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Local Voltage Control in Distribution Networks:
A Game-Theoretic Perspective
Xinyang Zhou, Jie Tian, Lijun Chen, and Emiliano Dall’Anese

Abstract— Inverter-based voltage regulation is gaining impor-
tance to alleviate emerging reliability and power-quality concerns
related to distribution systems with high penetration of photo-
voltaic (PV) systems. This paper seeks contribution in the domain
of reactive power compensation by establishing stability of local
Volt/VAr controllers. In lieu of the approximate linear surrogate
used in the existing work, the paper establishes existence and
uniqueness of an equilibrium point using nonlinear AC power
flow model. Key to this end is to consider a nonlinear dynamical
system with non-incremental local Volt/VAr control, cast the
Volt/VAr dynamics as a game, and leverage the fixed-point
theorem as well as pertinent contraction mapping argument.
Numerical examples are provided to complement the analytical
results.

Index Terms— Distribution systems, photovoltaic systems, volt-
age regulation, Volt/VAr control, game theory, stability.

I. NOTATION
N set of buses excluding bus 0, N := {1, ..., n}
L set of power lines
Li set of the lines from bus 0 to bus i
L̃i set of the lines descending from bus i
pci , q

c
i real, reactive power consumption at bus i

pgi , q
g
i real, reactive power generation at bus i

Pij , Qij real and reactive power flow from i to j
rij , xij resistance and reactance of line (i, j)
vi squared magnitude of complex voltage at bus i
`ij squared magnitude of complex current of

line (i, j)
[x]+ positive part, x+ = max {0, x}
[x]Ωi projection of x onto the set Ωi

A quantity without subscript is usually a vector with appro-
priate components defined earlier, e.g., v := (vi, i ∈ N ), qg :=
(qgi , i ∈ N ).

II. INTRODUCTION

Capacitor banks and load tap changers are traditionally uti-
lized to control voltage levels across a distribution system [1]–
[3]. Given the predictable and slow changes in demand in
traditional operational conditions, switching operations were
required only a few times per day. However, with the in-
creasing photovoltaic (PV) capacity in both residential and
commercial setting, the increased likelihood of overvoltage
conditions due to reverse power flows and rapid fluctuations
in generation call for new voltage control paradigms. Even
though the current IEEE Standard 1547 requires distributed

X. Zhou, J. Tian and L. Chen are with College of Engineering and
Applied Science, University of Colorado, Boulder, CO 80309, USA (emails:
{xinyang.zhou, lijun.chen}@colorado.edu, tianliudou@gmail.com).

E. Dall’Anese is with National Renewable Energy Laboratory, Golden, CO
80401, USA (email: emiliano.dallanese@nrel.gov).

generation to operate at unity power factor, PV-inverters can
readily adjust real and reactive power outputs to stabilize
voltages and cope with fast time-varying conditions. One
way to regulate voltages within the given limits consists
of implementing at the PV inverters local Volt/VAr control
mechanisms to adjust the output reactive power based on
current voltage levels at the point of connection [4]–[7]. In lieu
of local control rules, optimization based strategies involve a
joint control of both real and reactive power injection based
on given optimization objectives; see, e.g., [16], [17].

Consistent with the IEEE 1547.8 Standard [12], [13],
inverter-based local Volt/VAr control schemes were investi-
gated in, e.g., [8]–[11]. Particularly, the linearized dynamical
systems with reactive power control outlined in [8]–[10] have
being shown to have a unique equilibrium point that coincides
with the unique optimal solution of a well-defined convex
optimization problem. With the objective of driving voltage
values at equilibrium to within a given range, [11] proposed
an incremental Volt/VAr strategy that does not modify the
reactive power when the node voltage is within the prescribed
range. The resultant dynamical system has been shown to
solve an optimization problem that minimizes a cost of voltage
deviation.

However, these control strategies are grounded on a lin-
earized AC power flow model for mathematical tractability.
With a linearized model, voltage values can be approximated
as a linear function of reactive power injections [8]. In contrast,
this paper seeks an analytical characterization of Volt/VAr
control using exact nonlinear AC power flow models. To
this end, the paper utilizes a reverse-engineering approach
to cast the nonlinear dynamical system with non-incremental
Volt/VAr control as a game, where each node acts as a
“selfish player” who uses its local control function as a best-
response strategy to minimize its own cost function. Using this
approach, we show that the equilibrium of the Volt/VAr control
dynamics is equivalent to the equilibrium of the resulting
game. We further prove the existence and uniqueness of the
equilibrium by leveraging the fixed-point theorem as well as
contraction mapping argument.

The analysis is also extended to account for incremental
Volt/VAr controls. Particularly, we show that a few incre-
mental controls can be reverse-engineered as a distributed
strategies for solving the well-defined voltage control game or
a distributed algorithm for solving an optimization problem.
Existence and convergence of the equilibria can again be
established through the contraction mapping argument.

