgap a decrease in cell efficiency was
shown to be caused by poor collection of light generated minority carriers in the Cu(InGa)Se,
absorber layers and in this report, we have expanded the characterization of Cu(InGa)Se, devices
with increasing Ga content and bandgap. Further, we have begun to investigate other CulnSe,-
based alloy materials, CulnS, and Cu(InAl)Se,, which may provide alternative means to achieve
improved device performance with Eg> 1.3 eV.

Reduced Cu(InGa)Se, Deposition Temperature and Thickness

There are many technical issues which need to be addressed to effectively enable the transfer of
Cu(InGa)Se, deposition and device fabrication technology from the laboratory to manufacturing
scale. In general, these issues provide a means to reduce thin film semiconductor process costs.
Shorter deposition time can be achieved with reduced film thickness and increased deposition rate.
Thinner absorber films reduce the total amount of material used and allow faster process
throughput. The minimum thickness of the Cu(InGa)Se, absorber layer may be determined by the
nucleation of the film to form a continuous layer or by the film morphology. From a device
perspective, the minimum thickness may be determined by the minority carrier diffusion length and
optical absorption coefficient of the Cu(InGa)Se, or the ability to incorporate optical confinement.

Lower substrate temperature (T,,) can lower processing costs by reducing thermally induced stress
on the substrate, allowing faster heat-up and cool-down, and decreasing the heat load and stress on
the entire deposition system. In addition, with lower substrate temperature, stress on the glass
substrate can be reduced and alternative substrate materials, like a flexible polymer web, could be
utilized.

We have addressed the need to improve process throughput by reducing the Cu(InGa)Se,
thickness and deposition temperature. The approach during this work has been to first define a
baseline process for Cu(InGa)Se, deposition by multisource elemental evaporation and solar cell
fabrication. All other deposition parameters are then held fixed to determine the effects of varying
either the substrate temperature or, by changing the deposition time, film thickness. Material



properties of the resulting Cu(InGa)Se, films have been characterized and their device behavior has
been measured and analyzed.

Team Participation

IEC is a member of the National CIS Team under the NREL Thin Film Partnership Program. The
CIS Team effort includes four working groups (WG). Of these, IEC has been a member of the
Transient Effects WG and the New Junction WG, for which William Shafarman is the Group
Leader.

New Junction

The New Junction WG has identified two tasks and IEC has contributed to work on each. The
objective of the first task is to develop non-cadmium containing buffer layers. The priority is on
vacuum processes which could potentially be incorporated in-line, and chemical bath deposition is
not considered a primary option. The objective of the second task is to develop improved TCO
layers to minimize losses for module fabrication and quantify the effect of TCO layers on module
performance. This task is focusing on the high conductivity TCO layers.

Transient Effects

The CulnSe, thin film partnership program organized a transient effects team to determine if
present I-V testing procedures can predict the daily output of CulnSe,-based modules and cells
under field conditions; and, if they cannot, to determine what new testing procedures are needed.

a-Si:H-based Solar Cells

The focus of a-Si research was on contacts and interfaces. This work was motivated by results
from the previous year which showed that the electrical behavior of the n-layer/TCO contact was
critical to incorporating a high performance TCO/Ag back reflector and achieving efficiencies over
10%.

Current-Voltage Characterization of TCO Contacts

We investigated the current-voltage-temperature dependence of the following contacts, where TCO
refers to sputtered ITO or ZnO: TCO/a-Si i-layer, TCO/a-Si n-layer, TCO/pc-Si n-layer, textured
Sn0O,/a-Si n-layer and textured SnO,/uc-Si n-layer. Regarding the contact between sputtered TCO
and a-Si i-layers, ITO has a larger barrier compared to ZnO. Thus, ITO makes a better junction,
hence poorer Ohmic contact, with a-Si i-layers. Also, sputtering ZnO in Ar/O, gives a higher
barrier and more blocking contact with a-Si compared to sputtering ZnO in Ar or Ar/H,. Thus, the
barrier between ZnO and a-Si depends on the ZnO sputtering conditions. It is not known if this is
an interfacial or bulk effect. Regarding the contact between sputtered TCO and a-Si or pc-Si n-
layers, it was found that the pc-Si n-layers have nearly-Ohmic behavior with ITO, ZnO or SnO,
contacts at T > 25°C unlike a-Si n-layers. The pc-Si n-layers have lower contact resistance than a-
Sin-layers. JV behavior at T > 25°C with the a-Si or pc-Si n-layers was nearly independent of the
various sputtered TCO contacts. We found that the a-Si n/SnO, contact is more blocking at T <
25°C than is the pc-Si n/SnO, contact. Thus, puc-Si n-layers are essential for good Ohmic contacts
to TCO for either top or bottom contacts. Their high conductivity allows the decoupling of the
electrical requirements for the contact from the optical requirements, and allows the device to
achieve full benefit of an optical back reflector or other transparent contact without any additional
electrical losses.
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We also investigated the contact between the p-layer and various glass/TCO substrates for
superstrate p-i-n cells as part of our on-going study of ZnO/p contacts and ZnO substrates in
collaboration with R. Gordon at Harvard University. It was found that a new process for APCVD
Zn0 yields much better device performance than previous APCVD ZnO material, and that
straightforward changes to the deposition of the p-layer, such as increasing the B dopant flow can
give significant improvements in FF and V_, of ZnO/p-i-n devices.

Effect of Interface on V

In an effort to improve the stabilized V__, we attempted to duplicate studies from Penn State, NREL
and elsewhere by modifying the initially deposited i-layer to include either hydrogen dilution or
graded a-SiC. This resulted in only a small (~10 mV) improvement in initial V_, and no
improvement in degraded V , or efficiency. We conclude that without hydrogen dilution of the
bulk i-layer we will not see gains reported by others with hydrogen diluted interface layers since
the bulk degradation dominates.

Team Participation

IEC is a member of the National a-Si Team under the Thin Film Partnership Program. Steve
Hegedus is the group leader of the Device Design and Interface team. Much of the work described
above was performed as part of the teaming activities.

CdTe-based Solar Cells

Production of reliable and reproducible CdS window layers and contacts for stable, high
performance CdS/CdTe solar cells are the key issues confronting development of thin-film CdTe
solar cells. Meeting these objectives with manufacturing-compatible processes is crucial to
satisfying the overall NREL program goals and requires an understanding of the controlling
properties and mechanisms. IEC research in this phase was concentrated on: 1) quantifying and
controlling CdS-CdTe interaction; 2) analyzing CdTe contact formation and properties; and 3)
analyzing device behavior after stress-induced degradation. Through extensive interaction with the
National CdTe R&D Team, the applicability of the results and processes to CdS/CdTe cells made
by different techniques has been demonstrated, enabling a consistent framework to be used for
understanding the relationship between device fabrication and operation.

Devices With Thin CdS

IEC demonstrated improved understanding and control of CdS diffusion by employing evaporated
CdTe,_ S, absorber layers and by modifying post-deposition treatments to anneal crystal defects
prior to CdCl, delivery. Significant results include: 1) determining the effect of CdTe, S, alloy
composition on the effective CdS diffusion rate; 2) reducing CdS window layer consumptlon by
3X; 3) fabricating devices with J . > 25 mA/cm® with evaporated CdS layers; 4) determining device
performance as a function of /i nal CdS thickness; and 5) development of an all-vapor cell
fabrication process.

Quantification of CdS-CdTe Interdiffusion

During Phase I, fundamental issues confronting fabrication of devices with ultra-thin CdS were
investigated, allowing the CdS consumption process to be understood and controlled. Through
teaming activity, the role of TCO properties was further elucidated. In particular: 1) measurement
protocols were developed to analyze pinholes in the CdS layer and CdS diffusion into the absorber
layer; 2) low-temperature equilibrium data points were added to the CdS-CdTe phase diagram; 3)
CdS diffusion into CdTe-based absorber layers with a range of sulfur content was quantified; 4)
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CdS diffusion in CdTe was examined for varying post-deposition treatment conditions; 5) the
micro-crystal structure of the resulting absorber and absorber-window layer interface was
examined by TEM for varying post-deposition treatment conditions; 6) a complete materials
analysis with respect to interdiffusion in CdTe/CdS cells was made using CdTe/CdS furnished by
six groups of the CdTe Team, leading to development of a phenomenological model of CdTe/CdS
devices; and 7) TCO properties were identified which render the device structure more tolerant to
complete CdS loss, leading to improvements in baseline efficiency of physical vapor deposited
CdTe/CdS devices.

Contact to CdTe

A key chemical component of working CdTe contacts was clearly identified for the “wet chemical”
fabrication processes typically employed and an alternative, all-vapor, method for fabricating low
resistance contacts was developed. Measurement protocols using variations in light intensity and
temperature during current-voltage measurements were employed to analyze the CdTe contact
characteristics of devices made by different processes having different contacts. Coupled with the
stress-induced degradation and recontacting studies being carried jointly with the CdTe Stability
Team, a model is being formulated which links operational and stability aspects of CdTe/CdS cells.

