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Presentation Outline 

• Types of islands in power systems with DR 

• Issues with unintentional islands 

• Methods of protecting against unintentional islands 

• Standard testing for unintentional islanding 

• Advanced testing of inverters for anti-islanding 
functionality 

• Probability of unintentional islanding 

• The future of anti-islanding protection  

• References 
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• Area EPS – Area Electric Power System 
• Local EPS – Local Electric Power System 
• PCC – Point of Common Coupling 
• DR – Distributed Resource (e.g. distributed generation 

(DG), distributed energy resource (DER)) 
• DER – Distributed Energy Resource (The IEEE 1547 Working 

Group voted and decided to change DR to DER in the next version. DER 
will NOT include Demand Response as it does in some countries) 

• Anti-islanding (non-islanding protection) – The use of 
relays or controls to prevent the continued existence of 
an unintentional island 

Terms 



4 

Island: A condition in which 
a portion of an Area EPS is 
energized solely by one or 
more Local EPSs through the 
associated PCCs while that 
portion of the Area EPS is 
electrically separated from 
the rest of the Area EPS.[1] 

• Intentional (Planned) 
• Unintentional 

(unplanned) 

Island Definition 

DR 

115kV 

13.2kV 

Adjacent  
Feeder 

Island forms 
when breaker 
opens 
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Intentional Islands (Microgrids) 

IEEE 1547.4 is a guide for Design, Operation, and Integration of Intentional Islands 
(e.g. Microgrids) [3] 

(1) have DR and load 
(2) have the ability to disconnect from and parallel with the area EPS 
(3) include the local EPS and may include portions of the area EPS, and 
(4) are intentionally planned.  

IEEE 2030.7 and 2030.8 – In development and cover microgrid control design and testing 

Distribution Feeder 
from Substation

Open for a 
Utility 

Microgrid

DSDG Load Load

DG Load

Microgrid
Switch

Distributed 
Generation

Distributed 
Generation

Distributed 
Storage

Open for a 
Facility Microgrid

Possible
Control Systems

Microgrid
Switch

Source: Making microgrids work [2] 
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• Personnel Safety – Unintentional islands can cause hazards 
for utility workers if they assume downed lines are not 
energized during restoration 

• Overvoltages – Transient overvoltages due to rapid loss of 
load are possible. If an adequate ground source is not present 
in the island, a ground fault can result in voltages that exceed 
173% on the unfaulted phases. 

• Reconnection out of phase - This can result in large transient 
torques applied to motors connected to the islanded area EPS 
and their mechanical systems (e.g., shafts, blowers, and 
pumps), which could result in damage or failure. 

• Power Quality – Unplanned island area EPS may not have 
suitable power quality for loads 

• Protection – Unintentional islands may not provide sufficient 
fault current to operate fuses or overcurrent relay protection 
devices inside island 

Issues with Unintentional Islanding 

References [4]-[7] 
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• Synchronous generators are voltage source devices that can support 
islanded grid operations. Synchronous generators are typical in diesel or 
natural gas powered engine-generators. 

• Induction generators usually will not be able to support an island but will 
instead cease to produce current because of the loss of reactive power, 
which is necessary to support a rotating magnetic field within the generator. 
If sufficient capacitive reactance is available to supply the reactive power 
requirements of the induction generator field, either through the installation 
of power factor correction capacitors or the presence of considerable cable-
type power conductors, it may be necessary to provide for direct detection 
of faults in a manner similar to that of synchronous generators.[4] Induction 
generators are found in some engine-gen sets and wind turbines. 

• Inverter-Based DR are typically current-source devices that require a 
voltage-source (typically the utility grid) to synchronize to. Voltage-source 
(e.g. grid forming) inverters do have the ability to support islanded 
operation. Inverters are found in PV systems, wind turbines, microturbines, 
fuel cells, and battery energy storage. 

Understanding DR Sources 

References [4] 
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IEEE 1547: Unintentional Islanding Requirement 

For an unintentional island in which the DR 
energizes a portion of the Area EPS through the 
PCC, the DR interconnection system shall detect 
the island and cease to energize the Area EPS 
within two seconds of the formation of an 
island. [1] 

  

IEEE 1547-2003: 4.4.1 Unintentional Islanding Requirement 
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IEEE 929 [8]– Early PV Interconnection Standard that has been replaced by IEEE 1547 
• Defined nonislanding inverter as an inverter that will cease to energize the utility line in ten 

cycles or less when subjected to a typical islanded load in which either of the following is 
true: 

a) There is at least a 50% mismatch in real power load to inverter output (that is, real 
power load is < 50% or > 150% of inverter power output). 
b) The islanded-load power factor is < 0.95 (lead or lag). 

