

Reducing supply chain energy use in next-generation vehicle lightweighting

Rebecca J. Hanes¹, Sujit Das², Alberta Carpenter¹

- 1. National Renewable Energy Laboratory
- 2. Oak Ridge National Laboratory

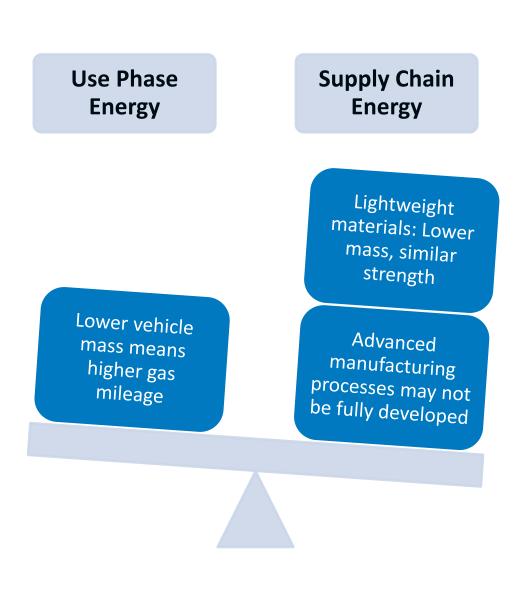
LCA XVI, Charleston, SC

September 29, 2016

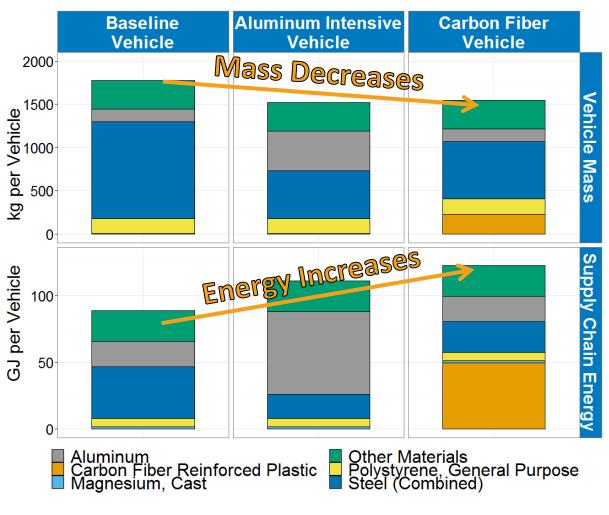
NREL/PR-6A20-67172

Vehicle Lightweighting

- 2025 Corporate Average Fuel Economy (CAFE) Standards
 - 54.5 miles/gallon for light-duty vehicles
 - 163 g/mile GHG emissions
- How to decrease vehicle fuel use?
 - More efficient engines
 - Lighter vehicles



Lotus Elise NATIONAL RENEWABLE ENERGY LABORATORY Mazda MX-5 Miata


Mazda CX-5

Vehicle Lightweighting and Energy Use

- Replace conventional materials with lighterweight alternative materials that have similar strength properties
- Lighter vehicles require less fuel to operate, resulting in large use phase energy savings over the vehicle lifetime
- Use phase energy savings may be reduced or completely offset by increased energy use in the vehicle supply chain

Aluminum and Carbon Fiber Composite Lightweight Vehicles

From the baseline...

- Vehicle mass decreases
 - o Aluminum: 18%
 - Carbon fiber: 16%
- Vehicle supply chain energy *increases*
 - o Aluminum: 37%
 - o Carbon fiber: 49%

Reducing the vehicle supply chain energy results in greater energy savings over the vehicle life cycle.

- Analyze two lightweight vehicles under current and next-generation production technology scenarios
 - Aluminum intensive vehicle (AIV)
 - Carbon fiber composite vehicle (CFV)
- Evaluate supply chain energy use and life cycle energy use for a baseline non-lightweight vehicle and the two lightweight vehicles

Vehicle Life Cycle				
Supply Chain	Use Phase			
Calculate energy consumption with NREL's Material Flows through Industry (MFI) supply chain modeling tool	Combine supply chain energy with use phase energy consumption from Das et al. (2016)			

Material Flows through Industry (MFI) is a linear network model of the U.S. manufacturing sectors.

- Models industrial commodity supply chains
- Captures processes from natural resource extraction through commodity production
- Extendable to include consumer products, the use phase and end-of-life processing
- Can represent current U.S. industrial practices or a variety of alternative manufacturing scenarios

Supply Chain Modeling

- Vehicle material inventories from Das et al. (2016) were used to model vehicle supply chains
- Lightweight vehicle supply chains were modeled under several next-generation technology scenarios

Material	Baseline Vehicle (kg)	Aluminum Intensive Vehicle (kg)	Carbon Fiber Vehicle (kg)
Steel (all)	1,119	552	665
Aluminum (all)	147	458	147
Carbon Fiber Composite	0	0	227
Magnesium	5	5	5
Plastics	174	174	174
Other Materials	330	330	330
Total Mass	1,775	1,519	1,548

