

Inverter Anti-Islanding with Advanced Grid Support in Singleand Multi-Inverter Islands

Andy Hoke, Ph.D., P.E. Presentation to Smart Inverter Technical Working Group Webinar August 16, 2016

NREL/PR-5D00-66942

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Mahalo to:

- SolarCity Frances Bell, Mike McCarty
- NREL Austin Nelson, Brian Miller, Sudipta Chakraborty (PI)
- The Hawaiian Electric Companies:
 - Marc Asano Technical input
 - Earle Ifuku SITWG lead
- Department of Energy Solar Energy Technologies Program
- Northern Plains Power Technologies Mike Ropp

Overview

1. Background

- 2. Single-inverter anti-island tests with grid support functions (GSFs) enabled
 - a) Test plan
 - b) Test results
- 3. Multi-inverter anti-islanding tests with GSFs enabled
 - a) Test plan
 - b) Test results

4. Conclusions

Background

• Island = portion of a circuit with DER and load that becomes disconnected from the rest of the grid

NASA http://earthobservatory.nasa.gov/IOTD/view.php?id=82975

- DERs must recognize when they are in an island and disconnect
 - Safety prevent contact with unexpectedly energized lines
 - Protection prevent out-of-phase reclosure

- If generation and load are not matched (or close), island voltage goes out of range quickly (undervoltage or TrOV) and DERs disconnect
- If gen:load ≈ 1, island may persist
- IEEE 1547 requires DERs to disconnect within 2 seconds
- Most common method of unintentional island prevention:
 - Autonomous anti-islanding (AI) controls in the DER
 - All UL 1741-certified inverters contain such controls

Background

- As DERs become a significant portion of total generation, they will be required to:
 - Remain online during grid events
 - Help regulate grid voltage and frequency back towards nominal
- These grid support function (<u>GSF</u>) <u>requirements</u> may make antiislanding more difficult
- Islands with <u>multiple DERs</u> may also make anti-islanding more difficult

This work

• Experimentally create balanced islands with:

- o GSFs enabled
- 3 PV inverters connected to different points on the same circuit
- Can we create islands lasting more than IEEE allows?
 Balanced, resonant load → difficult for island detection
- Test inverters from *3 different manufacturers*
- Two phases:
 - 1. <u>Single-inverter islands</u>: identify worst-case combinations of GSFs
 - 2. <u>Multi-inverter islands</u>: try various circuit topologies, interconnecting impedances, load locations, load tunings, inverter locations, GSF combinations

Overview

1. Background

- 2. Single-inverter anti-island tests with grid support functions (GSFs) enabled
 - a) Test plan
 - b) Test results
- 3. Multi-inverter anti-islanding tests with GSFs enabled
 - a) Test plan
 - b) Test results
- 4. Conclusions

Island test overview

• Al tests based on IEEE 1547.1 / UL 1741 test:

- Balanced, resonant RLC load intentionally creates a stable, semiself-sustaining island that is difficult to detect
- Inverter powered by PV simulator → constant, stable source

Grid support functions

 Conventional AI test does not include testing with GSFs enabled

Upcoming UL 1741 SA does

• GSFs used here:

- High/low voltage ride-through (VRT)
- High/low frequency ride-through (VRT)
- Volt-VAr control (VVC)
- Frequency-Watt control (FWC)
- Two settings tested for both VVC and FWC:
 - Steep curve
 - Low-slope ("shallow") curve
- Each GSF first verified to work properly

• 10 GSF test cases:

Test Case	Inverter Function Settings			
	VRT	FRT	FWC	VVC
1	OFF	OFF	OFF	OFF
2	ON	ON	OFF	OFF
3	ON	ON	OFF	SHALLOW
4	ON	ON	OFF	STEEP
5	ON	ON	SHALLOW	OFF
6	ON	ON	SHALLOW	SHALLOW
7	ON	ON	SHALLOW	STEEP
8	ON	ON	STEEP	OFF
9	ON	ON	STEEP	SHALLOW
10	ON	ON	STEEP	STEEP

• Repeat each 5 times \rightarrow 50 tests per inverter

Interpreting AI test results:

ROT = run-on time (island duration)

Maximum, mean, and minimum island ROT:

Maximum ROT is most important criterion

Typical and worst-case waveforms

Inverter 2

Linear regression analysis

• Linear regression of all test data (>150 tests):

• VRT and FRT considered as a single binary predictor, *VFRT*; 0=off.

 $ROT = 95 + 75 \cdot VFRT + 64 \cdot Inv2 + 99 \cdot Inv3 + \varepsilon$ [ms]

- o p-value = 0.0005
- RMS error = 133 ms

• What does this tell us?