• If the real-power-generation-to-load match is within 50% and the islanded-load power factor 
is > 0.95, then a nonislanding inverter will cease to energize the utility line within 2s 
whenever the connected line has a quality factor of 2.5 or less. 
 

IEEE 1547-2003 (Early Drafts) 
• Draft 5  – 2 second to detect and cease to energize 
• DRAFT 6/7 - For an unintentional island in which the DR and a portion of the Area 

EPS remain energized through the PCC, the DR shall cease to energize the Area EPS 
within ten seconds of the formation of an island. Ten seconds was recommended 
by synchronous generator manufactures as a reasonable value. 

• Draft 8 and beyond  – changed unintentional islanding requirement to 2 seconds 
to get closer to instantaneous recloser settings. Inverters were already seen as 
capable from IEEE 929 requirement. 

Unintentional Islanding Requirement Background 
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IEEE 1547-2003: Unintentional Islanding Requirement 

Footnote to IEEE 1547 Requirement[1] 

Some examples by which this requirement may be met are: 
• The DR aggregate capacity is less than one-third of the minimum 

load of the Local EPS. 
• The DR installation contains reverse or minimum power flow 

protection, sensed between the Point of DR Connection and the 
PCC, which will disconnect or isolate the DR if power flow from the 
Area EPS to the Local EPS reverses or falls below a set threshold. 

• The DR is certified to pass an applicable non-islanding test. 
• The DR contains other non-islanding means, such as a) forced 

frequency or voltage shifting, b) transfer trip, or c) governor and 
excitation controls that maintain constant power and constant 
power factor.  
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The DR aggregate capacity is less than one-third of the 
minimum load of the Local EPS. 

 
• If the aggregate DR capacity is less than one-third of the local 

EPS load, it is generally agreed that, should an unintentional 
island form, the DR will be unable to continue to energize the 
load connected within the local EPS and maintain acceptable 
voltage and frequency. [4] 

• The origin of this 3-to-1 load-to-generation factor is an IEEE 
paper [9] based on simulations and field tests of induction and 
synchronous generation islanded with various amounts of 
power factor-correcting capacitive kilovoltamperes reactive.  

• It was shown that as the pre-island loading approached three 
times the generation, no excitation condition could exist to 
support the continued power generation. 

DR Aggregate Capacity 
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Methods of protecting against unintentional islands 

• Reverse/Minimum Import/Export Relays 
• Passive Anti-islanding 
• Active Anti-islanding 

o e.g. instability induced voltage or frequency drift 
and/or system impedance measurement coupled 
with relay functions 

• Communication-Based Anti-Islanding 
o Direct transfer trip (DTT) 
o Power line carrier (PLC) 
o Impedance Insertion 

• Methods Under Development 
o Phasor-based anti-islanding 

References [10]-[37] 
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• Protective Relay 
Function (Reverse 
Power = 32) 

• Used in cases 
where the DR is 
not exporting to 
the grid 

• Local loads are 
typically larger 
than DR 

Reverse/Minimum Import/Export Relays 

DR 

115kV 

13.2kV 

Adjacent  
Feeder 

8
1 

O/U 

5
9 

2
7 

3
2 
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• Over/under voltage and 
frequency trip settings 

• Voltage and frequency 
relay functions (81o, 81u, 
27, 59)  

• Set a V/F window – if 
conditions are outside 
window, then DR trips 

• Non-detect zone (NDZ) 
exists between trip points 

• Amendment 1 (IEEE 
1547a) allows for 
adjustable clearing times 
 

Passive Anti-islanding 

New Voltage and Frequency Trips 
Settings from Amendment 1 of IEEE 
1547-2003 [38] 
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• Rate-of-change-of-
frequency (ROCOF) 

• Voltage or Current 
Harmonic Monitoring – 
monitor voltage harmonic 
distortion 

• Voltage Phase jump -  
detect a sudden “jump” in 
phase displacement 
between inverter voltage 
and output current 

Other Passive Anti-islanding 

Voltage Phase Jump [15] 
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• Impedance Measurement 
• Detection of Impedance at 

a Specific Frequency 
• Slip-mode Frequency Shift 
• Frequency Bias 
• Sandia Frequency Shift 
• Sandia Voltage Shift 
• Frequency Jump 
• ENS or MSD (a device using 

multiple methods) 

