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Outline 

8:00 Workshop introduction   
 Chris Deline  (NREL) 

8:15 SAM introduction and battery modeling
 Nick DiOrio  (NREL) 

9:15 Bifacial modules and modeling 
 Fatima Toor (University of Iowa)  

10:00 Break 

10:15 Shade modeling and MLPE  
 Chris Deline (NREL) 

11:00 Degradation rates   
 Dirk Jordan (NREL) 

11:30 PVWatts updates and validation 
 Dirk Jordan (NREL)  
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• SAM Introduction 
• Photovoltaic Model 
• Battery Model 

Outline 
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Free software that combines detailed 
performance and financial models to 
estimate the cost of energy for systems 

System Advisor Model (SAM) 

http://sam.nrel.gov/download 

Technologies 
 
Photovoltaics, detailed & PVWatts 
Battery storage 
Concentrating solar power 
Wind 
Geothermal 
Biomass 
Solar water heating 
 
Financials 
 
Behind-the-meter  
     residential 
     commercial 
Power purchase agreements 
     single owner 
     equity flips 
     sale-leaseback 
Simple LCOE calculator 
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PVWatts or SAM? 

*The SAM team maintains the PVWatts 
model, and it’s included with SAM. 

PVWatts 
• Provides a simple performance 

and financial assessment for 
smaller-scale PV systems given 
an address, system design, and 
simple $/kWh electricity rate. 

SAM 
• Provides detailed performance 

assessment for small to utility 
scale systems 

• Model complex shading and 
other losses.   

• Can model detailed financial 
parameters, including complex 
utility rate tariffs, incentives. 

• Models custom load profiles. 
• Detailed outputs and 

visualization 
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Questions you can answer with SAM 

• Predicted technical and financial 
performance over project lifetime 

• Detailed cash-flow financials  

• System design to maximize financial 
return 

• Time series behavior of system 
performance 
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Irradiance 
     Transposition using Isotropic, HDKR, or Perez 
     Measured plane of array (POA) input 
Shading 
     Irregular obstruction shading from 3D scene 
     Self-shading for regularly spaced rows  
     External input from SunEye, Solar Pathfinder 
     Snow cover loss model 
Module 
     Simple efficiency model 
     Single diode model (CEC database or datasheet) 
     Extended single diode model (for IEC-61853 tests) 
     Sandia PV Array Performance Model 
Inverter 
     Sandia/CEC grid-tied inverter model 
     Datasheet part-load efficiency curve 
System 
     Sizing wizard or electrical layout 
     Multiple subarrays 
     Fixed, 1 axis, backtracking, azimuth axis, 2 axis 
     Battery storage 
Degradation 
     Extrapolated single year 
     Lifetime simulation of all years 
Simulation 
     1 minute to 1 hour time steps 

Detailed photovoltaic model 
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Resource Data 

• SAM allows selection from NREL NSRDB, TMY3, or input of a custom user 
defined weather file in an easy to use format. 

• Multiple sources of data available: sam.nrel.gov/weather 
• NSRDB – 4x4 km data at 30 minute resolution for North and Central America.  

10x10 km hourly data for various countries in South Asia  



10 

Module and Inverter Modeling 

Can choose which performance model to 
use (Simple, CEC, Sandia, IEC-61853) 
 
Select module and inverter from a 
database maintained by the California 
Energy Commission or specify your own 
parameters from a datasheet or part load 
curve. 
 
 

Dobos, A.; MacAlpine, S. Procedure for Applying IEC-
61853 Test Data to a Single Diode Model. Proc. IEEE 40th 
PVSC Conf. Denver CO, June, 2014 
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System Design  

Configure up to 4 sub-arrays, each with a specific: 
• Tracking system 
• Tilt 
• Azimuth 
• Ground Coverage Ratio 
• Shading Table 

Auto size the system or specify the module strings and inverters directly. 
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Calculates linear beam irradiance shading 
losses and sky diffuse view factor loss 
 
Imports 2D mapping underlays from 
online maps 
 
Outputs are diurnal or hourly/subhourly 
time series linear shade loss percentages 
 
You can group PV surfaces into subarrays 
and specify parallel strings 
 
Scripting to automate panel layout and 
import/export geometry data 
 

3D shading calculator 
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• Irradiance Losses 
o Soiling 

• DC Losses 
o Module mismatch 
o Wiring 
o Diodes and connections 

• AC Losses 
o Wiring 
o Transformer 

Loss Modeling 
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Financial Modeling 

Financial models: 

• Specify electric load  
• Specify utility rate structure  

• From perspective of off-taker (customer) 

• Utility scale systems with various ownership 
structures 

• Power purchase agreements specify value of 
selling power to grid throughout the year 

• Non cash-flow based fixed-charge rate 
method for calculating LCOE.   

