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Objectives 

Give some basic background information on 
statistically designed experiments  

Demonstrate the advantages of using statistically 
designed experiments1 

 

1 Often referred to as design of experiments (DOE or DOX), or experimental 
design. 
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A Few Thoughts 

Many companies/organizations do experiments for 
 Process improvement 
 Product development 
 Marketing strategies 

We need to plan our experiments as efficiently and 
effectively as possible 

 Statistically designed experiments have a proven 
track record (Mullin 2013 in Chemical & Engineering News) 
 Conclusions supported by statistical tests 
 Substantial reduction in total experiments  

Why are we still planning experiments like it’s the 
19th century? 
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Outline 

• Research Problems 
• The Linear Model 
• Key Types of Designs 

o Full Factorial 
o Fractional Factorial 
o Response Surface 

• Sequential Approach 
• Summary 



Research Problems 
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Research Problems 

Is a dependent variable (Y) affected by multiple independent 
variables (Xs)? 

Y Bearing lifetime (hours) X1 Inner ring heat treatment 

X2 

Outer ring osculation (ratio 
between ball diameter and 
outer ring raceway radius) 

X3 Cage design 

Objective: Increase bearing lifetime (Hellstrand 1989) 

Outer Ring 

Ball 

Inner Ring 

Cage 
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Research Problems 

Y HCN conversion X1 Propene (C3H6) conc. (ppm) 
X2 Nitric oxide (NO) conc. (ppm) 
X3 Temperature (°C) 
X4 Gas hourly space velocity (h-1) 

Objective: Hydrogen cyanide (HCN) removal in diesel 
exhaust gas (Zhao et al. 2006) 

HCN + NO + O2 N2 + N2O + NO2 + CO + H2O + CO2 
Pt catalyst 
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Research Problems 

Y Sensor bias X1 Refrigerator 
X2 Dishwasher 
X3 Clothes washer 
X4 Lighting incandescent 
X5 Lighting LEDs 
X6 Lighting CFLs 
X7 Television 
X8 Range 

Objective: For prototype power sensor, evaluate how 
appliances being “ON” or “OFF” affects the sensor 
measurement bias 

All combinations: 28 = 256 experiments 

Less 
expensive 
monitoring of 
home energy 
consumption 

Fractional factorial: 16 experiments 

Photo by Dennis Schroeder, NREL 35602 



The Linear Model 
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The Linear Model 

Y = β0  +  β1X1  +  β2X2  +  β3X1X2  +  β4X1
2

  +  β5X2
2

  +  ε 

Interaction Polynomial terms 
to test curvature 

Main effects 

“All models are wrong but some are useful” – George Box 

Error Intercept 

Linear model used as an approximation for statistical testing 

Which terms are included in a model depends on the 
experimental design 
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Zaphod Beeblebrox decides to put his two heads to good use. 

Insul-spray − a clear spray on coating for buildings that provides 
additional thermal resistance (TR)  

Fictitious Case Study 

The Linear Model 

TR Thermal resistance C Special additive conc. (ppm) 
T Temperature (°C) 

Objective: TR value of at least 40 (°F ft2 hr)/Btu  

Photo by Warren Gretz, NREL 00956 
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The Linear Model 

Trial run 
order 
should be 
randomized 

Experimental Design 

TR = β0 + βCC + βTT + βCTCT  + βCCC2
 + ε 

Interaction Polynomial term to test curvature 
Caution: C2 confounded with T2 

Trial 
Actual 

C 
Actual 

T 
Coded 

C 
Coded 

T TR 
1 2 25 -1 -1 8.3 
2 10 25 1 -1 44.7 
3 2 75 -1 1 0.5 
4 10 75 1 1 27.2 
5 6 50 0 0 16.0 
6 6 50 0 0 17.5 

Main effects 

Experimental Plan and Results 
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The Linear Model 

Statistical hypotheses tests for multiple variables 
MLR on coded C and T 

Reduced model 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 16.8 0.8 22.3 0.028 
C 15.8 0.5 29.8 0.021 
T -6.3 0.5 -11.9 0.053 
C^2 3.4 0.9 3.7 0.167 
C*T -2.4 0.5 -4.6 0.137 
Residual standard error: 1.06 on 1 degrees of freedom 
Multiple R-squared:  0.999, Adjusted R-squared:  0.995  
F-statistic:  265 on 4 and 1 DF,  p-value: 0.046 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 19.0 1.5 12.7 0.001 
C 15.8 1.8 8.6 0.003 
T -6.3 1.8 -3.5 0.041 
Residual standard error: 3.66 on 3 degrees of freedom 
Multiple R-squared:  0.966, Adjusted R-squared:  0.944  
F-statistic:   43 on 2 and 3 DF,  p-value: 0.00618 