Technology Scenarios

Current Technologies

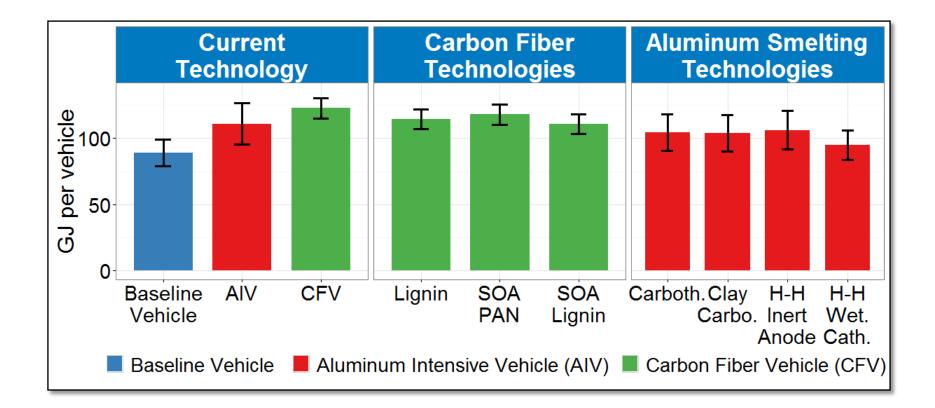
- All processes in vehicle supply chain reflect standard U.S. industrial practice
- Carbon fiber is produced 98% from polyacrylonitrile (PAN), 2% from pitch
- Aluminum smelting is via the Modern Hall-Heroult process

Next-Generation Carbon Fiber Technologies

- Lignin is a renewable precursor not currently used at an industrial scale
- State-of-the-art (SOA) technologies reduce process energy consumption

Next-Generation Aluminum Smelting Technologies

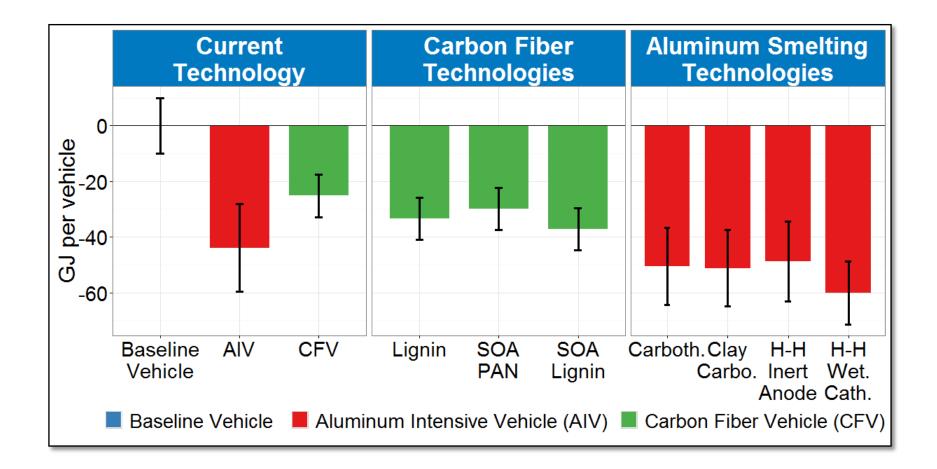
• Carbothermic electric furnace, Clay Carbochlorination, Hall-Heroult Inert Anode and Hall-Heroult Wetted Cathode are advanced smelting technologies that reduce process energy consumption


Carbon Fiber Technologies

- Renewable, biomass-derived lignin precursor reduces energy consumption upstream of carbon fiber production relative to fossil-derived PAN precursor (Das, 2011)
- State-of-the-art (SOA) technologies reduce process energy consumption with more efficient process equipment and other process improvements (DOE, 2016)
 - Examples: Upgrade oxidation furnace, implement advanced process control for continuous optimization
- SOA improvements apply to both PAN and lignin precursors

Aluminum Smelting Technologies

- Aluminum smelting is one of the most energy-intensive steps in aluminum production
- Four next-generation alternatives to the current modern Hall-Heroult process are: (Das, 2012)
 - Carbothermic smelting
 - Clay Carbochlorination
 - Hall-Heroult Inert Anode
 - Hall-Heroult Wetted Cathode
- All reduce smelting energy relative to the modern Hall-Heroult process
- Barriers to industrial implementation may exist
 Process safety, economics


Supply Chain Energy Consumption

Uncertainty bars indicate variability in the amount of primary and recycled steel and aluminum used in each vehicle.

- Mild steel: 25 50% primary
- High strength steel: 85 89% primary
- Aluminum: 40 70% primary

Life Cycle Energy Use, Relative to Baseline Vehicle

A more negative value indicates greater life cycle energy savings.

Conclusions

- Across the scenarios analyzed, both vehicles offer savings over the baseline vehicle, although life cycle energy savings are currently greater for the aluminum vehicle than for the carbon fiber vehicle
- Next-generation technologies reduce supply chain energy relative to current technology for both lightweight vehicles
- Neither lightweight vehicle has lower supply chain energy than the baseline vehicle, under any technology scenario

	Current Technology		Next-Gen Technology, Best Case	
Vehicle	Supply Chain (GJ/vehicle)	Life Cycle (GJ/vehicle)	Supply Chain (GJ/vehicle)	Life Cycle (GJ/vehicle)
Baseline	78	537		
Aluminum Intensive	107	500	91	484
Carbon Fiber	116	516	104	504

- Include more lightweighting material and nextgeneration technology alternatives in analysis
- Evaluate time to reach zero net energy for different lightweight vehicles
- Expand the scope of the analysis to the entire U.S. passenger vehicle fleet
- Project fleet-level supply chain and use phase energy consumption forward in time using information on the technology adoption rate of lightweight vehicles

Questions?

Funding provided by the U.S. Department of Energy Advanced Manufacturing Office.

References

- Das, S. (2011) *IJLCA*, *16*(3), 268-282.
- Das, S. (2012). JOM, 64(2), 285-290.
- Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., & Cresko, J. (2016). SM&T, 8, 5-13.
- Hanes, R. J. & Carpenter, A. (2016) Proc. ISSST, 4.
- DOE CFRP Bandwidth Study (2016) DRAFT.
- Worrell, E. (2009). *IEEE ISSST* (1-6). IEEE.

Image Credits

AutoGuide: Top 10 Most Fun Lightweight Cars to Drive

Popular Mechanics: 10 Best Lightweight Cars of the L.A. Auto Show

www.nrel.gov

