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The Role of Nanoscale Seed Layers 
on the Enhanced Performance of 
Niobium doped TiO2 Thin Films on 
Glass
Stefan Nikodemski1, Arrelaine A. Dameron2, John D. Perkins2, Ryan P. O’Hayre1, 
David S. Ginley2 & Joseph J. Berry2

Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance 
versatility are needed for a variety of optoelectronic applications. Among potential new TCO 
candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped 
titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition 
or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order 
to examine the effects of the seed layer processing on the subsequent crystallization and electrical 
properties of these heterostructures. Observations from Raman spectroscopy suggest that higher 
oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, 
found in films produced by annealing directly after synthesis without any exposure to oxygen. 
Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without 
breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of 
oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

New high-performance yet low-cost transparent conducting oxide (TCO) contacts are needed for high-efficiency 
optoelectronic applications. Many of these applications rely on indium-based TCOs, most commonly indium tin 
oxide, or ITO. There are, however, concerns regarding the abundance of indium and resulting material reserves as 
it relates to future ITO availability and costs1–5. Anatase titania (TiO2) has been shown to be a viable candidate for 
TCO applications6–8. Upon doping with niobium (optimally between 3–6 at.%)6–8, titania shifts from non-metal 
to metallic-like properties resulting in both high electrical conductivity and high optical transmittance. For ana-
tase TiO2 thin films with Nb doping in this ideal range deposited on single crystal substrates, the resistivity is 
comparable to that of conventional ITO films6–9.

Presently, the best Nb-doped TiO2 (TNO) films have been achieved by physical vapor deposition on 
epitaxially-matched single crystal substrates such as LaAlO3 and SrTiO3

6–9. Generally, studies involving TNO 
films grown on these high quality substrates (with subsequent high temperature anneals in reducing atmos-
pheres) result in both high conductivity (in some cases ~3000 S/cm) and moderate transparency (60–80% for 
films ~200 nm thick)6. For films on these substrates, the epitaxial relationship between the substrate and the 
doped titania stabilizes the high mobility anatase phase while excluding the lower mobility rutile phase6,7,10,11. 
However, large-scale production of TCO films on crystalline substrates is costly and technologically limiting, 
thus alternative substrate choices (such as glass) are more attractive for a broader range of industrial applica-
tions. Recently, significant efforts have been undertaken to translate these results from crystalline substrates to 
non-epitaxial systems7. Studies of TNO films deposited directly on glass have concluded that the most crucial 
growth parameters influencing the final crystalline phase are deposition/annealing temperature and gas pres-
sure/composition12,13. However, only samples subjected to harsh annealing conditions (high temperatures of 
~600 °C in pure H2) produce the most conductive and transparent films. This high temperature reducing anneal 
is required to produce larger crystalline domains (thus reducing grain boundary scattering), which is made diffi-
cult by the amorphous nature of the substrate. One method to improve the crystal growth of oxides is to use seed/
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buffer layers to act as an intermediary phase between the film and the amorphous substrate surface14. Recently, 
several studies investigating the effect of nanoscale seed layers on the growth orientation of pure and doped TiO2 
on glass have been conducted15–20. Yang et al. showed that a bilayer SrTiO3/TiN template grown by physical vapor 
deposition on glass substrates produces anatase thin films with uniaxial c-axis orientation15. Hoang et al. reported 
some promising results, whereby low temperature sputter deposition of an initially amorphous oxygen-rich 
Nb-TiOx film followed by a thicker oxygen-deficient Nb-doped TiOx film with a subsequent rapid thermal treat-
ment produced structures with high conductivities (~1000 S/cm)16. While this approach has achieved conduc-
tivities close to ~1000 S/cm, this method has yet to rival the epitaxially grown materials. In addition, it is still 
unclear what the impact of doping concentration in the TiO2 layer has on the phase stability. Shibata et al.17,18,  
Yamada et al.19 and Taira et al.20 have conducted a significant amount of research utilizing Ca2Nb3O10 nanosheets 
with a 2D perovskite structure to template the growth of high quality (001) oriented anatase films, which in some 
cases (when combined with PVD deposited Nb-doped TiO2 films) have succeeded in significantly enhancing the 
carrier transport properties.