Team Participation

IEC actively participated in the National CdTe R&D Team by fabricating contacts for the stability
sub-team and devices for the CdS sub-team, analyzing films and devices for both sub-teams,
reporting results through presentations and written reports, and hosting a full-day team meeting on
April 30, 1997. In particular, devices were fabricated on different TCO to augment investigation
of TCO/CdTe junction influence as d(CdS) is reduced. Contacts to CdTe were deposited and
evaluated on CdTe/CdS samples from Solar Cells, Inc., using five different conductors, and from
Golden Photon, Inc. A comprehensive x-ray diffraction analysis was performed on samples made
by six groups within the team, and a full report was submitted at the April, 1997 team meeting.
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1. Introduction

Photovoltaic modules based on thin film systems of a-Si:H and its alloys, CulnSe, and its alloys,
and CdTe are promising candidates to meet DOE long range efficiency, reliability and
manufacturing cost goals. The commercial development of these modules is at different stages and
there are generic research issues that need to be addressed.

quantitative analysis of processing steps to provide information for efficient commercial scale
equipment design and operation;

device characterization relating the device performance to materials properties and process
conditions;

development of alloy materials with different bandgaps to allow improved device structures for
stability and compatibility with module design;

development of improved window/heterojunction layers and contacts to improve device
performance and reliability; and

evaluation of cell stability with respect to illumination, temperature and ambient and with
respect to device structure and module encapsulation.

The critical issues that are being addressed under this four-year NREL program for the specific thin
film materials system are discussed below.

1.1 CulnSe,based Solar Cells

CulnSe, has a bandgap of 1 eV and the devices typically have V _ less than 0.5 V. This bandgap is
about 0.5 eV less than required for a single junction device to have optimal efficiency for terrestrial
applications. Further, the high J of these devices reduces module performance because of higher
cell spacing and series resistance losses and because devices with low operating losses typically
suffer larger fractional losses as the devices are operated under real PV module operating
conditions (module operating temperatures of 50° to 60°C) as compared to operation under
standard measurement conditions (25°C). Champion cells have been made with bandgaps of about
1.2 eV through the addition of Ga. It is desirable to further increase the bandgap from 1.4 to 1.6
eV for improved module performance.

Presently, most companies developing CulnSe, for modules form the CulnSe, films by the
selenization of Cu/In films in either an H,Se or Se atmosphere. Progress has been made in
characterizing the chemical pathways to film growth and estimating the reaction rate constants. As
the process evolves to include the CulnSe, alloys, characterization of the reaction chemistry and
kinetics needs to be extended to the alloys. While reaction pathways have been identified that lead
to the formation of near stoichiometric Culn, , Ga _Se, when the processing temperatures are limited
to below 400°C, all cells with record-level efficiencies were produced by reacting the absorber
layers at temperatures above 500°C. Such high processing temperatures limit the choice of
substrate materials (e.g., lightweight Kapton foil) and make processing and substrate handling in
general more difficult. It is presently not well understood why the champion cells had to be
processed at such high temperatures.

1.2 a-Si:H-based Solar Cells

Amorphous silicon (a-Si) PV modules were the first thin-film PV modules to be commercially
produced and are presently the only thin-film technology that had an impact on the overall PV
markets. However, the efficiencies of these modules have not yet reached the levels that were
predicted in the 1980s. To a significant degree this is due to the intrinsic degradation of a-Si under
illumination. The amount of light-induced degradation can be limited to 20 to 30% in models



operating under prevailing outdoor conditions. Both material processing schemes and device
design schemes have been developed to improve the stabilized solar cell efficiency of a-Si solar
cells. The use of multijunction devices (allowing the use of thinner absorber layers in the
component cells) and the use of employing light-trapping appear to be the most powerful device
design schemes to improve stabilized device performance.

The US industry is currently using these approaches to build a-Si-based modules. The so-called
substrate type devices are built on stainless steel foil, covered with a “back reflector.” The
superstrate devices are built on glass coated with transparent conductors (TCO). The texture and
transparency of the TCO contacts are critical to improve light-trapping and J .. Reducing optical
losses in the TCO will allow thinner i-layers to generate the same J_, thus improving stability.
The national amorphous silicon teams have broken down the optimization of stabilized cell
performance into the individual high-, mid-, and low-bandgap component cells. However, the
optimization of two-terminal dual or triple-junction cells has further requirements such as to
minimize the electrical and optical losses in the internal p/n junctions. The p and n layers of a cell
have to be optimized not only to result in optimum performance of the component cells, but also to
give the lowest losses in multi-junction devices.

1.3 CdTe-based Solar Cells

Instability of CdTe-based solar cells and modules is commonly assumed to be related to the rear
contact, especially if this contact is Cu-doped. There is a need to further develop a stable ohmic
contact for CdTe compatible with monolithic integration technologies. New contacts must be
tested and a method developed to rapidly characterize stability. It appears likely that the
optimization of such a contact depends also on the details of the other layers used in the device
(CdTe, CdS, SnO, type of glass).

The effects of high temperature processing, either during deposition or after film growth, and
CdCl, treatments on the operation of the device are not well characterized. Of particular concern is
the uniformity of large-area modules and the “robustness” of such processes. Questions
concerning CdS-CdTe interdiffusion, O and Cl doping, and chemical reactions between CdCl, and
CdTe need to be addressed quantitatively.

Although many researchers have produced devices with 12% efficiency, few have exceeded 14%.
The challenge is to obtain high values for J without loss of V_, and a good spectral response at

short wavelengths (I < 500 nm) without sacrificing the spectral response at longer wavelengths. It
is important to understand which factors lead to cells in which such losses can be avoided. It has
been established that cell parameters are sensitive to the details of the CdS/CdTe interface.
Understanding the mechanisms in detail would accelerate device optimization, which is more and
more realized to be an interactive process requiring the optimization of each layer in the device
depending on all the other layers present.

1.4 Organization of the Report

This report is organized into three technical sections: CulnSe,-based solar cells, a-Si:H-based
solar cells, and CdTe-based solar cells. Each section describes the progress made in addressing
the critical issues discussed above during phase I of the program. Based on the results of this
phase, the statement of work for phase II was evaluated and modified accordingly.



2. CulnSe,-based Solar Cells
2.1 High Bandgap CulnSe, Alloys

2.1.1 Introduction

CulnSe, has a bandgap of 1.0 eV and most Cu(InGa)Se, based devices have absorber layers with
Ga/(In+Ga) » 0.25 which gives a bandgap of 1.15 eV and results in devices with open circuit
voltages < 0.65V. Higher Ga concentrations to increase the Cu(InGa)Se, bandgap result in a
tradeoff of higher open circuit voltage and lower short circuit current which may allow increased
cell efficiency. Further, module performance should be improved due to lower resistive losses,
thinner ZnO with less optical loss and/or greater interconnect spacing with reduced associated area
related losses.

We have previously demonstrated Cu(InGa)Se, solar cells with 15% efficiency for Ga/(In+Ga) £
0.5 or bandgap (Eg) £ 1.3 eV [101, 102]. With higher bandgap a decrease in cell efficiency was
shown to be caused by poor collection of light generated minority carriers in the Cu(InGa)Se,
absorber layers. In this work we have continued characterization of Cu(InGa)Se, devices with
increasing Ga content and bandgap. In addition, we have begun to investigate other Cu(InGa)Se,
based alloy materials, CulnS, and Cu(InAl)Se,, which may provide alternative means to achieve
improved device performance with Eg> 1.3 eV.

2.1.2 Cu(In,Ga)Se, device analysis

As the bandgap of CulnSe, 1s increased by alloying with Ga or S, the loss in efficiency due to the
decrease of light generated current with increasing voltage becomes important. The standard
technique of quantifying this loss is to analyze spectral response measurements made as a function
of applied voltage. Instead, it is shown how to determine the voltage dependence of the light
generated current by an analysis of the current-voltage (I-V) measurements made at two different
light intensities. By adding an [-V measurement at a third light intensity one can also determine if
the analysis technique is valid ([103] and Appendix 1).

2.1.2.1 Experimental procedures

It has been demonstrated that the loss in efficiency of Cu(In,Ga)Se, solar cells with high Ga
content is due to a decrease 1n fill factor, and to a lesser extent V , which is caused by a drop in the
light generated current with increasing forward voltage [101, 102]. This type of loss mechanism is
well known in amorphous silicon solar cells where -V measurement and analysis techniques have
been developed to determine the voltage dependence of the light generated current, J; (V), [104,
105].

In most solar cells, it is possible to correct for parasitic resistive losses by measuring and
subtracting the small shunt, R, . and series resistance, R ., losses from the measured J - V
data. This then leaves the junction current, J, (V'), and the voltage dependent light generated
current, J, (V'). If J, (V') is independent of light intensity and J; (V') is proportional to the light
intensity, J, (V') can be found by subtracting the corrected J-V data measured at two different light
intensities. One can also determine if the assumptions are correct by using additional J-V
measurements made at other light intensities to determine J, (V') independently and comparing.

J-V measurements were made on Cu(In,Ga)Se, solar cells at four different light intensities: (1) full
AM1.5 Global normalized to 100 mW/cm?, (2) ~90% AM1.5G, (3) ~10% AM1.5G and (4) Dark.
The reduced light intensities were achieved using neutral density screens. Two high light

intensities (full & ~90%) and two low light intensities (~10% & dark) were chosen to give accurate



comparisons when subtracting the J'-V' data. R, . was determined from finding the minimum
dJ/dV, usually from the dark data, in reverse voltage bias. R, ... was found from the intercept of
dV/dJ vs. 1/J. The lower light intensities, ~10% and dark, are used in the R, determination in
order to reduce interference from J, (V) effects. After correcting all the data for these losses, the
high intensity J'-V' data were subtracted from the low intensity data. Except for high forward
voltage bias, the different subtractions are basically identical. This shows that the assumptions that
J, (V') is independent of light intensity and J, (V') is proportional to the light intensity are valid.