The rest of this paper is organized as follows. Sec-
tion III outlines the nonlinear power flow model and the
non-incremental local Volt/VAr control. Section IV reverse-
engineers the nonlinear control dynamical system as a voltage
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control game and proves the existence and uniqueness of its
equilibrium. Section V extends the result to a few incremental
local Volt/VAr controls in nonlinear system. Section VI pro-
vides numerical examples to complement the analytical results,
and Section VII concludes the paper.

III. SYSTEM MODEL

A. Power flow model

Consider a radial distribution network, modeled as a di-
rected and connected tree graph (N ∪ {0},L), with |N | =
|L| = n. To represent the AC power flow, we use the following
branch flow model [1], [14]:

Pij = pcj − p
g
j +

∑
k:(j,k)∈L

Pjk + rij`ij , (1a)

Qij = qcj − q
g
j +

∑
k:(j,k)∈L

Qjk + xij`ij , (1b)

vj = vi − 2 (rijPij + xijQij) +
(
r2
ij + x2

ij

)
`ij ,(1c)

`ijvi = P 2
ij +Q2

ij . (1d)

Notice that v0, p
c, pg, qc are given constants, and that re-

active powers qg := (qg1 , . . . , q
g
n) are control variables. For

notational simplicity, in the rest of the paper we will ignore
the superscript in qg and write q instead. Further, let Ωi :=
{qi|qmin

i ≤ qi ≤ qmax
i } denote the set of available reactive

power injection at bus i, and define Ω :=
∏
i∈N

Ωi.

The power flow equations (1) can be represented in the
following compact form:

F (P,Q, `, v, q) = 0, (2)

where F is twice continuously differentiable with respect to q
and y := (P,Q, `, v). For prevailing ambient conditions, given
the reactive powers q, y is uniquely determined for distribution
networks setups where v0 ≈ 1 and rij , xij are sufficiently
small [3]. It has also been shown in [3] (Proposition 4-1)
that, under the setup of v0 ≈ 1 and small rij , xij , the
Jacobian matrix ∂yF (y, q) is nonsingular for a topology of
one main feeder with its direct laterals. This result can be
straightforwardly extended to general radial networks where
laterals may have laterals and so on, because the corresponding
expanded Jacobian matrix keeps the same crucial properties
for both its diagonal and off-diagonal blocks. We therefore
focus on the setup of v0 ≈ 1 and small rij , xij in this paper.
Then, by the implicit function theorem, it follows that equation
(2) (i.e., equations (1)) defines implicitly a twice continuously
differentiable function y = y(q). Since Ω is compact, ∂qy(q)
is bounded uniformly on Ω, i.e., the first-order derivatives of
P,Q, `, v with respect to q are all bounded on Ω.

Consider representing the voltage magnitude as a function
of the reactive powers q in the following compact form:

v = v(q), (3)

and notice that ∂vi

∂qj
is bounded ∀i, j ∈ N . Define the reactance

matrix X = [Xij ]n×n with entries

Xij :=
∑

(h,k)∈Li∩Lj

2 · xhk > 0.

It can be readily checked that the matrix X is symmetric. In
the following, we will particularly relate the derivative of v
with respect to q to the matrix X , which will be useful for
the analysis in Section IV-B.

Lemma 1 In a radial distribution system, for ∀i, j ∈ N , we
have ∣∣∣∣∂vi∂qj

∣∣∣∣ ≤ (1 + η)Xij , (4)

for some η > 0.

Proof: In [8], we have shown that for the linearized and
lossless power flow models (i.e., terms involving `lk, ∀(l, k) ∈
L, are all set to zero), the approximated voltage value, denoted
v̂, satisfies:

v̂ = Xq + ṽ, (5)

where ṽ is a constant determined by the system setup.
Considering the nonlinear model, we add up (1c) from any

node i ∈ N all the way back to node 0 to obtain:

vi = v0 +
∑

(l,k)∈Li

(
2(rlkPlk + xlkQlk)− (r2

lk + x2
lk)`lk

)
= v̂i + 2

∑
(l,k)∈Li

(
rlk
∑

(r,s)∈L̃k

rrs`rs

)
+ 2

∑
(l,k)∈Li

(
xlk
∑

(r,s)∈L̃k

xrs`rs

)
−
∑

(l,k)∈Li

(r2
lk + x2

lk)`lk. (6)

Let Gi(`) denote the three summation terms on the right-hand
side of (6), and substitute v̂ with (5). Then equation (6) takes
a simpler form of

vi =
∑
m∈N

Ximqm + ṽi +Gi(`). (7)

Notice that Gi(`) is a function of single variable ` with an
order of one. Take derivative of (7) on both sides with respect
to qj from any bus j ∈ N , and we have

∂vi
∂qj

= Xij +
∂Gi(`)

∂qj
, (8)

and thus ∣∣∣∣∂vi∂qj

∣∣∣∣ ≤ Xij +

∣∣∣∣∂Gi(`)

∂qj

∣∣∣∣ .
Since |∂`lk∂qj

| is bounded and Xij is nonzero,1 there exists an
ηij > 0 such that∣∣∣∣∂Gi(`)

∂qj

∣∣∣∣ ≤ ηij ·Xij .