In this study, a design-of-experiments matrix based on a survey of reported results was developed to gain 
insight regarding the key deposition parameters along with resulting physical properties of the seed and bulk lay-
ers (structural phase, dopant concentration, crystallinity, oxygen content, and annealing time) ability to control 
desirable TNO film properties leading to desirable electronic properties (high carrier concentration and mobility) 
leading to high electrical conductivity. The seed layers were fabricated using both atomic layer deposition (ALD) 
and RF magnetron sputtering. ALD TiO2 seed layers were deposited at low and high temperature with various 
thicknesses using two different titanium precursors (TiCl4, Ti[OCH(CH3)2]4) and two different oxygen sources 
(H2O, H2O2). Sputtered TNO seed layers of varying thickness and oxygen content were deposited immediately 
prior to the deposition of the bulk TNO film in the same chamber without breaking vacuum. The bulk layer film 
had a constant thickness of ~140 nm. After deposition, the seed +​ bulk layer films were annealed at various tem-
peratures under reducing atmospheres (both in-situ and ex-situ), to clarify the effect of post deposition oxygen 
exposure and annealing temperature on film properties. For specific procedural conditions see Table 1.

It is believed that the stabilization of the anatase phase in the seed layer (which subsequently acts as a nucle-
ation center for the bulk film crystallization during annealing) is critical to achieve high conductivity films. We 
confirm this by demonstrating that both ALD and sputter seed layers can form stable anatase seeds on glass that 
enables subsequent crystallization of the overlying layer at around 300 °C. Further heating causes the activation of 
the niobium dopant, releasing additional electronic carriers into the conduction band. This seed layer +​ overlying 
layer strategy results in films with vastly superior electrical properties compared to monolithic films deposited 
directly on glass (i.e., without a seed layer) under equivalent conditions (~2–3 fold improvement). Furthermore, 
our results suggest a key guiding principle to achieve films possessing high phase purity and high electrical con-
ductivity is related to the oxygen content in the underlying seed layer. Only by depositing sputtered seed layers in 
oxygen rich environments can the formation of detrimental titania polymorph phases be suppressed.

Results
In-situ XRD annealing.  To understand the influence of the seed layer on the crystallization of the Nb doped 
TiO2 film we performed a series of in situ XRD annealing experiments. Figure 1 plots the x-ray intensity (in 
the 25.5° anatase peak region) as a function of both 2θ​ and substrate temperature for 140 nm thick TNO films 
deposited on 30 nm thick ALD and sputtered TNO seed layers as well as a control sample consisting of an 140 nm 
thick TNO film deposited directly on the glass substrate without a seed layer. For complete scan information with 
standard x-ray reference patterns for both anatase and rutile phases, see supplementary information (Figure S1).

The fluctuations in the x-ray intensity (observed most prominently in the 20–35° range) are the result of back-
ground subtraction. The Anton Paar DHS 900 dome used to encapsulate the samples (and trap the N2 purge gas) 
has a very intense x-ray signature, and the associated peaks are difficult to completely eliminate. Nevertheless, 
diffraction patterns were recorded as Debye ring patterns in a two-dimensional detector image, and the XRD 
results after background corrections clearly indicate that randomly-oriented polycrystalline TiO2 films were 
obtained. All samples (including the control) were found to be anatase phase for our set of annealing conditions 
(supplementary – Figure S1). One clear distinction between the seed-based samples and the control sample is the 
temperature at which the onset of crystallization occurs (Fig. 1A). In order to better visualize the temperature 
onset of crystallization, the integrated intensity of all anatase peaks was calculated, averaged, and plotted as a 
function of temperature in Fig. 1B. TiO2 crystallization for all samples, regardless of seed properties, occurred 