2.1.2.2 Results

Table 2.1 shows the results of the previously described measurements and analysis when applied
to various Cu(In, ,Ga,)Se, solar cells. The solar cells used for this analysis were chosen from two
categories: (1) moderate Ga content (X » 0.3) and fairly high efficiency and (2) high Ga content
(X=0.5—>0.7) and high V .. As can be seen from this table, the J, (V) losses, which varies
from cell to cell, primarily affects FF and V _ and hence Eff. However, unlike the best devices
examined in References [101] and[102], these J; (V) losses do not obviously increase with
increasing Ga content.

Table 2.1 J-V parameters for various Cu(In,Ga)Se, devices measured and
analyzed (see text).

Measured at AM1.5 Global Derived Series and Calculated AM1.5 Global J-V
@100mw/cm’ Shunt Resistances parameters without J; (V) loss,

T =30deg. C; Area=0.13 cm’ ie., J. =7, (V)max.
Eff Voc FF Jsc Rseries Rshunt Eff Voc FF Jsc

(%) | (Volts) | (%) | (mA/ecm®) | (Wem?) | (kWeem?®) | (%) | (Volts) | (%) | (mA/cm?)

High Efficiency Cu(In, Gay)Se, X » 0.3

13.9] 0.606 | 68.8 33.2 0.2 1.7 15.1 0.635 | 71.0 33.5
13.6 | 0.631 72.1 29.8 0.1 2.5 14.2 0.644 | 73.6 30.0
12.8 ] 0.583 67.8 32.4 0.0 0.7 13.7 0.607 | 69.4 32.6
12.8 ] 0.605 68.2 31.0 0.0 1.7 13.5 0.626 | 69.3 31.1
12.6 | 0.612 66.2 31.1 0.5 1.4 14.5 0.637 | 71.9 31.7
12.5] 0.596 | 63.9 32.9 0.4 1.1 14.6 0.621 70.3 33.3

High Voltage Cu(In, yGay)Se, X = 0.5 —> 0.7

791 0.764 | 60.4 17.0 0.0 5.0 10.0 0.792 | 71.2 17.7
6.9] 0.734 | 61.6 15.3 0.4 2.0 9.4 0.760 | 76.2 16.2
10.1] 0.732 | 744 18.5 0.0 5.0 10.6 0.736 | 76.6 18.8




It can be concluded that, by taking J-V measurements with at least three different light intensities,
one can determine if it is correct to analyze these data for J, (V) losses and, if correct, what the
magnitude of these losses are.

2.1.3 CulnS,

CulnS, has a bandgap of 1.53 eV and the Culn(SeS), system allows the bandgap to be varied
continuously from 1.0 to 1.53 eV. CulnS, occurs as a single phase in the region slightly copper
and sulfur rich of stoichiometric in the ternary phase diagram. Unlike CulnSe,, which is single
phase for Cu/In < 1, if the composition of CulnS, becomes at all indium rich, In,S, precipitates to
the surface of the film [106]. The growth of films with Cu/In > 1.1 followed by a KCN etch to
remove segregated CuS from the surface is considered necessary for high efficiency devices. The
CuS enhances the growth of the CulnS, resulting in larger grains [107]. The highest reported
efficiency device for Cu/In precursors reacted in H,S is 10.5% [108].

2.1.3.1 Experimental procedures

The objective of the work done in this contract phase was to develop a process to form single
phase CulnS, from metal precursors in a sulfur atmosphere. This has been approached by
upgrading the flowing H,Se reactor to allow reaction of Cu/In precursors in H,S. The IEC CVD
reactor for selenization of metallic precursors in a quartz tube under flowing H,Se was upgraded to
allow reaction in any combination of H,S and H,Se to form Culn(SeS),. Specifically, the system
has pure H,S, H,Se(16%)/Ar, Ar, and Ar/O, gases available. Modifications to the reactor included
adding the gas handling capability to add H,S, an upgraded control panel to allow controlled
simultaneous flow of H,Se and H,S and modifications to the safety systems. A schematic drawing
of the system is shown in Figure 2.1. Safety features of the upgrade include the choice of a low
pressure H,S bottle stored within the reactor enclosure. A single point MDA TLD-1 H,S gas
detector was added to the reactor enclosure system. The two-stage packed column waste treatment
system in place for the H,Se is also effective to treat H,S in the exhaust.

Experiments were performed to characterize the reaction of individual copper and indium precursor
films on glass with the flowing H,S. The samples were reacted in 2% H,S for 90 minutes at
various temperatures from 250 to 550°C. EDS and XRD analysis were used to characterize the
resulting films. The phases determined by XRD are summarized in Table 2.2.

2.1.3.2 Results

Indium samples had good adhesion, but the indium agglomerated into islands during reaction.

This was minimized by applying a 20 minute heat treatment in dry air at 450°C to each sample prior
to reaction to convert the surface layer of the film to indium oxide. The film reacted in H,S at
250°C was identified as In S, with no other phases detected by XRD. In the films reacted at 350,
450, and 550°C, the films contained a mixture of In,S, and a second phase identified as Na,In,S,.
The amount of Na,In,S, present increased with increasing temperature. To verify the identification
of Na,In,S,, indium samples were prepared on SLG, 7059 and alumina substrates. These samples
were reacted at 550°C. The XRD scans for the samples on SLG and 7059 are shown in Figure
2.2. The Na,In,S, is present with some In,S; on the SLG sample, while only In,S; is found in the
7059 glass sample.

Cu films deposited on soda lime glass substrates resulted in single phase Cu, ;S when reacted at
350, 450, and 550°C. Adhesion problems for films reacted at 250°C prevented any
characterization in that case. Cu films deposited on 7059 borosilicate glass substrates resulted in
Cu, .S, Cu, ,,;S, or an amorphous phase depending on the reaction temperature as shown in Table
2.2.



A set of Cu/In samples, with Cu/In » 0.9, on soda lime and 7059 glass were also reacted at
various temperatures and the phases determined by XRD are also listed in Table 2.2. The XRD
measurements of the films on soda lime glass revealed CulnS, peaks with a small amount of
Na,In,S,. Films on 7059 glass had CulnS, with InS, and Cu,,In, at the lower temperatures as

indicated below.

Table 2.2 Phases observed by XRD in Cu, In, and Cu/In precursor films on
soda lime and 7059 glass substrate and reacted in H,S at different temperatures.

Precursor substrate 250°C 350°C 450°C 550°C
Cu soda lime poor Cul.8S Cul.8S Cul.8S
adhesion
Cu 7059 Cul.93S Cul.93S, amorphous
Cul.8S
In soda lime In,S, In,S,, In,S;, In,S;,
Na,In,S, Na,In,S, Na,In,S,
In 7059 In S, In,O, | In,S;, In,O; | In,S;, In,O; | In,S;, In,O,
Cu/In 7059 - CulnS,, CulnS,, CulnS,,
Na,In,S, Na,In,S, Na,In,S,
Cu/In 7059 CulnS,, CulnS,, CulnS, CulnS,
In(S,, Cu,,In,
Cu,,In,

The reaction of Cu/In precursors, with Cu/In > 1, was performed at different H,S concentrations
from 0.125 to 3% in Ar. The films were reacted in the flowing H,S/Ar at 450°C for 90 min. The
morphology of the resulting films changed with H,S concentration as demonstrated by SEM
micrographs of films reacted at 0.25% and 2% in Figure 2.3. The films all have an increase in the
Cu/In ratio from the precursor to the reacted film attributed to loss of volatile In S species. This
In loss could be minimized by reducing the ramp time from room temperature to reaction
temperature. The In loss could also be minimized by holding the film at an intermediate
temperature, e.g. 325°C, for 10 minutes before ramping up to the final reaction temperature. This
process yields a reproducible composition and morphology with Cu/In >1 which can be made
single phase CulnS, with a post-deposition KCN etch.

Subsequent work will focus on the simultaneous reaction with H,S and H,Se to form single phase
Culn(SeS), and allow control of the bandgap over the range 1.0 - 1.5 eV. Devices will be
fabricated and characterized to supplement more detailed material characterization.
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Figure 2.3 SEM micrographs at 2000x magnification showing the change in
morphology of Cu/In films reacted at different H,S concentrations.

2.1.4 Cu(InAl)Se,

The band gap of Cu(InAl)Se, can be varied from 1.0 eV to 2.7 eV by varying the Al/(Al+In) ratio
from 0 to 1.0. This steep variation of band gap in this alloy system can be exploited to achieve the
optimum band gap for an absorber of approximately 1.4 eV by replacing only 25 % of In by Al in
CulnSe,. In contrast, about 60% of In has to be replaced by Ga to obtain 1.4 eV in the
Cu(InGa)Se, system. In analogy with Cu(InGa)Se,, it may be preferable to replace as small an In
content as possible in order to retain better device performance. Other practical advantages of
using Al over other materials in current use for engineering the band gap, such as Ga and S, are the
availability and ease of handling. Also, it is easier to sputter deposit Al than Ga.

Existence of a continuous solid solution for the CulnSe, - CuAlSe, system has been established in
crystal-form [109, 110, 111] and in thin film-form [112]. Powder diffraction studies have showed
that the lattice parameters vary linearly with ‘x” in Culn, Al Se, [110, 111]. The energy gap (Eg)
is almost linear with ‘x’. The authors in Reference 111 have provided a relationship for the
variation of Eg with X’ as:

E, (x) = E, (0) + bx(1-x) + [E, (1)- E, (0))x  :b=0.51 2.1)

2.1.4.1 Experimental procedures

It was the goal of this work to obtain single phase Cu(InAl)Se, thin films by selenization of Cu-Al-
In precursors. The Cu thickness was chosen to be 2500 A to obtain a final selenized film thickness
of approximately 2 um. The precursors were deposited either by e-beam evaporation or by
sputtering of individual elements on molybdenum coated soda lime glass substrates. There was no
intentional heating of the substrates during the deposition of the precursors. The Al layer was
buried under either the In or Cu layer because Al would rapidly oxidize during transfer of
precursors to the selenization reactor and the oxide layer would be very stable. Two sets of
precursors were prepared: one set with Al/(Al+In) ratios 0.15, 0.30, and 0.45 and another set
with Al/(Al+In) ratios 0.05, 0.10, 0.15, and 0.20. Selenization was carried out at 450°C to 550°C



with a mixture of H,Se/Ar/O, flowing. Selenized films were characterized by SEM, EDS and
XRD.