• Best for market level (not project level) 
analysis. 

• If you are only interested in system 
performance, not financial performance 

All financial calculations generally require some information about system 
costs, loans, taxes, inflation rates, discount rates, depreciation, and other 
relevant parameters, depending on the model 
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Complex Utility Rate Tariffs 

Utility Rate Database 
• Tool in SAM to download and 

automatically populate complex 
inputs from utility rate database. 

• http://en.openei.org/apps/USURDB/ 
 
Modeling 
• Time-of-use energy and 

demand charges with ability to 
model usage tiers. 

• Monthly demand charges 
• Multiple metering and rollover 

options  
• Convenient output of 

energy/demand charges by 
month, period, tier, etc. 



16 

Validation Studies 

Photovoltaic Modeling 
• Comparisons of SAM and other 

tools to measured performance 
data:  

• Most recent study concluded 
SAM annual errors within +/- 
8% of measured data 

• https://sam.nrel.gov/case-studies 
 
Upcoming Validation 
• Comparison of SAM and other 

tools 3D shading calculations 
against SunEye measurements. 

• Preliminary results suggest 
potentially large differences 
between tools 



SAM Battery Model 
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Motivation for behind-the-meter storage 

Images from: http://www.aquionenergy.com/ 

• Batteries charged primarily 
from PV eligible for Federal 
ITC subject to 75% cliff 

• End of NEM in some states  

• Residential and commercial 
utility rate structures with 
high TOU charges. 

• Charge when rate is low, 
discharge when rate is high 

• Commercial utility 
structures can have very 
high TOU demand charges. 
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• Techno-economic model for 
residential, commercial, and 
third-party ownership 
systems 
o Lead acid & lithium ion 

battery chemistries 
o System lifetime analysis 

including battery 
replacement costs 

o Models for terminal voltage, 
capacity, temperature 

o Multiple dispatch controllers 
available 
 

Model Overview 
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Modeled Configuration 

Module parameters 

Inverter Parameters 

Electric 
consumption 

Conversion efficiencies 

Properties on capacity, power, voltage, 
temperature, lifetime, dispatch 

Meets any unmet 
portion of load after PV 
and battery  

Weather 
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Implementation in SAM 
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Battery Financials 

• Lifetime 

• Battery Bank Replacement (Battery Storage page) 

• System Costs 

Battery capacity 
fades with cycling, 
depends on depth-
of-discharge 
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Battery Dispatch 
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Dispatch Visualization 

Peak shaving for demand charge reduction Manual dispatch for energy arbitrage 
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Example Case Study 

• Evaluate economics of installing PV-coupled battery 
system for demand-charge reduction: 
o Los Angeles, CA 
o 27,625 ft2 grocery store with 247 kW peak load 
o Southern California Edison TOU-GS-2 Option B 
 

Image from SCE TOU-GS-2 Option B datasheet 



26 

o One-minute weather data 
taken from NREL’s 
Measurement & 
Instrumentation Data Center 
network, location in Los 
Angeles. 

o Five-minute electric load 
data obtained from 
EnerNOC’s free online 
database for commercial 
facilities. 

o Assumed California’s SGIP 
applied  

 

Simulation Data 

January 1st, 2012 
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• Model battery similar to Tesla 
Powerwall 
o Lithium-ion nickel manganese 

cobalt 
o Assumed can cycle full 7 kWh 

down to 30% of state-of-
charge, for a full capacity of 
10 kWh. 

o Price given as ~$300/kWh 
before balance of system 
costs. 

o Assumed lifetime of 10-15 
years before degrading to 
70% of original capacity 

Lithium Ion Battery System 

Image from teslamotors.com/powerwall 



28 

Parametric sizing results 

• NPV maximized for no 
PV system, battery bank 
capacity of 70 kWh 

• Illustrates simulation-
based method to 
approximate ‘optimal’ 
sizing. 
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Upcoming features 

• Additional system 
configurations 

• Additional battery chemistries 
• Battery systems for PPA 

financial models 
• Continued improvement of 

dispatch controllers 
• Improved lifetime modeling for 

some battery chemistries 

Flow batteries 

Image from tantaline.com 

DC-connected battery 
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Battery summary 

• Battery model adds on to SAM’s powerful PV and 
inverter modeling capabilities to evaluate behind-
the-meter storage systems. 

• Can answer questions like: 
o What sizes of battery/PV system will provide value 

over the system lifetime? 
o How will battery replacement costs affect economic 

viability? 
o How does the dispatch strategy affect bill savings? 
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Questions? 