- Enabling VRT and FRT tends to extend ROT by 75 ms
- Inverter 2 tends to run on 64 ms longer than Inverter 1
- Inverter 3 tends to run on 99 ms longer than Inverter 1
- Stochastic effects are larger than modeled effects
- Additional regression models including VVC and FWC were not conclusive (high p-values)

Single-inverter conclusions

- All inverters passed all 50 tests well within required IEEE 1547 Al standard
- VRT and FRT lead to *slightly* longer islands
- Worst-case overall GSF configurations:

Inverter	Voltage ride-through	Frequency ride-through	Frequency-Watt	Volt- VAr
1	ON	ON	OFF	HIGH
2	ON	ON	HIGH	LOW
3	ON	ON	OFF	LOW

• Second worst-case GSF configurations:

Inverter	Voltage ride-through	Frequency ride-through	Frequency-Watt	Volt- VAr
1	ON	ON	OFF	OFF
2	ON	ON	LOW	LOW
3	ON	ON	HIGH	LOW

• **Upcoming paper:** A. Nelson, A. Hoke, B. Miller, S. Chakraborty, F. Bell, M. McCarty, "Impacts of Inverter-based Advanced Grid Support Functions on Islanding Detection," 2016 *IEEE Innovative Smart Grid Technologies Conference (ISGT)*, 2016

Overview

1. Background

- 2. Single-inverter anti-island tests with grid support functions (GSFs) enabled
 - a) Test plan
 - b) Test results
- 3. Multi-inverter anti-islanding tests with GSFs enabled
 - a) Test plan
 - b) Test results

4. Conclusions

Multi-inverter, multi-PCC anti-islanding

- Difficult to analytically predict worst-case circuit parameters for multiinverter Al
- Instead, test a wide, representative variety of scenarios to find worstcase circuit parameters
 - Vary topology, impedances, load location, short-circuit impedance, GSF settings, inverter locations
 - Too many parameters to test all combinations
- Four-step plan
 - First 3 steps find worst-case setting(s) of target parameters
 - o 4th step investigates worst-case settings in-depth
- 224 test total (plus extras)

Step	Parameters Varied	Number of Tests	Number of Worst-Case Conditions Selected
1	Circuit topology and impedances	50	3
2	Load location relative to inverters	15	1
3	Short-circuit impedance of grid at island breaker	15	1
4	Inverter locations and GSF settings	144	NA

PHIL anti-island testing

- Building a wide variety of test circuits is costly and time-consuming
- Instead, use power hardware-in-the-loop to create the island circuits (including the RLC load)
- Builds on past single-inverter PHIL AI testing, and multi-inverter GSF testing

Step 1: Topologies

Topology 1: Three inverters on same transformer

Breaker/fuse/switch; Island forms when open

- Three island topologies
- Each LV line can be overhead or underground
- Service drops of 100', 200' and 300' considered
- 10 total circuits considered in Step 1
- Each circuit tested 5 times \rightarrow 50 tests
- Worst-case circuit used for Steps 2 and 3
- Three worst cases used in Step 4

second

Step 2: Load location

• Three possible load locations considered:

- 1. Centralized load *near* island breaker
- 2. Centralized load *far* from island breaker
- 3. Distributed load at each inverter PCC
- Each load location tested 5 times → 15 tests
- Worst-case load location used for Steps 3 and 4
- Example island circuit with load near breaker:

Step 3: Short-circuit impedance

- Some AI methods rely on changes in grid impedance to detect an island
- Range of impedances generated by analyzing the shortcircuit impedances at all distribution transformer primary nodes in the IEEE 8500-node test feeder:

• Test cases: Maximum, median, minimum Z_{sc}

- Each Z_{sc} tested 5 times \rightarrow 15 tests
- Worst-case Z_{sc} used for Step 4

Impedance Z _{sc}	R (Ω)	Χ (Ω)
Minimum	0.00195	0.00334
Median	0.0198	0.0249
Maximum	0.0747	0.105

Step 4: Detailed AI investigation

• All combinations of the following:

- The 2 worst-case inverter settings from the singleinverter tests
- The 3 worst-case combinations of topology and impedances from Step 1
- The single worst-case load location from Step 2
- The single worst-case grid impedance from Step 3
- All 3! = 6 permutations of inverter locations on the 3 PCCs in each test circuit.
- 2·3·1·1·6 = 36 test cases
- Each case repeated 4 times → 144 tests

Step 4 Results

Maximum, mean, and minimum island ROT:

	Test			
	Case	Test Settings		
		Inverter GSF Configuration	Circuit #	Location Map
	1	1	1	1
	2	1	1	2
	3	1	1	3
	4	1	1	4
	5	1	1	5
	6	1	1	6
	7	1	2	1
	8	1	2	2
	9	1	2	3
	10	1	2	4
	11	1	2	5
	12	1	2	6
	13	1	3	1
	14	1	3	2
	15	1	3	3
	16	1	3	4
	17	1	3	5
	18	1	3	6
	19	2	1	1
	20	2	1	2
	21	2	1	3
	22	2	1	4
	23	2	1	5
	24	2	1	6
	25	2	2	1
	26	2	2	2
	27	2	2	3
	28	2	2	4
	29	2	2	5
	30	2	2	6
	31	2	3	1
	32	2	3	2
	33	2	3	3
	34	2	3	4
	35	2	3	5
	36	2	3	6