Deposition variables ALD seed layers
Sputtered 
seed layers

Bulk TNO layers 
on seed layers

Ti precursor TiCl4, Ti[OCH(CH3)2]4 — —

Oxidizer H2O, H2O2 — —

Dep. temp (oC) 100, 300 RT RT, 550

Anneal temp (oC) — 550 200–550

Anneal time (hrs.) — 2 2–18

Oxygen flow rate ratio (%) — 0–50 0–30

Thickness (nm) 5, 30 5, 30 140

Niobium content (at. %) 0 5, 10 5, 10

Table 1.   Seed layer and Bulk TNO layer deposition experimental details.
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in the temperature range of 260–320 °C and is concluded within a short time span (30 minutes). The presence of 
crystalline ALD seed layers and both crystalline and amorphous oxygen rich sputtered seed layers produced films 
that crystallized at the low end of this temperature range (260 °C) while the absence of a seed layer in the control 
sample delayed crystallization to the upper end of this temperature range (330 °C). The negligible difference 
in the crystallization temperature of a thicker TNO layer with an underlying oxygen rich sputtered seed layer 
(crystalline or amorphous) may indicate that a high oxygen content in the seed layer leads to the reduction of the 
nucleation energy barrier. On the other hand, initially amorphous ALD seed layers (deposited at low tempera-
tures ~100 °C) clearly do not lead to a reduction in this energy barrier for film crystallization, as these films have a 
similar crystallization onset as the control sample. Another key observation from these experiments is the varia-
tion in the average integrated x-ray intensity despite all films being the same thickness. For samples with sputtered 
seeds (whether crystalline or amorphous), the average integrated intensity is relatively similar, and it was found 
that the electrical properties of the sputtered samples were also comparable. This suggests that the final crystallite 
sizes are approximately equal and lead to near identical rates of electron scattering. However, TNO films depos-
ited on crystalline versus amorphous ALD seed layers resulted in markedly different behavior. Compared to their 
amorphous ALD counterparts, TNO films deposited on crystalline ALD seed layers exhibited a much higher 
average integrated intensity upon annealing (see Fig. 1) and growth oriented along particular crystal planes (see 
supplementary Figure S1 – compare “crystalline ALD seed” with “no seed”). The PVD deposited samples also 
showed preferred orientation compared to the control sample, particularly the lower relative intensity of the (004) 
(105), and (211) planes in favor of more intense (101) and (200) crystal planes.

Raman mapping.  Due to the low spatial resolution of our 2D x-ray detector, Raman spectroscopy using 
a confocal microscope (100x objective) and a Nd3+:YAG laser with an operational wavelength of 532 nm was 
additionally used to spatially resolve the crystal phases of the annealed heterostructures. Additionally, Raman 
spectroscopy is also very sensitive to minor impurity phases present in our films that otherwise might go unde-
tected by XRD. Spatial maps of the films measuring 10 microns ×​ 10 microns were constructed by combining 
sequential line scans across the sample. In our case, only XY information (resolution ~250 nm) is available and 
the measured phase at a given position represents an average through the entire film thickness. Both anatase and 

Figure 1.  (A) Magnification of the 25.5o anatase x-ray peak for Nb:TiO2 films deposited on seed layers as well 
as directly on glass. (B) Temperature dependence of Nb:TiO2 film phase formation (produced from the average 
integrated intensity of all anatase x-ray peaks).
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brookite polymorphs are observed in our films by Raman spectroscopy. The observation of brookite in our films is 
surprising since rutile is the more commonly observed and thermodynamically stable TiO2 polymorph. We know 
that a number of other polymorphic oxides have metastable bulk phases (gamma vs. alpha alumina, iron oxide 
compounds)21. The polymorphs that are often metastable at the bulk scale often predominate at the nanoscale due 
to thermodynamic considerations (metastable bulk phase may have a lower surface energy). Therefore, there is a 
crossover in the energetics when these phases are present at the nanoscale. It is possible that titania is such a mate-
rial where the metastable brookite phase may be present as nanoparticles imbedded in a primarily anatase matrix. 
Nevertheless, the presence of the brookite polymorph in our films is strongly reinforced by direct comparison 
to Raman measurements of single crystal brookite mineral samples using the same system (Fig. 2). The relative 
intensity of the anatase and brookite signals can be deconvoluted (see Fig. 2) by modeling each spot scan with a 
linear combination of pure phase spectra (with different weighting factors). By taking a ratio of the two signals, 
we can estimate the anatase to brookite fraction. These values are plotted in Fig. 3.