• Resources:  
o https://sam.nrel.gov/learning 
o https://sam.nrel.gov/videos 
o https://sam.nrel.gov/webinars 

• Reports available 
o Economic Analysis Case Studies of Battery Energy 

Storage with SAM 
– http://www.nrel.gov/docs/fy16osti/64987.pdf 

o Technoeconomic Modeling of Battery Energy Storage 
in SAM 

– http://www.nrel.gov/docs/fy15osti/64641.pdf 



This work was supported by the U.S. Department of 
Energy under Contract No. DE-AC36-08-GO28308 
with the National Renewable Energy Laboratory 
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Collaborators of the DOE SuNLaMP Project 

 Sunshot National Laboratory Multilayer Partnership 
(SuNLaMP) project on bifacial photovoltaic (PV) 
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Bifacial Photovoltaic (PV) Cells 
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Image Source: ”High efficiency screen printed bifacial solar cells on 
monocrystalline CZ silicon” Prog. Photovolt. Res. Appl. (2011) 19:275-279 
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Bifacial Solar Modules 
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Image Source: Sanyo Energy Corporation via Solar Electric Supply 
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Daily Energy Production of Bifacial 
versus Monofacial Modules 
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Modules facing south 

Image Source: Radovan Kopecek, ISC Konstanz, 2015 bifi PV Workshop 
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Bifacial gain values from literature 
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Image Source: Christian Reise et al., Fraunhofer ISE, 2015 PV 
Performance Modeling and Monitoring Workshop 
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Examples of Bifacial PV Installations 
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Image Source: Tokyo Solar Building Materials Corp. 
and Applied Energy Technologies (AET) 
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Bifacial PV History 

42 

Image Source: Radovan Kopecek, ISC Konstanz, 2015 bifi PV Workshop 
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The largest Bifacial PV Installation (2015) 
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Bifacial x-Si Modules will Beat the Efficiency and 
Cost Targets Needed for $1/W System Price 
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Image Source: Toor et al., 2013 Lux Research Report, “Continuing Education: 
Going back to school for PV Innovation” 
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Cost of Ownership (CoO) of 60-cell modules 

46 

Image Source: Radovan Kopecek, ISC Konstanz, 2015 bifi PV Workshop 

Bifacial 
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Balance of Systems (BoS) Costs 
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Image Source: Radovan Kopecek, ISC Konstanz, 2014 bifi PV Workshop 
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Examples of Bifacial Solar Cell Designs 
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Image Source: Meyer Burger, 2014 bifi PV Workshop 
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n-type bifacial cell manufacturers 

50 



September 12th, 2016 Solar Power International 

n-type wafer and solar cell producers 
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Image Source: Radovan Kopecek, ISC Konstanz, 2015 bifi PV Workshop 
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Bifacial Gain based on Albedo 
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Image Source: Radovan Kopecek, ISC Konstanz, 2015 bifi PV Workshop 

Bifacial gain = Energy yield of rear (kWh)/Energy yield of front only (kWh) 
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Bifacial gain in the largest bifacial PV 
installation ~ 10% to 20% 
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Bifacial gain for a range of tilt angles, heights, and 
albedo values 
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Image Source: Jose Castillo-Aguilella, Prism Solar, 2015 PV 
Performance Modeling and Monitoring Workshop 

Test Condition Tilt 
Angle  
Θ (deg.) 

Min Height 
h (m) 

Albedo α 
(%) 

Azimuth  
Φ (deg) 

Bifacial 
Gain (%) 

1 30 0.63 10% 180 18% 

2 30 0.76 77% 180 37% 

3 30 0.2 77% 180 27% 

4 20 0.2 70% 180 18% 

5 20 0.2 68% 180 20% 

6 20 0.2 22% 180 12% 

7 10 0.3 75% 180 18% 
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Outdoor test results of mini-modules 

Image Source: Radovan Kopecek, ISC Konstanz, 2014 bifi PV Workshop 
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Image Source: Radovan Kopecek, ISC Konstanz, 2013 

Bifacial module gain when installed at latitude tilt 
facing south 
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Comparison of bifacial gain: vertical east/west 
versus 30º tilt south 
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Bifacial gain in El Gouna, Egypt 

Image Source: Apollon Solar, 2015 bifi PV Workshop 
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Bifacial gain in Sanyo HIT bifacial modules 
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Image Source: N. Ferretti, Photovoltaik-Institut, 2014 bifi PV Workshop 
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Bifacial gain as a function of albedo 
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Bifacial gain in n-PERT bifacial modules 
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Image Source: P.T. Hsieh, Motech, 2014 bifi PV Workshop 
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Bifacial gain as a function of time of day 