2.1.4.2 Results

For the precursor stacking sequence Cu/Al/In only elemental phases Cu, Al and In were observed
in the as-deposited state. The Al layer between the Cu and In layers prevents alloying of Cu and
In. Al and In forms a eutectic and have very little solid solubility in each other. Cu-Al form a
series of intermetallic compounds: Cu,Al,, CuAl,, Cu,;Al, Cu,Al and Cu,Al. After annealing at
450°C for 10 minutes the precursor with Al/(Al+In) ratio of 0.45 contain Cu,A,, and In, the
precursor with Al/(Al+In) ratio of 0.30 contains Cu,A,,, Cu-Al solid solution and In, and the
precursor with Al/(Al+In) ratio of 0.15 contain Cu-Al solid solution and In. These results indicate
that Cu-Al alloys form preferably over Cu-In alloys.

Films obtained by selenizing Cu/Al/In precursors with Al/(Al+In) ratios 0.15, 0.30 and 0.45 at
450°C for 90 minutes are non-uniform with In-rich regions. In-rich regions form during the ramp-
to-reaction temperature due to the high surface mobility of In atoms. Due to preferential formation
of Cu-Al alloys over Cu-In alloys, most of the In is present in the elemental form. Elemental In is
able to diffuse rapidly on the surface to form islands of In. This non-uniformity in In distribution
present after the ramp-to-reaction temperature gives rise to the compositional non-uniformity in the
selenized films.

Films obtained by selenizing Al/Cu/In at 450°C precursors with Al/(Al+In) ratios 0.15, 0.30 and
0.45 were also found to be non-uniform. XRD revealed that in all of the above selenized films
CulnSe, phase was predominant with a signature of CuAlSe, phase in some films. Some
unidentified peaks were also observed in few films. Spot EDS analysis on cross-sections suggests
the presence of unreacted Cu-Al alloy at the Mo/film interface. Selenization at 500°C yielded
results similar to those observed at 450°C. Al/Cu/In precursors selenized at 550°C showed definite
formation of CuAlSe, for Al/(Al+In) ratios 0.30 and 0.45. Films with Al/(Al+In) ratio of 0.15 did
not show the presence of CuAlSe,. To remove non-uniformity due to In agglomeration, the
precursors were exposed to H,Se during the ramp-to-reaction temperature. XRD scans of these
films, however, did not show single phase Cu(InAl)Se,. Figure 2.4 shows an XRD scan of a film
obtained by selenizing an Al/Cu/In precursor at 550°C for 90 minutes. The pattern reveals the
presence of two distinct phases, CulnSe, and Cu(InAl)Se, with Al/(In+Al) » 0.55. Even after
post-selenization annealing at 600°C for 60 minutes, a single phase Cu(InAl)Se, film was not
obtained.

Al/Cu/In precursors with Al/(Al+In) ratios of 0.05, 0.10, 0.15 and 0.20 were selenized at 550°C
for 90 minutes with H,Se flowing during the ramp-to-reaction temperature. Figure 2.5 shows the
detailed XRD scans of the several characteristic peaks in the resulting films . The Al/(Al+In)
ratios were chosen after realizing the difficulty in obtaining single phase at 550°C for 90 minutes
reaction time for higher Al/(Al+In) ratios of 0.30 and 0.45. Selenization at 600°C was not
attempted because soda-lime glass substrates soften and loose their mechanical integrity at this
temperature. In Figure 2.5(a)-(d) the X-ray peaks shift to higher angles, i.e., to lower d-
spacings, with increasing Al content in the films. Due to the overlap of the Se ‘L’ and Al ‘K’ X-
ray energies, EDS compositional measurements of these films were not accurate. The X-ray peak
positions of the film from the precursor with Al/(Al+In) of 5% indicates that this film contains
CulnSe, to a large extent with very little or no Al dissolved in the CulnSe, phase. The other three
films show a definite change in lattice parameter due to Al dissolution in CulnSe,. In Figure
2.5(c), the peak shape of (312)/(116) changes from a doublet due to c/a ratio of a chalcopyrite
structure different from 2.0 to a single peak due to a c/a ratio of 2.0. As the ‘x” in Culn, Al Se,
increases from 0 to 1.0 the c/a ratio of the resulting structure varies from 2.01 to 1.96.



In conclusion, single phase Cu(InAl)Se, films were obtained by selenizing stacked metallic layers
of Al/Cu/In in H,Se at 550°C for 90 minutes.
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2.2 Reduced Cu(InGa)Se, Deposition Temperature and Thickness
2.2.1 Introduction

There are many technical issues which need to be addressed to effectively enable the transfer of
Cu(InGa)Se, deposition and device fabrication technology from the laboratory to manufacturing
scale. In general, these issues provide means to reduce thin film semiconductor process costs.
Shorter deposition time can be achieved with reduced film thickness and increased deposition rate.
Thinner absorber films reduce the total amount of material used and allow faster process
throughput. The minimum thickness of the Cu(InGa)Se, absorber layer may be determined by the
nucleation of the film to form a continuous layer or by the film morphology. From a device
perspective, the minimum thickness may be determined by the minority carrier diffusion length and
optical absorption coefficient of the Cu(InGa)Se, or the ability to incorporate optical confinement.

Lower substrate temperature (T) can lower processing costs by reducing thermally induced stress
on the substrate, allowing faster heat-up and cool-down, and decreasing the heat load and stress on
the entire deposition system. In addition, with lower substrate temperature, stress on the glass
substrate can be reduced and alternative substrate materials, like a flexible polymer web, could be
utilized.

In this work, we have addressed the need to improve process throughput by reducing the
Cu(InGa)Se, thickness and deposition temperature. The approach during this work has been to
first define a baseline process for Cu(InGa)Se, deposition by multisource elemental evaporation
and solar cell fabrication. All other deposition parameters are then held fixed to determine the
effects of varying either the substrate temperature or, by changing the deposition time, film
thickness. Material properties of the resulting Cu(InGa)Se, films have been characterized and their
device behavior has been measured and analyzed.

2.2.2 Experimental procedures

Cu(InGa)Se, films were deposited by thermal evaporation from four elemental sources. Details of
the deposition, film characterization, and device fabrication are described in Reference 101. The
baseline deposition process in this work is the same as described but with T  maintained constant
through the entire deposition. The films are deposited with a Cu-rich first layer, deposited in 32
min. and followed continuously by an In-Ga-Se second layer deposited in 12 min. The fluxes of
Ga and In are constant through the deposition time so there is no grading of the bandgap. A profile
of the source and substrate temperatures are shown in Figure 2.6. This results in ~2.5 um thick
films with Ga/(In+Ga) » 0.3 which gives a bandgap ~ 1.2 eV.

To study the effect of substrate temperatures, Cu(InGa)Se, films were deposited with T, from 600
to 350°C, maintaining fixed source effusion rates and deposition times. To study varying
thicknesses, films were deposited with constant effusion rates and T, and only the times adjusted.

The film thickness was determined by the mass gain after deposition and from cross-sectional
micrographs and the films were characterized by scanning electron microscope (SEM) images,
energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD). Secondary ion mass
spectroscopy (SIMS) measurements were performed at NREL.

The Cu(InGa)Se, films were deposited on soda lime glass substrates with a sputtered 1 um thick
Mo layer. Complete solar cells were fabricated [101] with the chemical bath deposition of ~ 30 nm
CdS followed by rf sputtered ZnO:Al with thickness 0.5 pm and sheet resistance 20 Wsq. Two
different cell configurations were used. Cells with active area » 0.13 cm® were fabricated by
deposition of Ni bus bar/contact tabs and mechanical scribing to define cell areas. Cells with total
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area» 0.5 cm® were fabricated using a Ni/Al grid and 125 nm MgF, anti-reflection layer deposited
by electron beam evaporation and, again, mechanical scribing to define cell areas. Devices were
characterized by current-voltage (J-V) measurements at 28°C under 100 mW/cm*> AM1.5
illumination.
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Figure 2.6 Deposition profile showing source and substrate temperatures for a
standard run with T, = 450°C.

2.2.3 Results: Deposition temperature

Cu(InGa)Se, films were deposited at varying T  with fixed effusion rates that were determined to
give films of composition Cu/(In+Ga) » 0.9 and Ga/(In+Ga) » 0.3 when T = 600°C. This
required the total concentration of metals to be delivered to the substrate with ratios Cu/(In+Ga) »
0.6 and Ga/(In+Ga) » 0.3. Compositional analysis, by EDS, of the films is presented in
Appendix 2. All films have Ga/(In+Ga) » 0.3.

SEM micrographs show that the grain structure of the Cu(InGa)Se, films changes dramatically as
T, changes. SEM micrographs of the top surface are shown in Figure 2.7 and cross sectional
micrographs are shown in Appendix 2. These show columnar grains at T,, = 600°C with typical
grain size 1.5 - 2 um. But the grains become smaller as T, decreases and for T £ 450°C it
appears that single grains do not grow continuously from the Mo to the top surface. In this case,
current in a working device clearly would need to cross several grain boundaries. XRD
measurements did not reveal any significant differences in the film orientation or compositional
distribution at different substrate temperatures. All films have approximately random orientation of
grains, comparable to a powder diffraction pattern. We have shown previously that this is
determined by the orientation of the Mo film [113]. There is no peak broadening, indicating that
the average grain size at the lowest T, is still greater than ~ 300 nm.