ANOVA can also be applied 

Conclusion: 
C and T significantly 
affect TR 
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The Linear Model 

Additional diagnostics and plots 
TR 



Types of Designs 
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Full Factorial 

-1 = Standard 
  1 = Modified 

Objective: Increase bearing lifetime (Hellstrand 1989) 

H Inner ring heat treatment 

O Outer ring osculation 

C Cage design 

H and O Modified 

This is an interaction!  
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Full Factorial 
Va

ria
bl

e 
C

 

Variable H 

-1 = Standard 
  1 = Modified 

-1 

   1 

-1   1 
-1 

 1 

Objective: Increase bearing lifetime (Hellstrand 1989) 

For 2 level designs:   
(trial conditions) = 2k 

where k = number of variables 

Trial H O C LT 
1 -1 -1 -1 17 
2 1 -1 -1 26 
3 -1 1 -1 25 
4 1 1 -1 85 
5 -1 -1 1 19 
6 1 -1 1 16 
7 -1 1 1 21 
8 1 1 1 128 

H Inner ring heat treatment 

O Outer ring osculation 

C Cage design 
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Full Factorial 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 42.1 7.4 5.7 0.110 
H 21.6 7.4 2.9 0.210 
O 22.6 7.4 3.1 0.200 
C 3.9 7.4 0.5 0.690 
H*O 20.1 7.4 2.7 0.220 
H*C 4.4 7.4 0.6 0.660 
O*C 5.9 7.4 0.8 0.570 

MLR 

Reduced model 

Conclusion: 
H, O, and H*O 
significantly 
affect LT 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 42.1 5.6 7.6 0.002 
H 21.6 5.6 3.9 0.018 
O 22.6 5.6 4.1 0.015 
H*O 20.1 5.6 3.6 0.022 



19 

Full Factorial 

Plots for bearing lifetime analysis 
LT 
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Fractional Factorial 

Va
ria

bl
e 

C
 

Variable A 

Va
ria

bl
e 

C
 

Variable A 

Full Factorial   
8 trial conditions 

Fractional Factorial  
4 trial conditions 

Center point condition often 
added to test for curvature 
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Fractional Factorial 

P Propene (C3H6) conc. (ppm) 
NO Nitric oxide (NO) conc. (ppm) 
T Temperature (°C) 

G Gas hourly space velocity (h-1) 

Objective: Hydrogen cyanide (HCN) removal in diesel exhaust gas 
(Zhao et al. 2006) 

HCN + NO + O2 N2 + N2O + NO2 + CO + H2O + CO2 

Pt catalyst 

Trial Propene Nitric 
Oxide Temp GHSV P NO T G HCN 

conversion 
1 90 13 165 30300 -1 -1 -1 -1 0.585 
2 504 13 165 87870 1 -1 -1 1 0.159 
3 90 52 165 87870 -1 1 -1 1 0.204 
4 504 52 165 30300 1 1 -1 -1 0.400 
5 90 13 277 87870 -1 -1 1 1 0.857 
6 504 13 277 30300 1 -1 1 -1 0.951 
7 90 52 277 30300 -1 1 1 -1 0.950 
8 504 52 277 87870 1 1 1 1 0.840 

Actual Coded 

Full Factorial: 24 = 16 experiments 
Fractional factorial: 8 experiments 
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Fractional Factorial 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.618 0.022 28.4 0.001 
P -0.031 0.022 -1.4 0.293 
NO -0.020 0.022 -0.9 0.460 
T 0.281 0.022 12.9 0.006 
G -0.103 0.022 -4.7 0.042 
T*G 0.052 0.022 2.4 0.139 

MLR 
Conclusion: 

T and G significantly 
affect HCN conversion 

Reduced model 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.618 0.032 19.5 0.000 
T 0.281 0.032 8.9 0.000 
G -0.103 0.032 -3.3 0.022 
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Response Surface 

T Temperature (°C) 

G Gas hourly space velocity (h-1) 

Objective: Hydrogen cyanide (HCN) removal in diesel exhaust gas 
(Zhao et al. 2006) 

HCN + NO + O2 N2 + N2O + NO2 + CO + H2O + CO2 

Pt catalyst 

Actual Coded 

Trial Temp GHSV T G HCN 
conversion 

1 165 30300 -1 -1 0.452 
2 287 30300 1 -1 0.949 
3 165 90900 -1 1 0.175 
4 287 90900 1 1 0.855 
5 165 60600 -1 0 0.235 
6 287 60600 1 0 0.894 
7 226 30300 0 -1 0.934 
8 226 90900 0 1 0.663 
9 226 60600 0 0 0.782 