Image Source: P.T. Hsieh, Motech, 2014 bifi PV Workshop 
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Array Over Concrete: Backside Irradiance  
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Rooftop Measured Reflectance 
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Rooftop Array  
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Image Source: Chris Deline et al., NREL, 2016 
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Cell spacing impact 
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Image Source: Chris Deline et al., NREL, 2016 
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Snow impact on ground mount array 

 
 

 
 

4-6% gain without snow; 
 7-10% with snow 
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Image Source: Chris Deline et al., NREL, 2016 
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4 module array simulation 

 4 module array was simulated according to spec 

Prism 60 cell bifacial modules Suniva 60 cell monofacial 
modules 
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4 module array simulation 

Front, back irradiance scans 

Image Source: Chris Deline et al., NREL, 2016 
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Investigate Backside Irradiance 

 For a bifacial power rating standard to gain 
acceptance with monofacial manufacturers, the 
backside resource needs to be consistent with the 
existing power rating standard (IEC 60904-3) 

 Existing resource definition: 
 900 W/m2 DNI 
 100 W/m2 diffuse 
 Light soil albedo (R = 0.21)  
 AM 1.5 spectrum 
 37 tilt, ground clearance undef. 

 

60904-3 deployment case 

Clearance 
Image Source: Chris Deline et al., NREL, 2016 
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Back Irradiance Simulation- height sensitivity 
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avg.: 
 150 W/m2  at 1 m height 
  <5% spatial uniformity (class B) 

above 1m.   (Irrmax – Irrmin)/Irravg 
 Suggested reference resource:  

o 150 W/m2 
o  AM1.5 spectrum for 

simplicity 

Single module under 60904-3 
conditions 
Adjust ground clearance to see 
impact on avg. back irradiance 

 

C. Deline et al., “Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies”, 
2016 PVSC (not yet published) 
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Indoor & Outdoor measurement comparison:  
Design of Experiments (Example with BiFiIsc = 50%) 

75 

Image Source: Chris Deline et al., NREL, 2016 
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“New bifacial history” and future 
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Image Source: Radovan Kopecek, ISC Konstanz, 2015 
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Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-

94AL85000.  

Modeling the Performance of Photovoltaic Systems using 
the Open Source PVLIB Toolbox in Matlab and Python 

Joshua S. Stein, Ph.D. 
Sandia National Laboratories, Albuquerque, NM 

   



Why Model PV Performance? 

To answer three types of questions: 
1. How much energy will a PV system produce over its lifetime? 
 100% of financial investment is made before any energy is produced. 

2. What PV technologies will work best at my site? 
 Module technology (c-Si, CIGS, Cd-Te, etc.) 
 Inverter technology 
 Design factors (tilt, azimuth, row spacing, tracking vs. fixed tilt) 

3. Is my PV system operating as expected? 
 What do I compare my measured performance to? 
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Two Versions 

 Integrates with Matlab 
environment (help, search) 

 Extensively tested by Sandia 
National Laboratories 

 No extra toolboxes required 
 

 Requires Matlab license ($$) 
 Not fully integrated into GitHub 

(yet) 
 Updates have been slow to be 

released. 
 No formal way report/fix bugs 

except for email. 
 

 Free 
 Can be integrated with a huge 

ecosystem of Python libraries 
 Comprehensive unit tests 
 A real Python library, not just a 

wrapper with awkward syntax 
 High-level features that do not 

(yet?) exist in PVLIB MATLAB 
 A growing community on GitHub 

 
 Getting started with Python, 

NumPy, SciPy can be challenging 
 Not as many functions as PVLIB 

MATLAB 
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PVLIB Matlab PVLIB Python 



PVLIB Documentation 

Matlab 
pvpmc.sandia.gov/applications/pv_lib-toolbox/ 

Python 
pvlib-python.readthedocs.io 



PVLIB on GitHub 
github.com/pvlib/pvlib-python 
github.com/sandialabs/MATLAB_PV_LIB 

Please go here! 



A bit of History 

 Matlab version started as an internal tool at Sandia in 2010-2011 
developed to help standardize analyses across the PV group. 
 PVLIB Version 1.0 – May 2012 – 29 functions 
 PVLIB Version 1.1 – Jan 2013 – 38 functions 
 PVILB Version 1.2 – Dec 2014 – 44 functions  
 PVLIB Version 1.3 – Dec 2015 – 59 functions  

 Python version was initially developed from 2013-2014 by Rob 
Andrews under contract from Sandia. 