Step 4 Waveforms – Typical and worst-case

Worst-case: Case 25

627 ms ROT (less than maximum from singleinverter tests)

Linear regression analysis

- Linear regression of all multi-inverter test data (224 tests)
- Predictors considered:
 - Grid support function configuration
 - o Island circuit
 - o Location of load relative to inverters
 - o Grid short-circuit impedance at the island location
 - o Inverter location map (i.e. which inverter is connected to which PCC)
- Most models had high p-values
- One model with GSF setting as only predictor had reasonably low p-value:

 $ROT = 297 + 27 \cdot GSF2 + \varepsilon \quad [ms]$

- p-value = 0.046
- RMS error = 98 ms
- GSF2 = 0 means worst-case GSF combo was active; GSF2 = 1 means 2^{nd} worst-case was active

What does this tell us?

- The second-worst GSF function combination (from single-inverter tests) actually tended to run on 27 ms longer than the worst in multi-inverter tests
- > Stochastic effects are larger than modeled effects
- > No single circuit configuration stuck out as problematic

Conclusions

- First known laboratory test of multi-inverter, multi-PCC anti-islanding
 - Tests covered 49 unique field cases, each tested at least 4 times
 - In all 244 tests, maximum ROT was 632 ms (well below 2 s)
 - No single circuit configuration stuck out as problematic
- Grid support functions increased island durations, but still well below the IEEE 1547 required limit
 - True even in multi-inverter scenarios
 - Results will vary with other inverters, different numbers of inverters
- NREL report: <u>http://www.nrel.gov/docs/fy16osti/66732.pdf</u>

Thank you

Questions welcome

Extra slides

Test circuit topologies

Test		# of Transformers	# of Overhead	# of Underground
Case	Description	ransformers	Lines	Lines
1	Three inverters on one transformer connected via underground lines	1	0	3
2	Three inverters on one transformer connected via overhead lines	1	3	0
3	Three inverters on three different transformers, connected via underground lines	3	0	3
4	Three inverters on three different transformers, connected via overhead lines	3	3	0
5	Two inverters connected to two different transformers via underground lines and one inverter connected to a third transformer via overhead lines	3	1	2
6	Two inverters connected to two different transformers via overhead lines and one inverter connected to a third transformer via underground lines	3	2	1
7	Three inverters connected to two different transformers via underground lines	2	0	3
8	Three inverters connected to two different transformers via overhead lines	2	3	0
9	Two inverters connected to one transformer via underground lines and one inverter connected to a second transformer via overhead lines	2	1	2
10	Two inverters connected to one transformer via overhead lines and one inverter connected to a second transformer via underground lines	2	2	1

• PHIL model features to make the island more difficult to detect:

- RLC load continuously variable → better load balancing
- o Real-time display of circuit quality factor, including all physical and modeled circuit elements → better load tuning
- Real-time display of island breaker P, Q visible to operator → can time island disconnection
- PHIL setup validated by comparing singleinverter AI tests using hardware and to singleinverter tests using PHIL

Maximum, mean, and minimum island ROT:

Step 1 Waveforms – Typical and worst-case

- Worst-case: circuit 1, 555 ms ROT (shown)
- 2nd worst: circuit 5
- 3rd worst: circuit 7

Maximum, mean, and minimum island ROT:

Test Case	Load Location
1	Load Distributed
2	Load Near Breaker
3	Load Far from Breaker

Step 2 Waveforms – Typical and worst-case

 Worst-case: load far from breaker

475 ms ROT

Maximum, mean, and minimum island ROT:

Test Case	Grid Impedance, Z _{sc}
1	Minimum
2	Median
3	Maximum

Step 3 Waveforms – Typical and worst-case

 Worst-case: maximum Z_{sc}
 438 ms ROT

Addition tests: Island timing

- Inverter 1 shifts output phase angle slightly to detect islands
- Causes periodic variations in Q, P
- Tests above were timed to start near zero-crossing of P and Q flowing through island breaker
- Additional 10 AI tests run to investigate effects of randomized island timing

• Result: Generally, randomized timing led to shorter ROT, but one randomized test had longer ROT. (See next slide)

Worst-case overall test

- 632 ms ROT
- By chance, the randomized disconnection occurred at the zero-crossing of P and Q flowing through the breaker
 - So this test is effectively a timed-disconnection test
- → Increased confidence that Steps 1-4 capture worst-case island durations

Addition tests: RL loads

• RL loads are more typical than RLC loads

• 10 additional AI tests:

- 5 tests with tuned RL load
- 5 tests with 10% detuned RL load
- All used worst-case settings from Step 4

Test	
Case	Test Settings
1	Tuned RLC (baseline)
2	Tuned RL Load
3	De-Tuned RL Load

RL Load Waveforms – Typical and worst-case