While the film deposited at T, = 600°C has the largest grains, the soda lime glass in this case is
well above its softening point during the deposition which resulted in a curved substrate [114].

Cu(InGa)Se, have been shown to contain significant levels of Na impurities when deposited on
soda lime glass substrates [115]. The Na is incorporated into the Cu(InGa)Se, by diffusion and is
therefore expected to be temperature dependent. Depth profiles of the Na content measured by
SIMS are shown at different T, in Appendix 2, Figure 3. The Na level varies by relatively little
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from 400 to 600°C and is actually highest for the lowest T, though diffusion of Na is expected to
increase with increasing T . This may be explainable by Na diffusion along grain boundaries
since there is a greater grain boundary density at the lower temperature. The SIMS profiles for Cu,
Ga, In, Se, Mo, and Na are shown in Figure 2.8 for samples deposited at T = 600, 500, and
400°C. These profiles show that the Cu, In, and Ga are uniformly distributed from the front
surface of the film to the Mo contact at all deposition temperatures.

Finally, solar cells were fabricated with films deposited at varying T and the J-V parameters for
the best cell achieved at each T are listed in Table 2.3. The efficiency (h) decreases slowly as T
decreases from 550°C, but is still 12.8% at 400°C and 10.9% at 350°C. While there is some
tradeoff'in V _ and J , which may be associated with variations in the Ga content and, therefore,
bandgap of the Cu(InGa)Se,, the biggest change is the fill factor. Further analysis of these devices
is presented in Section 2.2.5.

The dependence of grain size with T has been reported previously [116] and at high temperatures
was attributed to the formation of copper selenide phases above ~525°C which act as a “flux” for
grain growth in the Cu rich film [117]. However, the films in this work show an increasing grain
size with increasing T over the entire temperature range. There is only a small drop-off in device
performance with lower T despite the decreasing grain size.

Table 2.3 J-V parameters with varying substrate temperature.

T, v, J, FF h
() (mV) | (mA/em’) (%) (%)
600 0.596 31.2 67.4 12.5
550 0.583 343 71.8 14.4
500 0.606 325 70.0 13.8
450 0.605 32.6 68.4 13.5
400 0.606 325 64.8 12.8
350 0.561 33.2 58.6 10.9

e o

e XN
&

T, = 600°C T, =500°C T, = 400°C

Figure 2.7 SEM micrographs showing a decrease in grain size as T decreases
from 600 to 400°C.
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2.2.4 Results: Film thickness

Using the same effusion rates as above, the effect of thickness has been studied by changing the
deposition times with T, = 450°C to give films with thickness (d) ranging from 2.5 to 1.0 pm as
determined by mass gain of the substrate. The thickness estimated from SEM cross-sectional
micrographs was ~ 0.2 pum thinner than that determined from the mass gain. The composition of
these films was unchanged over the thickness range with all films having Cu/(In+Ga) » 0.9 and
Ga/(In+Ga) » 0.3 and again, no difference in orientation or compositional distribution was
observed by XRD.

Device results for different Cu(InGa)Se, thickness with this deposition process are shown in Table
2.4. Withd 3 1.4 pm the devices have h » 13%. There are no significant thickness related losses
which might include effects of bulk series resistance or back surface recombination. Ford=1.0
um, h decreases due to decreasesin V_, J, and FF. In addition, the J-V curves both in the dark
and under illumination indicate an increased shunt conductance for the thinnest cells. SEM
micrographs in Section 2.2.3 and Appendix 2 show that films deposited with T < 500°C have
decreasing grain size and horizontal grain boundaries. This may lead to morphological defects
which contribute shunt-like characteristics to the J-V behavior of the cells with thinner

Cu(InGa)Se, layers.

Table 2.4 J-V parameters with decreasing Cu(InGa)Se, thickness for films
deposited at T = 450°C.

d+0.2 V., I, FF h
(um) (mV) (mA/cm’) (%) (%)
2.5 0.605 32.6 68.4 13.5
1.8 0.581 33.7 66.6 13.0
1.4 0.590 32.5 69.5 13.3
1.2 0.526 34.2 64.9 11.7
1.0 0.514 30.7 62.5 9.9

2.2.5 Device measurements and analysis

For the six evaporation runs made on which results were reported in Table 2.3, a total of 101
devices from 19 samples were processed and tested. Twenty-four samples of six cells each for a
total of 144 devices were processed and tested from the 10 evaporation runs made at five different
Cu(In,Ga)Se, thicknesses.

In addition, Table 2.5 and Table 2.6 show the averaged J-V parameters, along with their standard
deviation, taken from the highest efficiency test for every sample processed from these evaporation
runs. These results include cells with area » 0.13 cm? tested on an active area basis, and cells with
area» 0.42 cm’ tested on a total area basis. Furthermore, some cells have an MgF, anti-reflection
layer. Although the samples were not processed at identical times or under identical conditions
after the Cu(In,Ga)Se, evaporation runs, they still give an idea of the sample to sample variation,
and the cell to cell variation within a sample, that can occur. There would have been an even wider
variation if the heavily shunted or shorted devices not been excluded.

The statistical data shown in Table 2.5 and Table 2.6 show a great deal of overlap in the J-V

parameters as a function of either thickness or substrate temperature. However, it can be seen that
the averaged efficiency does fall off at the two lowest thicknesses (1.0 and 1.2 pm) and the lowest
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substrate temperature (350°C). In all of these cases there is a decrease in FF due to an increase in
shunting behavior as shown in the values of dJ/dV@J_.. The shunting behavior was also seen in
the dark J-V characteristic. The shunting behavior could lead to a decrease in V , as well. This

could be caused by the rougher and thinner Cu(In,Ga)Se, material. The loss in J_ for thinner

Cu(InGa)Se, cannot be explained by simple morphology.

It is necessary to improve the uniformity of device results within a single Cu(In,Ga)Se,
evaporation run before more detailed differences can be seen.

Table 2.5 Statistics of all the device J-V parameters for each sample made into
cells as a function of substrate temperature. Parameters were taken from the best
average efficiency test. *Shorted or heavily shunted (dJ/dV@J_ > 25 mS/cm?)
not included in the statistics.

Substrate Average + Standard Deviation # of | total
Temp. | Efficiency Jsc V.. FF dv/idl@V, |d)/dV@] | good | # of

°O) (%) (mA/cm’) V) (%) (W-eem®) | (mS/em?) | cells*|cells|  Test Date Sample #
600 |14.56+0.34] 33.4+£0.3|0.610+£0.003|71.4+0.9] 1.5+0.0 | 2.4+0.5 5 5 22-May-97 | 32774-32
600 |12.41+1.09| 31.9£0.9( 0.600+£0.010| 64.9+5.4| 2.0+0.3 | 2.4£1.3 4 6 22-May-97 | 32774-33
600 ]11.39+0.91] 30.7£0.3|0.593+£0.011]62.6+4.0| 2.2+0.2 | 3.5+0.7 4 6 11-Apr-97 32774-23
600 ]10.69+0.55[ 28.7+£0.3 | 0.625+£0.009] 59.6+2.6| 2.8+0.3 | 3.8+0.4 5 6 12-Jun-97 32774-22
550 |13.74+0.68] 32.9+£1.3|0.585+£0.002 | 71.4+0.7| 1.7+0.1 | 1.1£0.6 6 6 22-Sep-97 32808-32
550 |11.47+0.48] 29.3£0.4| 0.566+0.009] 69.2+0.9] 1.9+0.0 | 1.5+£0.9 6 6 16-Sep-97 32808-23
500 |13.224+0.42] 32.0+£0.6| 0.603+0.004 | 68.6+0.8| 1.8+0.1 | 1.8+0.5 3 3 20-May-97 | 32773-32
500 12.78+0.20| 30.2+0.1( 0.606+£0.002 ] 69.9+0.9] 1.8+0.0 | 2.3«£1.1 6 6 18-Apr-97 32773-33
500 |11.58+0.44] 29.6+£0.6| 0.598+0.003 ] 65.3+1.3| 2.3+£0.0 | 3.6£1.6 6 6 16-Apr-97 32773-23
450 |12.85+0.51| 31.3+£0.9]0.600+0.006 | 68.5£1.0| 1.9+0.1 | 1.8+£0.6 6 6 19-Sep-97 32797-33
450 |10.01+1.18f 29.44+1.6]0.539+0.019]62.9+2.5| 2.6+£0.4 | 2.7+0.6 6 6 16-Sep-97 32797-23
400 |[13.09+0.69| 34.4+0.6]0.603+0.004 | 63.0£3.2| 2.1£0.1 | 7.0+£3.6 6 6 22-May-97 | 32771-23
400 [12.32+0.42| 31.2+1.2]10.611£0.002 | 64.7+0.9| 2.4+0.2 | 2.6£0.3 3 3 20-May-97 | 32771-23
400 |[12.15+0.39( 31.6+0.9]0.585+0.003 | 65.8+0.8| 2.3£0.0 | 2.7+1.2 4 5 12-Jun-97 32771-22
400 [11.93+0.48| 30.0+1.1]0.587+0.004|67.7£0.6| 1.9+0.0 | 2.6+0.8 5 6 20-May-97 | 32771-33
400 |11.78+1.40f 32.0+0.9]0.576+0.008 | 63.7£5.0| 2.1+£0.3 | 4.1£1.7 2 4 11-Apr-97 32771-32
400 |10.77+0.40( 27.940.3]0.580+0.002 | 66.6+1.8| 2.0+£0.1 | 3.7+£1.0 6 6 05-Jun-97 32771-13
350 ]10.56+0.21| 33.4+£0.8 | 0.557+£0.013 | 56.8+1.2| 2.5+0.1 | 5.7+0.2 2 3 20-May-97 | 32780-33
350 0 6
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Table 2.6 Statistics of all the device J-V parameters for each sample made into
cells as a function of Cu(InGa)Se, thickness. Parameters were taken from the

best average efficiency test. *Shorted or heavily shunted (dJ/dV @ J, > 25

mS/cm?) not included in the statistics.