 2015 Python PVLIB converted to Open Source GitHub project 
largely managed by Will Holmgren at University of Arizona. 
 

 Download links available on PVPMC website: 
 https://pvpmc.sandia.gov  click on Applications and Tools link 
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Modeling of Partially Shaded PV 
Systems 
Chris Deline 

September 12, 2016 
Solar Power International 2016 
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Shading on PV systems 

Shading and mismatch occur 
on all types of PV systems 

• Nearby obstructions like trees 
and telephone poles 

• Horizon shading (mountains, 
buildings)  

• Self-shading from adjacent rows 

• Dirt, snow, bird droppings, etc. 

Some types of  shading are easier to 
quantify and model than others. 

 

1 

2 

3 
1: Lakewood, CO. 2: Arlington, VA  

Credit: NREL 

Credit: NREL PIX 08558 

Credit: NREL PIX 15617 Credit: Applebaum 1979 
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Mismatch loss and hotspot in PV 

Shade / orientation 
mismatch leads to power 
loss from reduced irradiance 
(non-recoverable) and panel 
mismatch (recoverable) 

The better the peak-power 
tracking (MPPT) granularity, 
the higher the recoverable 
power 

Mismatched panels / cells in 
a series string can result in 
reverse bias and HOTSPOT. 

C. Deline, B. Marion, J. Granata, S. Gonzalez. A Performance and Economic Analysis of Distributed Power Electronics in 
Photovoltaic Systems. NREL Report No. TP-5200-50003. Golden, CO: National Renewable Energy Laboratory, December 
2010.  
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Mismatch loss and hotspot in PV 

Shade / orientation 
mismatch leads to power 
loss from reduced irradiance 
(non-recoverable) and panel 
mismatch (recoverable) 

The better the peak-power 
tracking (MPPT) granularity, 
the higher the recoverable 
power 

C. Deline, B. Marion, J. Granata, S. Gonzalez. A Performance and Economic Analysis of Distributed Power Electronics in 
Photovoltaic Systems. NREL Report No. TP-5200-50003. Golden, CO: National Renewable Energy Laboratory, December 
2010.  
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Distributed MPPT allows partially 
shaded modules to operate at their 
independent max-power point 
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Overview of Distributed MPPT 

 S.M. MacAlpine, M.J.Brandemuehl, R.W.Erickson, “Potential for power recovery: simulated use of distributed 
power converters at various levels in partially shaded photovoltaic arrays,” in Proc. PVSEC 2011.  

+2% +8% +9% +12% 
Cell 

Annual performance improvement 
under heavy shade 

Finer peak-power tracking granularity 
leads to reduced mismatch 

Submodule String Module 

MPPT Granularity 
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Sub-module converters in Close-packed arrays  
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Annual Energy with Row Shading 

Conventional
VT8012Sub-MPPT 

Sub-module converters inside the PV module (3-6 per module) 
enables 10-20% closer row spacing  

MPPT granularity 

*Mismatch occurs within 
the module 

C. Deline et al., “Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers”, 40th IEEE 
Photovoltaic Specialists Conference, Denver, CO, 2014 
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Examples of Distributed MPPT products 

Frame - attached 

Credit: Enphase Energy, Tigo Energy, Maxim Integrated 

J-box embedded Laminate embedded 

2.15 cm 
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SolarEdge 
29% 

Enphase 
22% 

ABB 
20% 

SMA 
15% 

Fronius 
10% 

US Single-Phase Inverter Market (2015) 

Module-level 
solutions are 53% of 
the US single-phase 

market share 

Source: GTM Research, Global PV Inverter and MLPE Landscape, June 2016 

Other 
5% 
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Distributed MPPT pro/con 

Pro: 
• Flexibility of design 
• Safety 
• Data monitoring 
• Shade / orientation 

performance 
• Redundancy 

 Con: 
• Cost 
• Efficiency (maybe) 
• More potential 

points of failure 
• O&M concerns 
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PV Power Electronics for Safety 

• DC Arc Fault detection 
• Battery management 
• Ground Fault detection 
• Reduced Hotspot 

susceptibility 
Wohlgemuth, 2012 

SolarPro, 2011 FLIR, 2016 Tesla 

NREL 

FLIR 
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Electric code updates for Firefighter Safety 

Greg Ball: Rooftop PV 
and Firefighter Safety, 
2016 PVSC 
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NEC 690.12 (2014) “Rapid Shutdown” 

Code requires rooftop PV 
conductors greater than 10’ from 
the array to be de-energized in 
event of emergency 

Compliance options: 

Remote relays Roof-mounted inverters 
Credit: Midnite Solar, SMA, Tigo 

Microinverters and Power 
Optimizers 
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NEC 690.12 (2017) 2nd draft 

Next revision requires control inside array: 
- 80 V maximum within 30 seconds 
- Other allowances for reduced shock hazard, non-
conductive construction 

Compliance options: 

