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Abstract.   In this paper, we present methods for the quantitative secondary ion mass
spectrometry (SIMS) characterization of amorphous SiGe :H alloy materials.  A set of
samples was grown with germanium content ranging from 5% to 77% and was
subsequently analyzed by electron probe X-ray microanalysis (EPMA) and nuclear
reaction analysis (NRA).  Calibration of the SIMS quantification was performed with
respect to EPMA data for germanium and NRA data for hydrogen.

INTRODUCTION

Silicon germanium alloys are commonly used in a-Si:H-based photovoltaic devices to
reduce the optical bandgap.  It is known that a-Si:H materials with excellent electronic and
structural properties can be grown by the hot-wire chemical-vapor deposition (HWCVD)
process.  This process was recently used to investigate the possibility of growing a-SiGe:H at a
high deposition rate with properties superior to that of plasma-enhanced chemical-vapor
deposition (PECVD) [1].

Secondary ion mass spectrometry (SIMS) analysis is indispensable in the characterization of
thin films.  Not only is it one of the few techniques that can detect elements of low mass, but it is
also useful in providing impurity information at levels in the low parts per billion.  Much work
has been done with SIMS in the characterization of HWCVD a-Si:H materials.  SIMS depth
profiles of hydrogen, in conjunction with changes in growth parameters and treatments, have
helped to improve the properties of these films.  The purpose of these experiments is to develop
methods for characterizing the germanium-containing material.

EXPERIMENT PROCEDURE

The silicon germanium alloy samples were grown by the HWCVD process using silane and
germane gas mixtures.  Electron probe X-ray microanalysis (EPMA) of these samples was
performed with a 5-keV electron beam.  Atomic ratios were calculated for Si and Ge.  The
depth of measurement is estimated to be between 0.25 and 0.5 µm.  Hydrogen concentrations
were measured by nuclear reaction analysis (NRA).  Measurements were made at four different



2

beam energies (6.6, 6.8, 7.0, and 7.2 MeV) corresponding to four different depths within the
films.

The SIMS measurements were carried out using a Cameca IMS-5F instrument.  A beam of
Cs+, purified by a mass filter, was used as the source of the primary ions.  The impact energy of
the primary ion beam was 14.5 keV at an incident angle of 25° from the surface normal.  The
primary current was 100 nA.  A square area of 150 µm x 150 µm was raster-scanned.
Negative secondary ions generated from the sample were accelerated normal to its surface and
were detected at 4.5 keV.  Secondary ions were collected from a 60-µm diameter area in the
center of the raster-scanned area to minimize effects from the crater walls.  In the sample
chamber, a cryoshield at liquid nitrogen temperature was used, and the working pressure was
2x10-10 torr.  Secondary ions were counted by an electron multiplier detector.

QUANTIFICATION

Calibration is performed by measuring ion implant standards to obtain relative sensitivity
factors or RSFs [2].  Quantification of an element of interest (E) is obtained by applying these
RSFs to the ratio of secondary ion intensities:

CE = (RSFE) IE / IM,                                              (1)

where:
CE = concentration of E,
RSFE = relative sensitivity factor for E (corrected for isotopic abundance),
IE = secondary ion intensity for E, and
IM = secondary ion intensity for M (matrix, e.g., silicon in this case).
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FIGURE 1.  SIMS quantification of
H compared to NRA data.
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FIGURE 2.  SIMS quantification of Ge
compared to EPMA data.
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This procedure is commonly used in SIMS quantification where the element of interest is
less than the “dilute limit” (1% atomic density).  However, in cases of alloyed matrices,
correction factors must be applied:

CGe2 = (100 * CGe1) / (100 + CGe1),                                 (2)

where:
CGe1 = concentration of Ge after quantification, and
CGe2 = concentration of Ge after alloy correction.

Secondary ion yields for a given element can change by orders of magnitude between
matrices, which are reflected in differences in RSFs.  For example, the RSF for Cr in
germanium is 2.5x1020 versus 6.5x1021 in silicon.  Measuring the H and Ge after alloy
correction, and then comparing 6 or 7 data points to NRA data for H and EPMA data for
Ge generated the RSF correction factors.  Linear regression was performed to find the best
fit between the SIMS, EPMA, and NRA data.  The slope (m) and intercept (b) values from
the calibration curve were then used for RSF correction.
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FIGURE 3.  SIMS H after alloy
correction and RSF correction compared
to NRA results.
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FIGURE 4.  SIMS Ge after alloy
correction and RSF correction compared
to EPMA results.

DISCUSSION

SIMS is generally stated to be accurate to a factor of two.  This is insignificant when
considering the great dynamic range of the technique, e.g., some impurities can be detected
at levels of parts per billion.  However, maximum precision and reproducibility are always
desired in any characterization technique.  Substrate material, density of the films, oxygen
content, resistivity, and sample holders may all contribute to loss of accuracy.
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Samples for SIMS were deposited on single-polished crystalline silicon (c-Si), whereas
samples for NRA were deposited on double-polished c-Si, and samples for EPMA were
deposited on glass.  Slight differences may exist between samples.

The SIMS and EPMA analysis performed is based on the atomic density of crystalline
silicon, 5x1022 atoms/cm3.  The density of the a-SiGe:H material is less than 5x1022

atoms/cm3 and is dependent on growth conditions.  Variations in density may affect the
ionization efficiency of elements of interest and may not change proportionally.

Non uniform oxygen distribution,
between samples and within each sample,
might have an effect on the NRA data.
EPMA detected oxygen (>0.1%) in most
samples, which would imply it is greater
than the SIMS quantification.  Oxygen at
such high levels in the films might affect the
ionization efficiency of Si and Ge.  In
analyzing these samples with Cs+, the
detection of positive molecular (M+Cs+)
ions might alleviate some of these matrix
effects.
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FIGURE 5.  Distribution of oxygen
versus depth as measured by SIMS.

The a-SiGe:H materials were provided undoped and may be slightly resistive.  The analysis
of resistive materials by SIMS is especially difficult when sputtering with a Cs+ primary beam
and biasing the sample negative to analyze negative secondary ions.  Depositing thin layers of
metal on the surface or flooding the sample with electrons are the two most common
approaches to preventing charge build-up.  However, depositing metals alters the surface and
usually adds contamination.  Flooding the sample with electrons increases the background in the
instrument because of hydrogen desorption.

SIMS analysts in the semiconductor industry have demonstrated highly reproducible
measurements with high-precision sample holders [3].  Analyzing a sample in the same window
of the same sample holder is essential for these measurements.  Unfortunately, it is not always
feasible to characterize one sample at a time, considering the time it takes to achieve high
vacuum after sample loading.

CONCLUSION

SIMS measurements of hydrogen can be performed on these materials within the generally
stated accuracy of 50%, or in this case, 15%.  Compositional analysis of alloys, most often
accomplished by Auger electron spectroscopy and EPMA, can also be performed by SIMS to
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an accuracy of 50%.  Furthermore, if the SIMS measurement of Ge at 7.6% in the 5% Ge
sample is disregarded, the accuracy for Ge is within 15%.  Closer attention to the factors listed
above may improve the accuracy of this technique.
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FIGURE 5.  Percent error in SIMS measurements (after corrections) when compared to
EPMA and NRA results.
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