Because of the small percentage of brookite in the films, each graph is plotted on a log scale to better resolve 
contrast between regions with “high” to “low” brookite content. Thus, a value of 0.0 would represent a 50/50 mix-
ture between the brookite and anatase phases; a value of 1.0 would be a 10:1 ratio of anatase to brookite and so 
on. Each sample was annealed in vacuum to a maximum temperature of 540 °C for 2 hrs immediately following 
deposition and subsequently mapped. A histogram of the intensity ratios was generated for each sample and is 
included beside each corresponding Raman map.

The control sample (TNO deposited directly on glass) has mixed phase behavior where the ratio of the weight-
ing factors (between the anatase and brookite phases) in the Raman spectra deconvolution ranges from 10–100:1 
(closer to 30:1 given the histogram peak value of ~1.5). TNO films deposited on thinner (~5 nm) ALD seed 
layers show very similar post-anneal structure to the control sample. However, the anatase-to-brookite ratio 
has a slightly higher average value (50–60:1) in this case, which is indicated by a shift in the histogram peak to 
greater values. TNO films deposited on thick (30 nm) ALD seed layers as well as on oxygen-rich sputtered seed 
layers achieve the greatest degree of anatase fraction. In these cases, the brookite fraction is extremely low and is 
only just above the background signal. The majority of the film has an anatase to brookite ratio on the order of 
100–1000:1 (with some regions achieving even higher fractions). The thickness of the sputtered seeds has little 
impact on the anatase-to-impurity ratio as observed by Raman mapping. The more important deposition param-
eter affecting this ratio is the oxygen content of the seed. We found that the brookite phase is suppressed as long as 
the underlying seed layer has high oxygen content (see supplementary Figure S2). One critical difference between 
the Raman and XRD experiments was the exposure to the ambient environment. XRD samples were necessarily 
exposed to ambient air before the experiment commenced whereas Raman mapping specimens were annealed 
in the vacuum chamber directly following deposition. Therefore, short-term O2 exposure could have resulted in 
changes to the nature of the phases present post-annealing.

Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were used to 
evaluate the smoothness and long-range morphology of the films. These observations confirm that variations 
in the Raman intensity were not the result of roughness fluctuations in the film and substrate (see Figure S3 in 

Figure 2.  Raman spectra for various TiO2 polymorph samples. The highlighted regions provide an example 
of the integrated peak intensity used to calculate the impurity ratios for bulk films. Note, these spectra are 
presented to highlight the regions of interest and have not been subjected to any background subtraction (which 
is required for the calculation of the anatase/impurity ratio).
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supplementary information). From Fig. 3 it is clear that the anatase/brookite domain sizes are on the micron 
scale for the control sample deposited directly on glass, and become substantially larger for films deposited on 
oxygen-rich sputtered seed layers. Once the anatase domain size has reached a critical value, the likelihood of 
a continuous anatase area, which extends the length of the sample, becomes very high. Thus, an increase in the 
domain size is likely responsible for the excellent electrical properties of the sputtered TNO heterostructures (see 
supplementary – Table S1 and Figure S4).