Remote relays Roof-mounted inverters 
Credit: Midnite Solar, SMA, Tigo 

Microinverters and Power 
Optimizers 

X X 
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Overview of inter-row shading model 

Partial Shading 
definition 

Empirical Model Model validation 
< 6% error  

*C. Deline et al., “A simplified model of uniform shading in large photovoltaic arrays,” 
Solar Energy 2013 
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Comparison with Field Data and PVSyst 

Calculated shade losses in SAM and PVSyst 
are within 2%-5% (absolute) 
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Using inter-row shading in SAM (live demo) 
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Calculates beam irradiance shading 
losses and sky diffuse view factor loss 
 
Imports 2D mapping underlays from 
online maps 
 
Outputs are diurnal or hourly/subhourly 
time series linear shade loss percentages 
 
You can group PV surfaces into subarrays 
and specify parallel strings 
 
Non-linear shade response of string 
inverters uses shade database (see 
MacAlpine, Deline: IEEE PVSC 2015) 
 
Linear response of microinverters / 
optimizers uses linear model. 
 

3D shading calculator 
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Using 3D shading in SAM (live demo) 
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3D shading tool comparison with field data 

String Inverter Database (nonlinear) Microinverter Model (linear) 

S. MacAlpine, C. Deline “Measured and Estimated Performance of a Fleet of Shaded PV 
Systems with String- and Module-level Inverters”, Unpublished  
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Thank You! 

This work was supported by the U.S. Department of 
Energy under Contract No. DE-AC36-08-GO28308 
with the National Renewable Energy Laboratory 



NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 

Degradation (Rates) Curves 

Solar Power International 

Las Vegas, NV  

Dirk Jordan, Tim Silverman, Sarah Kurtz 

9/12/2016 
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 Economic & technical motivation 
 
 
 Literature degradation & methodologies  

 
 

 Climate 
 
 

 Module ↔ System 
 
 
 Non-linearities & degradation modes 
 

Outline 
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Economic Technical 

Degradation 

Energy output prediction 
Warranty default 
Significant impact on LCOE 

Field tests 

Correlation 

Low cost & Lifetime prediction 

$$$ 

Chamber tests 

Why degradation (rates, curves, modes)  matter 



11
 

 Economic & technical motivation 
 
 
 Literature degradation & methodologies  

 
 

 Climate 
 
 

 Module ↔ System 
 
 
 Non-linearities & degradation modes 
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> 30 system studies of 20+ years field exposure 

Geographic distribution of 
degradation rates (Rd)  Studies of systems > 20+ years in field 

Increased interest in recent years in long-term performance & degradation 
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# reported rates = 2128

Degradation rate (%/year) 

2011 2016 

Literature survey 

• Few studies with > 1000 modules  
• Aggregated distribution is dominated by particular module, system, mounting, method etc.  
• Counteract overrepresentation  analyze in different ways 
• Median per study & system  second peak disappears 
• High quality data (multiple measurements, calibrations etc.)  second peak disappears 

Sampling bias is present – representative of the population? 

Jordan et al.,  “Compendium of photovoltaic degradation 
rates”, Progress in PV, 2016 
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1 2 continuous discrete
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Percent of studies Percent of degradation rates

Measurements

Majority of Rd are determined by single measurement. 
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Majority of Rd are determined by single measurement. 
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• Indoor IV seem closer to nameplate rating (though limited data) 
 

• Outdoor  seem farther away trending towards nameplate rating. 
Outdoor data may include light-induced degradation (LID) 
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All degradation rates Median per study & system 

Measurements 

Technology 

1

2+

µc-Si

a-Si

HIT

CdTe

CIGS
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Significant difference between all Rd & median per study & system 
a-Si Rd > 1 %/year 
Hetero interface (HIT) Rd similar to a-Si than x-Si 
CIGS around 0.5 %/year 

Reducing sampling bias x-Si  median 0.5 - 0.6, mean 0.8 %/year 
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 Economic & technical motivation 
 
 
 Literature degradation & methodologies  

 
 

 Climate 
 
 

 Module ↔ System 
 
 
 Non-linearities & degradation modes 
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Some modules more susceptible to hotter climates & mounting. 

Show low median Rd across climates 
Desert (1-measurement) shows higher Rd  1-axis tracker & 2.5x concentration 

Solarex: 

Siemens: 
Roof mounting shows higher Rd even for moderate climate 
Hot & Humid shows higher Rd than Solarex 
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 Economic & technical motivation 
 
 
 Literature degradation & methodologies  

 
 

 Climate 
 
 

 Module ↔ System 
 
 
 Non-linearities & degradation modes 
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System vs. module degradation? 

Performance and Aging of a 20-Year-Old Silicon PV System, Jordan et al., J. PV, 2015.  