Thick- Average + Standard Deviation #of | total

ness | Efficiency Jse V.. FF dv/dl@V, | dl/dV@J,| good | #of

(um) (%) (mA/cm®) \2 (%) (Weem®) | (mS/em?) | cells* | cells | Test Date Sample #
2.5 ]12.85+0.51] 31.3+£0.9{0.600+0.006] 68.5+1.0 | 1.9+0.1 1.8+0.6 6 6 19-Sep-97 | 32797-33
2.5 112.39+£0.54] 32.1+1.3[0.572+0.004| 67.6+0.9 | 1.8£0.0 | 2.3+1.0 5 6 28-Aug-97 | 32798-32
2.5 |11.39+0.77] 30.5+£0.7{0.558+0.010] 66.9£3.5 | 1.9+0.1 3.7£4.5 6 6 28-Aug-97 | 32798-23
2.5 110.01£1.18]29.4+1.6{0.539+0.019| 62.9+2.5| 2.6£0.4 | 2.7+0.6 6 6 16-Sep-97 | 32797-23
1.8 ]12.90+0.78] 33.2+1.7[0.582+0.003| 66.9+0.8 | 1.8+0.2 | 2.4+1.3 4 6 16-Sep-97 | 32800-23
1.8 |11.78£1.90] 33.1+1.4{0.552+0.008| 64.3+8.4 | 1.9+0.4 | 6.0+7.8 5 6 16-Sep-97 | 32801-32
1.8 ]10.59+0.41] 30.0+0.6{0.546+0.006| 64.7£2.2 | 2.2+0.2 | 2.7+1.8 6 6 10-Sep-97 | 32800-13
1.8 ]10.55£0.12]29.4+0.2{0.522+0.001| 68.6+0.4 | 1.9+0.0 | 2.0+0.7 5 6 5-Sep-97 32801-23
1.8 9.90+0.30 | 28.6+0.2]0.527+£0.006] 65.6+0.9 | 2.2+0.0 | 3.0+£1.0 6 6 11-Sep-97 | 32801-13
1.8 0 6 5-Sep-97 | 32800-32
1.4 ]13.12+£0.12]32.1+0.2{0.594+0.000| 68.8+0.7 | 1.9+0.1 1.8+1.2 3 6 20-May-97| 32777-32
1.4 |11.42+£0.41]31.5+0.3[0.558+0.005| 65.0+1.8 | 2.2+0.0 | 3.1+1.8 5 6 16-Apr-97 | 32776-23
1.4 ]10.90£0.55]30.3+0.0{0.543+0.004| 66.4+2.8 | 2.0£0.0 | 3.4+2.9 4 6 15-Apr-97 | 32777-23
1.4 ]10.25£2.42]31.3+0.7{0.528+0.033[61.2+11.4| 2.7£1.3 | 4.8+6.7 6 6 16-Apr-97 | 32776-32
1.2 ]10.64£0.51]31.7+1.2{0.509+0.004| 66.0+2.2 | 1.8+0.0 | 4.1+2.9 6 6 16-Sep-97 | 32802-23
1.2 ]10.50£1.00] 31.7+2.4{0.525+0.005| 63.0+£2.1 | 2.1£0.2 | 5.5+1.8 6 6 19-Sep-97 | 32806-32
1.2 8.71+0.42 1 28.6+0.6{0.483+0.005| 63.1+1.5 | 2.2+0.1 5.2+1.8 5 6 10-Sep-97 | 32802-13
1.2 8.17+0.76 |1 28.0+0.6{0.479+0.011| 61.0£5.2 | 2.5£0.2 | 7.0+6.6 6 6 12-Sep-97 | 32806-23
1.2 7.16+£1.04 | 28.5+£0.8]0.434+0.038| 57.6+2.0 | 2.3+£0.0 | 10.8+1.9 4 6 8-Sep-97 | 32802-32
1.0 9.10+£0.62 | 28.8+£1.4/0.507+£0.009] 62.3+3.1 | 2.7+0.6 | 5.6%2.1 6 6 16-Sep-97 | 32803-13
1.0 8.63+0.68 1 27.9+1.3(0.489+0.013| 63.2+2.4 | 2.3£0.2 | 5.0+2.0 6 6 15-Sep-97 | 32805-23
1.0 8.46+0.63 |1 29.3+1.4(/0.482+0.007| 60.0+4.3 | 2.1£0.2 | 7.6+1.7 6 6 8-Sep-97 | 32803-23
1.0 4.96+0.76 | 27.8+1.1/0.367+0.038] 48.6+£2.9 | 3.1+0.5 | 18.2+3.8 3 6 15-Sep-97 | 32805-32
1.0 0 6 8-Sep-97 32803-32

2.3 Teaming Results

2.3.1 Introduction

IEC is a member of the National CIS Team under the NREL Thin Film Partnership Program. The
CIS Team effort includes four working groups (WG). Of these, IEC has been a member of the
Transient Effects WG and the New Junction WG, for which William Shafarman is the Group
Leader. The work done at IEC for each of these Working Groups is described below.

2.3.2 New junction results

The New Junction WG has identified two tasks and IEC has contributed to work on each. The
objective of the first task is to develop non-cadmium containing buffer layers. The priority is on
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vacuum processes which could potentially be incorporated in-line and chemical bath deposition is
not considered a primary option. The objective of the second task is to develop improved TCO
layers to minimize losses for module fabrication and quantify the effect of TCO layers on module
performance. This task is focusing on the high conductivity TCO layers.

For the first task, IEC provided device fabrication and J-V and QE measurements for
Cu(InGa)Se,/ZnO samples provided by other team members. This included ZnO layers deposited
by MOCVD at Washington State University (WSU), by dc reactive sputtering at University of
South Florida (USF), and by rf sputtering from a ZnO:Al, O, target. Samples were processed with
and without a solvent/water rinse prior to ZnO deposition. These layers were deposited on
Cu(InGa)Se, films provided by NREL and EPV. Device completion included deposition of our
baseline ZnO:Al, deposition of Ni contacts or a Ni/Al grid, and mechanical scribing. IEC also did
experiments to compare the effect of sputtering from a ZnO:Al O, target in different atmospheres.

A summary of the J-V tests on Cu(InGa)Se,/ZnO cells completed at IEC is given in Table 2.7. In
the table, R _ is the slope dV/dJ at ] = 0 and G_, is the slope dJ/dV at V = 0. All measurements in
this case are active area results with no AR layers on the cells. The results include a
Cu(InGa)Se,/ZnO device with the MOCVD 1-ZnO from WSU on Cu(InGa)Se, deposited at NREL
with 13.9% efficiency. J-V and QE curves for this device and a description of the process for the
1-ZnO deposition for are described in [118]. The growth includes an initial growth step at 250°C
with flowing hydrogen. An additional set of 10 samples with the MOCVD i-ZnO on absorber
layers from NREL and SSI, completed and tested at IEC, showed that this first step was necessary
for good device performance [118].

Results shown in Table 2.7 where the i-ZnO layers were deposited by EPV in Ar:O, indicate
shorted devices while i-ZnO deposited in Ar:H, gave up toh =9%. An experiment to determine
whether the H, plays a beneficial role in this process or whether merely the absence of O, in the
sputter gas is critical was addressed in a set of devices fabricated completely at IEC. Previous
results with a high resistivity (~100 W-ecm) ZnO buffer layer deposited by sputtering from the
Zn0:Al, O, target in Ar/O, with 2% O, gave shorted devices. Devices were fabricated with
absorber films from a single deposition of evaporated Cu(InGa)Se, with Ga/(In+Ga) » 0.25. ZnO
layers were sputtered in either pure Ar or Ar:H, with 4% H,. All cells, including a control sample
with a CdS buffer layer deposited by CBD, had a 0.5 um thick ZnO layer sputtered in Ar as the
primary TCO layer deposited on top of the buffer layer. In each case, the best device had h = 8%
as shown in Table 2.8, while the control sample gave h = 13%. The Cu(InGa)Se,/ZnO samples
had poor reproducibility over the 12 devices on two pieces with each buffer layer, primarily due to
shunting in the dark and illuminated J-V characteristics. These preliminary results show no
advantage to the presence of H,.

Under the second task, “Improved TCO Layers,” the New Junction WG has focused on an
observed increase in ZnO sheet resistance when it is deposited on CdS. This was shown at IEC
for different TCO materials deposited on glass and glass/CdS substrates. The samples include
single layer low resistivity ZnO:Al, bi-layer high /low resistivity ZnO:Al, and ITO. The CdS was
our standard CBD film deposited in a double dip to give thickness ~70 nm The average sheet
resistance of each sample type is given in Table 2.9. In each case the resistance of the ZnO
deposited on CdS is higher than that deposited on bare glass. Optical transmission and reflection
of each sample were also measured at IEC. These samples were sent for FTIR, atomic force
microscopy, and Hall effect measurements at the Universities of Florida and South Florida.