Active Anti-islanding 

Active methods 
generally attempt to 
detect a loss in grid by 
actively trying to 
changing the voltage 
and/or frequency of the 
grid, and then detecting 
whether or not the grid 
changed.  
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• Power Line Carrier – Provide a permissive run signal, 
when signal goes away, the DR ceases to energize 
circuit 

• Impedance Insertion – Remotely add capacitors that 
cause a large enough voltage change to trip O/U 
voltage protection 

• DTT – next slide 

Communications-based Methods 



18 

• Direct Transfer Trip (DTT) provides a 
communications signal from the Area electric 
power system component such as a feeder 
breaker or automatic line sectionalizing 
devices to the DR or the addition of sync-
check relaying or undervoltage-permissive 
relaying at the feeder breaker or automatic 
line sectionalizing devices. [4] 

• DTT scheme is used to avoid accidental 
paralleling of larger DR to the grid.  

• DTT may require communications not only 
from the substation breaker but also from 
any automatic line sectionalizing devices 
upstream from the DR.  

Direct Transfer Trip (DTT) 

• Examples of DTT (from PG&E interconnection requirements [39]: 
o Direct Fiber to Substation with proper interface provisioning 
o Licensed Microwave with proper interface provisioning 
o Class A DS0 4-Wire Lease Line provisions by Local Exchange Carrier (LEC)  
o additional Direct Transfer Trip (DTT) Telecommunication Options via the new Class B, T1 

Lease Options  
• Drawback: DTT often uses a dedicated fiber or other communications 

infrastructure which is costly to install and operate.  

All Fiber DTT Protection Circuit [39] 
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• Phasor-based anti-islanding [31] 

 

Methods under development 

Phasors when Grid-connected 

Phasors when Islanded  
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Standard Unintentional  
Islanding Testing 
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• IEEE 1547.1 details testing 
requirements for unintentional 
islanding [40] 

• Uses a matched RLC load and 
measures trip times when island 
condition occurs 

• The RLC load is set to a Quality 
factor (Qf) = 1.0 

• Qf of 1.0 is equivalent to a load 
displacement power factor of 0.707.  

• Distribution circuits typically operate 
at a value greater than 0.75 p.f. 

• Conducted at 100%, 66%, and 33% 
rated power 

• The test is to be repeated with the reactive load (either 
capacitive or inductive) adjusted in 1% increments or 
alternatively with the reactive power output of the EUT 
adjusted in 1% increments from 95% to 105% of the initial 
balanced load component value. If unit shutdown times 
are still increasing at the 95% or 105% points, additional 
1% increments shall be taken until trip times begin 
decreasing. 

 

IEEE 1547.1 – Unintentional Islanding Test 

Figure 2—Unintentional islanding test 
configuration from IEEE 1547.1 

• A Qf of 2.5 was used in IEEE 929-2000 and is equivalent 
to a load displacement power factor of 0.37. [8] 

• Qf was reduced to 1.0 during evaluation of IEEE 1547.1 
to reduce testing burden since run on times were not 
significantly longer at 2.5  
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• Load is matched in real 
and reactive power [40] 

• Tested at: 
o Minimum Load at unity 

1.0 p.f.  
o Maximum real load at 

unity 1.0 p.f. 
o Maximum real load at 

rated p.f. lagging 
o Maximum real load at 

rated p.f. leading 

Unintentional Islanding Test for Synchronous Generators 

Figure 3—Unintentional islanding test for 
synchronous generators  configuration from 

IEEE 1547.1 
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• To meet the unintentional islanding requirement in 
1547, the DR installation may contain reverse or 
minimum import power-flow protection [40] 

• Sensed between the point of DR connection and the 
PCC, it disconnects or isolates the DR if power flow 
from the area EPS to the local EPS reverses or falls 
below a set threshold. 

• IEEE 1547.1 tests evaluate the magnitude and time 
of the reverse/minimum power flow protective 
device. 