East 

West 

20 year old mono-Si system at NREL 

Siemens M55 modules 
Size: 7.4kW 
No inverter clipping 
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• The worst string appears to determine the subarray and array performance 
 

• System degradation matches module degradation if modules degrade similarly, 
System degradation > average module degradation when large spread 
 

System & module degrade similarly 
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At median systems & modules degrade similarly 

High –quality, x-Si data 

At median modules degrade a little less than systems but in general very similar 
 
For less well-performing products more significant gap between modules & 
systems 
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 Economic & technical motivation 
 
 
 Literature degradation & methodologies  

 
 

 Climate 
 
 

 Module ↔ System 
 
 
 Non-linearities & degradation modes 
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Northern California
Colorado
Switzerland
Italy 60

80

70

Appears linear for most modules, worst modules non-linear 

1st measurement 
taken after 11 years 

Studies that measured sample modules several times in 20+ years 

Distribution skews towards low end  worse performing modules 
show some non-linearity 
Central tendency & better modules  fairly linear 

ARCO ARCO 

ARCO Siemens 

20 years 

30 years 
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Literature degradation modes 
Percentage of reports 

… but is that the most important effect? 
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Jordan, et al., 35th PVSC, 
Honolulu, HI, USA, 2010.  
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Hot-spots can have several causes such as cracked cells or solder bond failure.  
 
Modules with hot-spots in 1-1 comparison studies showed higher power loss 
than modules without. 

Median reported percentage 

Modules with hot-spots exhibit higher power loss  
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Single solder bond failure causing hot-spot 
Solder bond on cell busbar causing hot-spot in 22 year 
old mono-Si system 

Siemens M55 model 
Module was replaced 
Only replacement out of 280 modules 

The first 20 years decline 
appears to be around 0.5 %/year. 
 
More rapid decline associated 
with FF loss. 

IR image of the back Visual image of affected cell 

Backsheet 

String IV measurements 
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Multiple solder bond fatigues causing non-linearities 

*Herrmann, et al., 37th PVSC, Seattle, USA, 2011.  

Module exposed outside but problems with 
data acquisition 
 
Temperature correction to 48C 

Non-linearity due to solder bonds can be seen in thermal cycling testing.* 

Continuous Pmax data I-V curves  
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Solder bond fatigue – non-linear 

Cracks in interconnect 
ribbons but haven’t 
failed yet. 

IR image shows hot-spots 
along cell interconnect ribbons 
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Solder bond fatigue – non-linear 

Cracks in interconnect 
ribbons but haven’t 
failed yet. 

IR image shows hot-spots 
along cell interconnect ribbons 

EL shows change of connectivity 
when pressure is applied 
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Cracked cell causing non-linearity 

LACSS: large area solar simulator 
Spire: indoor flash tester 
SOMS: standard outdoor measurement system 
Outdoor: Daystar field measurements 

I-V measurements 

• Module was stable for several years 
• Now we see more precipitous decline associated with FF losses, Rs increase 

IR image 
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Risk priority number can quantify risk 
Risk priority number (RPN) = Occurrence * Severity * Detectability 
 
 
 
= Number of reports*Number of affected modules * Severity * Detectability 
 

Severity Rating 
Major impact on power  & unsafe 5 
Major impact on power 4 
Significant impact on power 3 
Slight deterioration of performance 2 
No effect on performance 1 
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RPN (%) RPN (%) 
Older installations – before 2000  Newer installations – after 2000  

Older installations most important factor was discoloration because large number 
of modules affected by it 
 
Newer installations most important factors are hot spots & fractured cells. 
Modules affected are rather small but more publications reporting it. 
 

Hot spots & fractured cells have become more important recently   
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Thin-film: Cracked circuit – 2-step profile 

Cracked module first observed 

Shell CIS system * 

*Jordan et al. in 37th PVSC, 2011. 

Crack extends into module 
Visible Photoluminescence 
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May see more 2-step profiles in the 
future because of inverter clipping . 



13
 

Summary 

 1-measurement studies show significantly higher Rd probably because 
of nameplate rating deviation 
 
 

 Increased Rd in hotter climates & mounting for some products 
 
 

 x-Si has median in 0.5 – 0.6 %/year range, mean in 0.8 %/year range 
 
 

 Non-linearities have significant financial impact, need to more 
accurately measure curves instead of relying solely on rates.  
 