Two different experiments at IEC confirmed that the increase in ZnO resistance also occurs when
the CdS/ZnO layers are deposited on Cu(InGa)Se,. The sheet resistance of the ZnO in a complete
glass/Mo/Cu(InGa)Se,/CdS/ZnO structure was measured on working devices. This was done by
fabricating devices with two separate Ni contact tabs deposited on the ZnO and measuring the J-V
curve between them with a bias voltage maintained between the front of the device and the Mo back
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contact. The tab-to-tab resistance does not change with the bias voltage confirming that there is no
significant leakage through the device and the measured resistance is due to the ZnO. The sheet
resistance is then given by

&l g

R_=R —
Y tab - to- tab
sq ab - to- ta eWﬂ

(2.2)

where 1 = 0.52 cm is the cell width and w = 0.25 cm is the spacing between the contact tabs. On a
typical device, #32744.32, for which the ZnO witness slide gave R, = 18 Wsg, the tab-to-tab
measurement in the device gave R, =29 Wisq, similar to the increase seen on the glass/CdS
samples.

Table 2.7 J-V parameters for Cu(InGa)Se,/ZnO devices completed and tested at
IEC.

Cu(InGa)Se, i-ZnO Best Cell
pe. # pre-rinsg source process Ve Je FF eff R, G,
(V) (mA/em?®) (%) (%)  (W-cnt) (mS/cm?)

NREL 675-2 yes WSU  MOCVD | 0.529 33.1 55.6 9.7 2.3 10.
NREL 679-9 yes | WSU  MOCVD | 0.524 335 69.5 12.2 1.6 1.
EPV 716-3-1 yes | WSU  MOCVD shorted
EPV 709-1-1 yes | WSU  MOCVD | 0411 33.5 62.5 8.6 1.5 6.
NREL681-5 - WSU  MOCVD | 0.267 25.4 32.7 2.2 6.4 50.
NREL 679-5 yes | WSU  MOCVD | 0.581 34.5 69.2 13.9 1.9
EPV 716-3-2 yes | WSU  MOCVD | 0.426 37.1 61.0 9.6 1.5
EPV 709-1-2 - WSU  MOCVD | 0412 37.7 56.3 8.8 2.0
NREL 681-4 yes USF react-sp 0.082 21.8 293 0.5 2.8 180
NREL 680-8 - USF react-sp 0.083 2.9 28.1 0.1 21.4 29
EPV 709-2-6 yes USF react-sp 0.085 243 28.1 0.6 2.8 225
EPV 709-1-5 - USF react-sp 0.115 18.8 29.6 0.6 43 120
EPV 709-2-1 yes EPV  sput Ar:O, shorted
NREL 680-3 yes EPV  sput Ar:O, shorted
EPV 709-2-4 - EPV  sput Ar:0, shorted
NREL 680-4 - EPV  sput Ar:O, flaked off
EPV 709-2-3 yes EPV  sput Ar:H, | 0.127 23.9 333 1.0 3.0 96.
EPV 706-3-3 yes EPV  sput Ar:H, | 0.107 22.5 32.9 0.8 2.8 112.
NREL 679-8 yes EPV  sput Ar:H, | 0.386 26.4 45.5 4.6 3.7 16.
EPV 709-2-2 - EPV  sput Ar:H, | 0.125 25.0 314 1.0 3.3 123.
NREL 679-4 - EPV  sput Ar:H, | 0.501 29.2 62.0 9.1 2.1 2.
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Table 2.8 Device results with ZnO buffer layers deposited on Cu(InGa)Se, in Ar
and Ar:H, sputter gases.

pe. # Cds ZnO:Al V.. J. FF h
deposition %) (mA/cm?) (%) (%)
32814.21| CdS Ar 0.560 31.1 73.2 12.7
32814.22| none Ar 0.538 243 61.8 8.1
32814.11[ none Ar:H, 0.488 26.1 61.2 7.8

Table 2.9 Sheet resistances of different TCO materials deposited on glass and
glass/CdS substrates.

R, (Wsq)
TCO on glass on glass/CdS
bi-layer ZnO 18 25
single layer ZnO 26 35
ITO 20 30

2.3.3 Transient Effects
2.3.3.1 Introduction

The CulnSe, thin film partnership program organized a transient effects team to determine if
present I-V testing procedures can predict the daily output of CulnSe,-based modules and cells
under field conditions; and, if they cannot, determine what new testing procedures are needed.

2.3.3.2 Initial Tests

As a start, it was decided to stress (with temperature, illumination and electrical bias) one of IEC's
Cu(In,Ga)Se, devices for a period of hours and monitor its recovery.

This device stressed at a temperature of 80°C with and without illumination (approximately

88 mW/cm?) under various conditions of electrical bias (-0.5 V, 0.0 V, ~ maximum power,

0.0 mA/cm” and +30 mA/cm®). After each stress, the illumination and voltage bias was removed
and they were brought to room temperature in about 3 minutes. Their recovery was monitored by
measuring and analyzing their J-V behavior at three different light intensities plus dark at
logarithmically spaced time intervals.

The IEC Cu(InGa)Se, device (IEC-32702-32-7) was put through this stress sequence. Over the
time it was stressed and monitored, the only significant change was the development of a shunt
when held in reverse bias. The J-V results of these stress tests are shown in Figure 2.9 to Figure
2.16.
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Figure 2.10 J_, V ., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,
in the dark and at a forward current of 30 mA/cm’ for 10 hours
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Figure 2.11 J_, V ., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,
in the dark and at V =-0.5V for 12 hours.

" Still shunted from a previous stress test.
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Figure 2.12 J_, V ., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,
AMI1 illumination and at a forward current
of mA/cm? for 12 hours.
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Figure 2.13 J_, V., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,
AM1 illumination and at V =-0.5V for 12 hours.

" Shunt developed during stress test.
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Figure 2.14 J_, V ., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,

AMI1 illumination and R,
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Figure 2.15 J_, V., FF and efficiency vs. recovery time for device
IEC- 32702 32 7 after stress at a temperature of 80°C,
AM1 illumination and at V _ for 8.5 hours.
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Figure 2.16 J_, V , FF and efficiency vs. recovery time for device
IEC-32702-32-7 after stress at a temperature of 8§0°C,
AM1 illumination and at J for 11 hours.

2.3.3.3 Siemens Solar Industries Devices

Attempts have also been made to duplicate and analyze the transient behavior Siemens Solar
Industries CulnSe,-based devices undergo during lamination. This transient behavior is
characterized by a loss in efficiency which slowly recovers if illuminated at open circuit conditions.
The lamination cycle is replicated by subjecting the devices to a temperature of 85°C for a period of
16 hours while unconnected in the dark. The recovery @ 25°C under various conditions is being



monitored by periodically measuring and analyzing the J-V behavior at four different light
intensities (including dark).

Figure 2.17 is a picture of a typical substrate supplied by Siemens Solar Industries. Each substrate
contains two delineated solar cells with an approximate area of 1.0 cm*. Figure 2.18 shows the
transient effects of the lamination cycle (T = 85°C, t = 16 hrs., Ill. = Dark) on the efficiency of one
of these solar cells. The recovery illumination (except for J-V tests) is supplied by ELH lights and
set to approximately 88 mw/cm’.

0.0 05 1.0 1.5 in
L 1 J

Figure 2.17 Picture of a Siemens Solar Industries substrate with two CulnSe,-
based solar cells (area ~ 1.0 cm?).
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J.. and fill factor recovery under illumination at

25°C of device SSI-255-F2 after being subject
to a lamination cycle (see text).

The plots of J;. and V. shown in Figure 2.18(b) & (c) demonstrate that this transient loss in
efficiency is not due to either a change in light generated current or diode parameters.

Figure 2.18(d) shows that the transient loss in efficiency is largely due to a change in fill factor.

As can be seen from the slope of the J-V curves (see Figure 2.19), the loss in fill factor is due to an

increase in the series resistance (Ry).

31



10 o

g ‘ Lot

B 6 o :
(_I) . / 4 -
=3 / ]
S 4 ]
= i unstressed | ]
o 2 ] 15 min -
[ | ----- 4200 min | ]

0 -I L 11 l 11 11 l 11 11 l 11 L I-

0 005 0.1 015 02
1/J [1/(mA/cm?)]

Figure 2.19 A plot of the slope of the J-V curve at various times during
recovery (see text).

A plot of the transient behavior of the series resistance (Ry) is shown in Figure 2.20.

To determine whether this transient behavior in series resistance depends upon the type and
intensity of illumination used during recovery, the devices were re-laminated and their recovery
was followed in the dark and under "blue" and "red" illumination (Figure 2.24). The recovery of
the series resistance (R;) under the various illumination conditions is shown in Figure 2.21 to
Figure 2.23.

The recovery data does suggest that the rate of recovery may be illumination and spectrally
dependent. However, the interruption of illumination in order to make a complete set of J-V
measurements obscures the results.
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Figure 2.20 Series resistance recovery under illumination (see text).
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Figure 2.21 Series resistance recovery in the dark (except for J-V testing).
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Figure 2.22 Series resistance recovery with "blue" light (except for J-V testing).
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Figure 2.23 Series resistance recovery with "red" light (except for J-V testing).
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Figure 2.24 Transmission characteristics of the filters used to produce "blue"
and "red" illumination.