10 226 60600 0 0 0.785 
11 226 60600 0 0 0.784 

Propene = 250 ppm 
Nitric Oxide = 30 ppm 

Experimental Design 
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Response Surface 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.790 0.015 52.2 0.000 
T 0.306 0.014 22.2 0.000 
G -0.107 0.014 -7.8 0.000 
T^2 -0.196 0.021 -9.6 0.000 
T*G 0.046 0.017 2.7 0.035 

MLR Reduced model 

Conclusion: 
T, G, T*G and T2 
significantly affect 
HCN conversion 



Sequential Approach 
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Sequential Approach 

 Basic idea is to break up overall experimental plan 
into a few complementary experimental plans 

 Start simple (fractional factorials) - 25% rule (25-40% 
of allotted time/effort in first designed experiment) 

 Modify additional experiments based on what is 
learned from prior experiments 

 BE FLEXIBLE!!!  

General concepts of sequential approach  
(Box and Bisgaard 1997) 
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Sequential Approach 

General concepts of sequential approach  
(Box and Bisgaard 1997) 

A 

B 
C 

(3 factor example) 
First DOE Second DOE 

complete full factorial fractional factorial response surface 

Third DOE 
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Sequential Approach  

H2 H2 (% volume in product gas) W Wood type (oak and pine) 
T Thermal cracker temperature 
S Steam-to-biomass ratio 

Objective: Verify the technical and economic performance of hydrogen 
production from a biomass gasification process (Hrdlicka et al. 2008) 

Source: http://www.nrel.gov/docs/fy09osti/44557.pdf 

Wood 

Steam 

Thermal cracker 

Product gas 
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Sequential Approach: Parametric Gasification 

As Completed 

Oak 

Pine 

2x3x3 = 18 + 5 reps = 23 

Sequential Approach 

2x2x2 = 8 + 2 cp + 1 reps = 11 
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Sequential Approach 

Reduced model 

MLR As Completed MLR Sequential Approach 
Variable Estimate Std. Error t value Pr(>|t|) 

(Intercept) 34.7 1.2 29.4 0.000 
W 3.4 0.5 6.3 0.000 
T 1.7 0.7 2.4 0.034 
S 1.0 0.7 1.5 0.154 
T^2 0.7 1.1 0.6 0.530 
S^2 -1.0 1.3 -0.8 0.448 
W*T -0.7 0.7 -0.9 0.374 
W*S -0.5 0.7 -0.7 0.473 
T*S 0.7 0.9 0.8 0.427 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 34.5 0.5 64.2 0.000 
W 3.4 0.5 6.4 0.000 
T 1.8 0.7 2.6 0.017 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 34.3 1.6 21.6 0.000 
W 2.8 0.8 3.4 0.044 
T 2.2 1.0 2.3 0.106 
S 0.8 1.0 0.8 0.499 
T^2 0.2 1.9 0.1 0.907 
W*T -1.1 1.0 -1.2 0.332 
W*S -1.1 1.0 -1.1 0.335 
T*S 0.9 1.0 0.9 0.435 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 34.4 0.8 44.8 0.000 
W 2.8 0.8 3.7 0.006 
T 2.2 0.9 2.5 0.040 

Reduced model 

Conclusion: W and T significantly affect H2 production 
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Sequential Approach 

MLR As Completed MLR Sequential Approach 

• Comparable results even with substantial variability 
• Selective replication could have been done for 

sequential approach 
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Summary 

• Statistically designed experiments offer many 
advantages: 

• Statistical hypothesis test for multiple independent variables 
• Detect interactions 
• Reduce number of experimental trials 
• Resolve correlation between independent variables 

• Sequential approach can further reduce the number 
of experiments and still provide conclusive results 

• Statistically designed experiments have been in use 
approximately 90 years 

 



Thank you! 

Mike Heaney 
michael.heaney@nrel.gov 

303-275-3883 



Supplemental Slides 
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More on Parametric Gasification Experiment 

MLR Model with Steam to Biomass Ratio (S) 
 

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 34.4 0.5 66.9 0.000 
W 3.4 0.5 6.6 0.000 
T 1.8 0.7 2.6 0.017 
S 1.0 0.6 1.7 0.108 

Residual standard error: 2.44 on 19 degrees of freedom 
Multiple R-squared:  0.735, Adjusted R-squared:  0.693  
F-statistic: 17.5 on 3 and 19 DF,  p-value: 1.05e-05 
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