Reverse Power Flow (for unintentional islanding) 



24 

Advanced Testing  
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Energy Systems Integration Facility (ESIF) 

Offices HPC - DC Laboratories 
Unique Capabilities 
• Multiple parallel AC and DC experimental 

busses (MW power level) with grid 
simulation and loads 

• Flexible interconnection points for 
electricity, thermal, and fuels 

• Medium voltage (15kV) microgrid test bed 

• Virtual utility operations center and 
visualization rooms 

• Smart grid testing lab for advanced 
communications and control 

• Interconnectivity to external field sites   for 
data feeds and model validation 

• Petascale HPC and data mgmt system in 
showcase energy efficient data center 

• MW-scale Power hardware-in-the-loop 
(PHIL) simulation capability to test grid 
scenarios with high penetrations of clean 
energy technologies 

Shortening the time 
between innovation 

and practice 

http://www.nrel.gov/esif 
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Energy Systems Integration Facility (ESIF) 

Smart buildings & 
controllable loads 

Power Systems Integration 
Grid Simulators - Microgrids 

Energy Systems 
Integration  
Fuel Cells, Electrolyzers 

Outdoor Test Areas 
EVs, Transformers, 
Capacitor Banks, 

Voltage Regulators 

Rooftop PV Energy Storage -  
Residential, Community 

& Grid Scale Storage 

HPC & Data Center 

Advanced 
Distribution 

Management 
Systems 

http://www.nrel.gov/esif/ 
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• Power Hardware in the 
Loop (PHIL) – replicate 
loads and some grid 
component of the test 
in simulation 

• The variable RLC load 
PHIL approach is 
effective for achieving 
conditions that are 
difficult to replicate 
with discrete hardware 
[42][43] 

• May not work on all 
active AI methods 

Advanced Testing - PHIL 
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• Sandia Testing [44] – examined 4 inverters/single PCC 
(demonstrated that multiple inverters still meet 2 sec 
requirement). 
 

• NREL Testing with SolarCity & HECO [45] - examined 1) the 
impacts of both grid support functions and 2) multi-
inverter(3)/multi PCC islands on anti-islanding 
effectiveness.  
o Showed that with grid support functions (volt/var and 

frequency/watt) enabled, the 2 sec requirement is still 
met. 

o Showed that multiple PCCs did not cause trip times beyond 
2 seconds (regardless of system topology) 

o Results only valid on inverters/designs that were tested 

Multiple Inverter Testing 
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Probability of Unintentional Islands 
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• To create an electrical island, the real and reactive power flows 
between DR and loads must be exactly matched 

• What is the probability of this happening? 
 

• IEA PVPS Task 5 – Study [46] 

o The “benchmark” risk that already exists for network operators and 
customers is of the order of 10-6 per year for an individual person 

o The risk of electric shock associated with islanding of PV systems 
under worst-case PV penetration scenarios to both network operators 
and customers is typically <10-9 per year 

o Thus, the additional risk presented by islanding does not materially 
increase the risk that already exists as long as the risk is managed 
properly 

o Balanced conditions occur very rarely for low, medium and high 
penetration levels of PV-systems.  

• The probability that balanced conditions are present in the power 
network and that the power network is disconnected at that exact 
time is virtually zero.[47][48] 

Probability of Islanding 
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Suggested Guidelines for Assessment of DG Unintentional 
Islanding Risk – Sandia Report [49] 

• Cases in Which Unintentional Islanding can be Ruled Out 
o Aggregated AC rating of all DG within the potential island is 

less than some fraction of the minimum real power load 
within the potential island 

o Not possible to balance reactive power supply and 
demand within the potential island. 

o DTT/PLCP is used 
• Cases in Which Additional Study May Be Considered 

o Potential island contains large capacitors, and is tuned 
such that the power factor within a potential island is very 
close to 1.0 

o Very large numbers of inverters 
o Inverters from several different manufacturers 
o Include both inverters and rotating generators 

 
 

Guidelines for Assessment of DG Unintentional Islanding Risk  
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• Passive islanding often has a NDZ, but it is hard for power 
systems to maintain a generation/load balance for 
extended periods of time (beyond 10s)[50] 

• Active anti-islanding techniques are fast and work best 
on “stiff” grids. Most techniques work when a significant 
change in system characteristics occur because of island 
formation. 

• New integration requirements are opening up voltage 
and frequency trip points to enable grid stability at high 
DR penetrations 

• Multiples of active anti-islanding techniques may or may 
not work against each other. 

• Future power systems may not be as stiff with reduced 
use of synchronous generators. 

The Future of Anti-islanding Protection 
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• 2s requirement – Is this the right number? 
o Too slow for instantaneous/fast reclosing 
o Too fast for some communications based AI methods 
o Need active AI to achieve this with matched load 

 
• Active Anti-islanding – Is it needed? 

o What happens when you have thousands of different 
techniques and deployed DR? 

o Should there be 1 method that everyone must use? (tried 
before, but patents got in the way) 

o Will active AI work against maintaining grid stability at high 
penetration levels? 

Items for Discussion 
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