2.3.3.4 Siemens Solar Industries Mini-modules

Similar experiments were also performed on SSI mini-modules. These 4 x 4" mini-modules
consisted of 12 solar cells connected in series with an active area of ~ 50 cm®. The same
lamination cycle of heating the mini-modules to a temperature of 85°C for a period of 16 hours
while unconnected in the dark was used. The recovery @ 25°C under various conditions is being
monitored by periodically measuring and analyzing the J-V behavior while in the dark, under full
illumination and under "red" light illumination. The I-V behavior of the mini-module recovering
under full illumination had J-V measurements made at all four light intensities as the previous solar
cells. The other two mini-modules only had dark J-V measurements made.
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The basic J-V parameters of the mini-module during recovery under full illumination are shown in
Figure 2.25.
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Figure 2.25 V_, J_ and FF recovery under illumination at 30°C of mini-module
SSI-260-98 after being subject to a lamination cycle.

The mini-module recovery under illumination is similar to that of an individual solar cell.
However, when the J-V data at different illumination intensities were analyzed, an unusual light
dependent behavior in forward bias was noted (see Figure 2.26 to Figure 2.29). As can be seen,
the a.c. resistance (or J-V slope) exhibits a dramatic and illumination dependent change at high
forward currents. At present, we have no explanation for this. It has not been seen in any of the
other solar cells or mini-modules we have tested.
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Figure 2.26 dV/dJ behavior of mini-module SSI-260-98 before and after
lamination and after recovery at full illumination.
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Figure 2.27 dV/dJ behavior of mini-module SSI-260-98 before and after
lamination and after recovery at 50% illumination.
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Figure 2.28 dV/dJ behavior of mini-module SSI-260-98 before and after
lamination and after recovery at 10% illumination.
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Figure 2.29 dV/dJ behavior of mini-module SSI-260-98 before and after
lamination and after recovery in the dark.

The mini-modules recovered under dark and "red" illumination exhibited changes primarily in
series resistance, Ry (the same as the solar cells). These changes are shown in Figure 2.30 to
Figure 2.31. The transmission characteristics of the "red" filter is shown in Figure 2.32. In
summary, the mini-module behavior, except for one with an unusual dV/dJ characteristic, is
essentially the same as the individual solar cells.
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Figure 2.30 R recovery in the dark at 30°C of mini-module SSI-260-108 after
being subject to a lamination cycle.
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Figure 2.31 R recovery in "red" light at 30°C of mini-module SSI-260-105 after
being subject to a lamination cycle.
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Figure 2.32 Transmission characteristics of the "red" filter used for the
illumination of mini-module SSI-260-105.

2.3.3.5 Conclusions

In the SSI mini-modules, paralleling the transient behavior in FF caused by R, during the
lamination cycle, Sites [119] has also found, from C-V measurements, a transient decrease in

capacitance and conductance. The rate of recovery of the capacitance and conductance was also
found to be dependent upon illumination.

Other groups [120, 121, 122] have noted similar behavior in Cu(In,Ga)Se, devices. These groups
have suggested that the information is pointing to a persistent or long lived photoconductive effect
in Cu(In,Ga)(Se,S), semiconductors that is caused by the trapping of electrons in a high density of
states below the conduction band which leads to p-type photoconductivity and long time constants.
This is analogous to the defect photoconductivity that occurs in CdS.
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3. a-Si:H-based Solar Cells

3.1 Summary

The focus of a-Si research was on contacts and interfaces. This work was motivated by results
from the previous year which showed that the electrical behavior of the n-layer/TCO contact was
critical to incorporating a high performance TCO/Ag back reflector and achieving efficiencies over
10% as described in Appendix 3. We investigated the current-voltage-temperature dependence of
the following contacts, where TCO refers to sputtered ITO or ZnO: TCO/a-Si i-layer, TCO/a-Si n-
layer, TCO/pc-Si n-layer, textured SnO,/a-Si n-layer and textured SnO,/pc-Si n-layer. Regarding
the contact between sputtered TCO and a-Si i-layers, ITO has a larger barrier compared to ZnO.
Thus, ITO makes a better junction, hence poorer Ohmic contact, with a-Si i-layers. Also,
sputtering ZnO in Ar/O, gives a higher barrier and more blocking contact with a-Si compared to
sputtering ZnO in Ar or Ar/H,. Thus, the barrier between ZnO and a-Si depends on the ZnO
sputtering conditions. It is not known if this is an interfacial or bulk effect. Regarding the contact
between sputtered TCO and a-Si or pc-Si n-layers, it was found that the pc-Si n-layers have more
nearly-Ohmic behavior with ITO, ZnO or SnO, contacts at T > 25°C than do a-Si n-layers. The
pc-Si n-layers have lower contact resistance than a-Si n-layers. JV behavior at T > 25°C with the
a-Si or pc-Si n-layers was nearly independent of the various sputtered TCO contacts. We found
that the a-Si n/SnO, contact is more blocking at T < 25°C than is the pc-Si n/SnO, contact. Thus,
pc-Si n-layers are essential for good Ohmic contacts to TCO for either top or bottom contacts.
Their high conductivity allows the decoupling of the electrical requirements for the contact from the
optical requirements, and allows the device to achieve full benefit of an optical back reflector or
other transparent contact without any additional electrical losses.

We also investigated the contact between the p-layer and various glass/TCO substrates for
superstrate p-i-n cells as part of our on-going study of ZnO/p contacts and ZnO substrates in
collaboration with Professor Roy Gordon at Harvard University. It was found that a new process
for APCVD ZnO yields much better device performance than previous APCVD ZnO material, and
that straightforward changes to the deposition of the p-layer such as increasing the B dopant flow
can give significant improvements in FF and V , of ZnO/p-i-n devices.

In an effort to improve the stabilized V __, we attempted to duplicate studies from Penn State, NREL
and elsewhere by modifying the initially deposited i-layer to include either hydrogen dilution or
graded a-SiC. This resulted in only a small (~10 mV) improvement in initial V , and no
improvement in degraded V__ or efficiency. We conclude that without hydrogen dilution of the
bulk i-layer we will not see gains reported by others with hydrogen diluted interface layers since
the bulk degradation dominates.

3.2 PECVD system operational improvements

In order to be able to perform work required by the new Statement of Work, several
modifications/upgrades have been made on the PECVD reactor. In addition, long neglected major
maintenance has also been addressed. The major upgrade involved computer control of the
deposition process. Ten mass flow controllers, the down-stream pressure control unit and the RF
power were connected to a Macintosh computer via two analog and one digital Lab View interface
boards. The software program controlling the deposition process has two parts. In the first part,
any of the twelve process parameters can be set to desired values prior to actual deposition. During
the deposition any of these twelve parameters can be set to have linear time dependence over ten
time segments. As a result, a large number of time profiles can be approximated for all the
parameters.

40



Four new mass flow controllers were installed enabling the addition of two new gases,
TriMethylBoron (TMB) and CO,, allowing the two other gases to be computer controlled.

In addition, a new load-lock mechanism has been designed. The earlier system consisted of two
magnetically coupled feed-throughs, one for pushing substrates from load-lock No. 1 into the
deposition chamber and the other one pulling them out to load-lock No. 2. This system did not
allow the samples to be removed from the deposition chamber and reintroduced later. Such a
flexibility is necessary in order to perform reactor conditioning to reduce cross-contamination and
to increase system throughput. To that effect, two new magnetically coupled feedthroughs were
purchased and a new feedthrough-to-chamber coupling mechanism was designed and constructed
by a vacuum component manufacturer. The new, internally designed coupling mechanism not
only allows the feedthrough to have a linear motion, but also makes it possible for the tip latching
to the substrate to have an up-down motion necessary for gripping and releasing the substrate
holder. Besides these system upgrades, the reactor and gas lines were leak-checked for vacuum
integrity. The turbo molecular pump and the reactive gas flow pump have also been reconditioned
and cleaned.

3.3 Device deposition conditions

The PECVD system and its operation were discussed in detail in last year’s Annual Report [123].
A 15 minute a-SiC burying layer is deposited between each device run to seal in dopants and
prevent cross-contamination. Deposition parameters for standard devices have changed slightly
due to the continuous p-to-buffer transition. For example, the p-layer has been lengthened from 15
to 20 seconds. Previously, the plasma was turned off while the buffer conditions were
established. Table 3.1 lists deposition parameters of our standard p-i-n cells, leading to baseline
efficiencies of 9.0-9.5%.

Table 3.1 Deposition conditions of standard devices

Layer p graded-buffer 1 uc n
Time (min:sec) 0:20 0:25 30:00 6:00
Pressure (T) 0.2 0.2 0.2 1.0
Temperature (°C) 150 150 175 175
RF Power (W) 20 20 7 50
SiH, (sccm) 20 30 20 2
H, (sccm) 200
CH, (sccm) 30 20 ->17.5
2% B,H, in H, (sccm) 1.5
2% PH, in H, (sccm) 2

All devices were deposited on Asahi Type U textured SnO, unless other substrates were
specifically being investigated. All devices received back reflector contacts consisting of a
sputtered 80 nm ZnO(Al) layer sputtered in Ar at 900 W at 3 mT followed by 500 nm evaporated
Ag. The ZnO/Ag contacts were sputtered through a mask giving areas of 0.4 cm’.
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3.4 Devices with continuous plasma “soft start” p-layer

A critical requirement for device studies, especially those investigating intentional p-layer variations
or TCO/p contacts, is a repeatable p-layer. This can be difficult due to variability in the plasma
ignition and transients in pressure and plasma density. While only lasting a few seconds, these
initial variations can be significant since the p-layer deposition is only ~20 seconds long. We
investigated a “soft start” process in order to improve the deposition of reliable and reproducible p-
layers. A plasma is first established for ~10 seconds with Ar at the same total flow and pressure as
used for the p-layer deposition. Then t