 Discoloration is the most commonly observed failure mode but is 
associated with less power loss. In contrast, hot-spots are not as 
frequently observed but show greater power losses. 
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Motivation: PVWatts v5 

http://pvwatts.nrel.gov/ PVWatts v5 released in 2014 
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PVWatts v5 DC-AC default loss values 

Loss Mechanism V5 Loss V1 Derate 
Soiling 2 % 0.95 

Shading 3 % 1.0 

Snow 0 % 1.0 

Mismatch 2% 0.98 

Wiring 2 % 0.97 

Connections 0.5 % 0.995 

Light-induced degradation 1.5 % - 

Nameplate rating 1 % 0.95 

Age 0 % 1.0 

Availability 3 % 0.98 

Total losses 14 % 16.5 % 

A. Dobos, PVWatts v5 manual  http://www.nrel.gov/docs/fy14osti/62641.pdf 

Inverter Efficiency 96 % 0.92 

Effective DC-AC Derate 0.825 0.77 

Default DC-AC derate: 
PVWatts v1: 0.77 
PVWatts v5: 0.825 



14
 

Analysis of 50,000 systems = 1.7GWatts Capacity 

Data filtering rules: 

 Nameplate or predicted value =production year1,2,3,4  reject production years 

 Predicted capacity factor: actual production/potential production= 3-40% 

 Year1 production = Year2 production  reject year2 entry 

Data available: 
AC production (up to 4 years)  
Predicted AC production 
Zip code location 
Nameplate 
Comments 
 
Data not available: 
Irradiance 
Orientation 

American Recovery & Reinvestment Act, Section 1603 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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Categorization of Performance Comments 

Hurricane 

Data Category Sub-category Comment Example 
Normal N/A Normal variance in solar irradiance 

Project Delay Delay in construction for up to two months.  

Utility/Grid Erratic voltage on grid line shuts down inverter 

Construction PV system turned off  for building's renovation process. 

Design System design (tilt) changed after initial application. 

Financials House went into foreclosure and the system has been shut down.  

Hardware Inverter The inverter had a problem and needed to be replaced. 

Repair Maintenance interruptions. Difference due to unscheduled outages. 

Fuse, Wiring Multiple string fuses had to be replaced.  

Module defective Solar panel damage, system underperformed. 

Module recall System was shut down module recall.   

Unauth. shutdown Vandals switched disconnects "off" until locks were secured. 

Data Collection Missing Data We are missing production data from April - May.  

Data acquisition  Internet monitoring feed problems 

Poor initial estimate  Overestimated the systems output in optimal conditions. 

Weather Snow Heavy snow fall in the winter reduced generation in the winter.  

Shading Original production was based on the original shading analysis.   

Lightning Local power transformer was struck by lightning,  

Hurricane Power outage due to Hurricane Sandy 
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No Evidence of Massive failure 

Data Points: 

Year 2 Year 3 Year 4 Year 1 

18,632 5,825 479 
Normal

Hardware

No information  

91.5 
0.7 
0.8 
5.8 
0.9 
0.2 

95.3 
0.6 
1.0 
1.3 
0.9 
0.9 

97.6 
0.5 
0.1 
0.7 
0.6 
0.7 

95.8 
0 

0.2 
2.3 
0.8 
0.8 

Hardware

No information  

Project

Weather

 Data Collection

48,259 

Year of Operation: 

Project/Site:  Delay, grid interconnection, construction etc. 
Weather:   Snow, soiling, lightning, hurricanes etc. 
Data Collection: Data acquisition, less than a year of data, etc. (not performance related) 
Hardware:  Inverter, module, breaker, fuses etc. 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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Most systems produce as expected 

Project issues data points tend to be farther away from unity line  
They don’t occur that often (previous slide) but if they do they tend to have larger impact 

Measured vs. predicted production for all operation years 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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Variable

Cumulative Distribution Function (CDF)  
is often used in risk analysis  

Histogram 
Probability density function  Cumulative distribution function  

Area under curve 
from -∞ to x 

+ Easy to see shape, central location 
- Hard to determine probability  

- Easy to determine probability  
+ Hard to see Shape, central location 

Px 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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Normal data  

CDF measured/predicted production 

P50 

P90 

 Absence of discontinuities  smooth tails of distribution 

 P90 ca. 90% of predicted 

 P50 by several percent higher than predicted 

90% chance that production exceeds 90% of predicted 

1
2
3
4

Year

P50: 50% of the data lie 
above it (median). 
 
P90: 90% of data lie 
above it. 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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New PVWatts default derate appears to fairly accurate 

Measured/Predicted production  

P50: 50% of the data lie 
above it (median). 
 
P90: 90% of data lie 
above it. 
 
Brackets: number of data 
points per category 

PVWatts: free modeling tool that estimates the energy production of grid-connected PV 

Derate: DC-to-AC conversion efficiency, default = 0.77 

Jordan: Field Performance of 1.7 Gigawatts of Photovoltaic Systems, IEEE PVSC 2014 
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