Ex-situ and Hall effect electrical transport measurements.  An ex-situ annealing experiment was 
performed which measured the resistance of a TNO film (deposited on a oxygen rich seed layer) as a function 
of temperature under a reducing gas environment (5% H2 by vol. bal. Ar). The aim of this experiment was to 
establish a complete conductivity profile as a function of the anneal temperature. The data was collected in tra-
ditional 4-point probe fashion with four collinear contacts and the results are plotted in Fig. 4. During the initial 
stages of annealing, the film resistance begins to decrease around 300 °C. A second, more pronounced decrease 
in the resistance occurs once the sample attains the anneal hold temperature of 500 °C, where it dwells for 1.5 hrs. 
This data is directly correlated with the sample resistivity, via a geometric factor associated with the sample and 
contact geometry, and was used to identify annealing conditions to examine the nature of this resistance trend in 
more detail via Hall analysis (see Table S1). The Hall analysis addresses a potential pitfall of the ex-situ annealing 
experiments. While in the tube furnace, the sample is free-floating and is not in direct contact with the alumina 
tube. Despite the slow ramp rate (1 °C/min), the sample may not have reached a true thermal equilibrium with the 
annealing environment. Therefore, the annealing experiments were used to identify four temperature regions of 
interest that require further investigation. Hall measurements were then subsequently conducted on 140 nm thick 
TNO films deposited on top of sputtered-seed layers (5 nm thick). Each of these samples was annealed immedi-
ately post-deposition in the vacuum of the sputtering system to a temperature within each region of interest for 
2 hrs. Based on the Hall data, the initial decrease in resistivity is likely the result of niobium dopant activation. 
The “hump” in the sample resistivity at around 325 °C appears to be the result of a change in the mobility. The 
observed double minimum in the mobility around this temperature is a curious result, as the XRD for all seed 
layer samples shows an absence in structural changes after the initial crystallization. However, this lack of struc-
ture change could be masked by the limitations of our XRD instrument. Bulk TNO films deposited on thinner 
sputtered seeds outperformed (conductivity) all other seed layer types regardless of thickness. Whilst higher tem-
peratures produced films with better electrical properties given a constant annealing time, it is currently unknown 
if a sufficiently long anneal at lower temperatures will produce films with equivalent resistivity values. As a sanity 
check, the transmission/reflection characteristics of our 5% Nb doped TiO2 samples were tested and a trans-
parency between 60–80% was obtained even for the most conductive samples (see supplementary – Figure S5).  
Hall measurements were also conducted on TNO films deposited on ALD seed layers. In this case, the tem-
perature was maintained at a constant 540 °C and the annealing time was varied. Optimum performance of 
these materials is achieved with an anneal lasting approximately 2 hrs. If the duration of this anneal is increased 

Figure 3.  Raman mapping results for Nb:TiO2 films. Maps are plotted on a log scale. Histogram of anatase 
fraction values for a variety of seed layer samples and the control.
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substantially (18 hrs), the performance of these samples is worsened. This dip in electrical properties is the result 
of a mobility decrease at the long anneals times.

Design of experiments.  Correlation factors calculated from the analysis of the design of experiments are 
plotted in Fig. 5. The two most important parameters in achieving films with a high degree of anatase are sput-
tering on thicker (30 nm) seed layers and deposition of the bulk film in a high oxygen partial pressure (PO2). The 
major factors impacting conductivity are bulk deposition in low PO2 and Nb content. 10% Nb doped TiO2 films 
were found to be far less conductive than their 5% Nb counterparts despite being annealed at the same tempera-
ture and equivalent durations.

This is likely due to the decrease in doping efficiency, increased dopant-dopant association, and increased 
dopant-scattering with increasing Nb content (above 6%)7. The doping concentration in the bulk film showed no 
correlation with anatase phase formation. Instead, O2 pressure during the deposition of the bulk film was highly 
correlated and associated with the formation of the anatase phase. However, samples produced with bulk layers 
deposited in a high PO2 tend to have relatively poor electrical properties. We speculate that low oxygen pressure 
during deposition results in large quantities of oxygen vacancies in the bulk lattice. In order to preserve charge neu-
trality, these vacancies are compensated with electronic defects. Thus oxygen-rich films essentially quench these 
additional electronic carriers ultimately resulting in high resistivity. Additionally, oxygen rich conditions increase 
the formation enthalpy of Nb+Ti donors, while the compensating Ti vacancies form with higher probability, and 
consequently the effective dopant activation is determined by the oxygen content of the as-grown material22.  
Thus, large anatase intensity is not necessarily a good indicator of a highly conductive film. Nonetheless, our 
results indicate that the mechanism behind the improvement in film properties is the stabilization of the anatase 
phase in the seed layer, which subsequently acts as a nucleation center for the bulk film crystallization during 
annealing. The bulk film must be oxygen deficient for high conductivities to be achieved. Additionally, these 
results confirm previous hypothesize regarding the role of the seed layer on the enhancement of structural and 
electrical properties of TNO heterostructures16.

Conclusion
The impact of an underlying interfacial seed layer was clarified by carefully examining the dependency of bulk 
TNO film properties (phase purity, resistivity) on key seed/deposition parameters. This careful analysis relied 
on Raman spectroscopy, which allowed us to observe the structure and spatial distribution of minor impurity 
phases that were difficult to resolve with conventional XRD experiments. Our results suggest a key guiding 
principle to achieve films possessing high phase purity and high electrical conductivity is related to the oxygen 
content in both the seed and bulk layers. Fabrication of low resistivity TNO bilayer films on glass is realized for 
heterostructures consisting of an oxygen-rich base layer immediately followed by an oxygen-deficient bulk layer. 
In this way, detrimental titania polymorphs phases are suppressed while dopant activation occurs at moderate 
temperatures.

Experimental.  Corning Eagle2000 (E2K) glass slides were prepared by ultrasonic cleaning while soaking in 
acetone and isopropyl alcohol solvents (10 minutes each). The films studied in this work were deposited using the 
ALD and sputtering methods. To deposit the films, the substrates were alternately exposed to the Ti precursor 
and oxygen precursor In order to ensure layer-by-layer growth, the reaction zone was purged after each precursor 
pulse. The substrate temperatures used for deposition ranged from 100 to 300 °C.

Our sputtering targets were all 2-inch diameter disks with composition of Ti0.90Nb0.1O2, Ti0.95Nb0.05O2, and 
undoped TiO2 (99.9% purity). The base pressure achieved prior to each deposition was 5 ×​ 10−6 Pa. A mixture of 
Ar and O2 at various flow rate ratios maintaining a total system pressure of 1.0 Pa was utilized during deposition. 
The RF power applied to the target was kept constant at 75 W. Preceding each deposition, the target surface was 

Figure 4.  In –situ conductivity measurements plotted vs. annealing temperature and time. Temperature 
dependence of anatase x-ray intensity compared with film resistance.
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first sputter-cleaned in pure Ar for several minutes and subsequently pre-sputtered for 10 min using the same 
gas flow ratio and total pressure as for the bulk film. The as-deposited films (when amorphous), were crystallized 
by annealing in the deposition chamber under vacuum (no gas flow). The substrate temperature during deposi-
tion/annealing was confirmed using a thermocouple under the same pressures achieved during post treatment 
processes.

We first deposited a variety of seed layers directly on E2K glass by sputtering and atomic layer deposition 
(ALD) and subsequently grew thick TNO layers (also by sputtering) with varying oxygen content (typically O2 
deficient). Samples based entirely on sputtering were performed in the same chamber, thus eliminating the need 
to break vacuum. For the sputtered seed layers, we elected to vary a number of parameters including seed thick-
ness (5–30 nm), doping concentration (undoped, 5% Nb, and 10% Nb), and oxygen content (5–50% flow rate O2). 
Pure TiO2 ALD seeds were grown incorporating several additional factors (precursor chemistry, crystallinity, and 
annealing duration).

The figures of merit were represented by electrical conductivity and anatase signal intensity from Raman spec-
troscopy. Note, due to fluctuations in the anatase signal at high magnifications (100X), we opted to reduce the mag-
nification power to 20X in order to sample a larger portion of the film surface. This way, the microscopic variations 
in the signal intensity are averaged out in a single spot scan. Typically, correlation factors range from +​1 to −​1,  
and values near these endpoints indicate strong correlations (positive and negative, respectively) between the 
growth parameter and the figure of merit. Values approaching zero imply little/no association. In this situation, 
we have calculated and plotted the absolute value of these correlation factors, and are only interested in growth 
parameters that result in a large interdependence with the figures of merit.

For the x-ray annealing experiments, all samples were heated at 1 C/min to a maximum temperature of 500 °C 
in flowing N2 while simultaneously acquiring diffraction data. N2 was used in order to decrease the oxygen partial 
pressure during the experiment in order to more accurately represent the annealing conditions in the sputter sys-
tem vacuum chamber. The samples dwelled at the highest temperature for several hours (~8) to measure changes 
in the crystal phases present at longer annealing times.

Conductivity measurements were conducted using a standard 4-point probe setup. Crystallographic structure 
and orientation were characterized by X-ray diffraction (XRD) measurements using a two-dimensional detector 
(Bruker, D8 Discover with GADDS) and Raman spectroscopy. Film smoothness and long-range characteristics 
were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). 
Film thickness was determined using spectroscopic ellipsometry and independently confirmed with FESEM. 
In order to determine the crystallization temperatures as a function of seed layer, we conducted XRD hot-stage 
experiments under N2 flow23–27.

Figure 5.  Design of experiments results plotting the film/seed deposition parameters against the figures of 
merit. 
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