Take η = max
i,j∈N

ηij , and the inequality (4) follows.

Remarks: An accurate characterization of η is challenging.
In the numerical experiments, we have found that η is usually
a small number. For example, η ≤ 0.2 with the setup of the
42-bus distribution network used in Section VI. This is due to
the fact that |∂`lk∂qj

| is bounded, and that rlk, xlk are small.

1Here we have assumed that, without loss of generality, the bus 0 has only
one child node. Notice that, when the bus 0 has multiple child nodes, as the
squared voltage magnitude v0 is a constant, the branches of different child
nodes are independent.
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B. Local Volt/VAr control

The goal of Volt/VAr control on a distribution network is
to adjust the output reactive powers q := (q1, . . . , qn) in order
to maintain the node voltages v := (v1, . . . , vn) within a
given range around their nominal values vnom

i , i ∈ N (e.g.,
ANSI C.84.1 limits). Volt/VAr can be modeled as a feedback
control mechanism with state (v(t), q(t)), where the current
state (v(t), q(t)) is mapped to a new reactive power injections
q(t + 1). Usually q(t + 1) is determined either completely
or partly by a certain Volt/VAr control function defined as
follows.

Definition 1 A Volt/VAr control function f : Rn → Rn is a
collection of fi : R→ R functions, each mapping the current
local voltage vi to a local control variable oi in reactive power
at node i:

oi = fi(vi), ∀i ∈ N . (9)

The control functions fi are usually decreasing but not
always strictly decreasing because of a deadband. Assume
that for each node i ∈ N a symmetric deadband around the
nominal voltage (vnomi − δi/2, vnomi + δi/2) with δi ≥ 0 is
utilized. Further, the following two assumptions are made (see
e.g., [8]):
A1: The Volt/VAr control functions fi are non-increasing

over R and strictly decreasing and differentiable in
(−∞, vnomi − δi/2) and in (vnomi + δi/2,+∞).

A2: The derivative of the control function fi is bounded, i.e.,
there exists a finite αi such that |f ′i(vi)| ≤ αi for all vi
in the appropriate domain.

See Fig. 1 for an illustrative example of a piecewise linear
droop control function

fi(vi):= −αi

[
vi− vnom

i − δi
2

]+
+ αi

[
−vi+ vnom

i −
δi
2

]+
.

(10)

Equation (3) together with the control function (9) yields
the following dynamical system for Volt/VAr control:

v(t) = v(q(t)), (11a)
q(t+ 1) = [f(v(t))]Ω , (11b)

with locally measured v(t) as the only control input, and q(t)
the only control variables.

Definition 2 A point (q∗, v∗) is called an equilibrium, if it is
a fixed point of the dynamical system (11), i.e.,

v∗ = v(q∗), (12a)
q∗ = [f(v∗)]Ω . (12b)

IV. A VOLTAGE CONTROL GAME

We have shown in [8] that, given voltage vi(t), the reactive
power qi(t+1) in (11b) is the unique solution of the following
optimization problem:

qi(t+ 1) = arg min
qi∈Ωi

ui(qi; vi(t)), (13)

!,i

vnom
i +/i=2

vnom
i !/i=2

fi(vi)

vi

Fig. 1: Piecewise linear Volt/VAr control curve fi.

where

ui(qi; vi) := Ci(qi) + qivi (14)

with Ci(qi) := −
∫ qi

0
f−1
i (q)dq is a convex function since f−1

i

is non-increasing under A1. This result motivates us to cast
the dynamics (11) as a game as shown next.

A. Voltage control game

We view each node i ∈ N as a player with strategy space
Ωi and a cost function ui(qi; vi(q)) defined by (14). Recalling
that Ω :=

∏
i∈N

Ωi, the voltage control game is defined next.

Definition 3 A non-cooperative voltage control game is de-
fined as a triple Gvc := {N ,Ω, (ui(qi; vi(q)))i∈N }, where
the strategic interaction among players is through the voltage
vi(q), i ∈ N .

In consistence with the introduction of the cost function ui,
we need to extend the concept of usual Nash equilibrium.

Definition 4 An equilibrium of the voltage control game Gvc
is a tuple (q∗; v∗) such that ∀i ∈ N , q∗i is the best response
to vi(q∗), i.e., for ∀i ∈ N ,

ui(q
∗
i ; v∗i ) ≤ ui(qi; v

∗
i ), ∀qi ∈ Ωi, (15a)

v∗i = vi(q
∗). (15b)

In the above definition of equilibrium, the buses respond
directly to given voltages. Similar to the price-taking behavior
of the agents in a competitive market, we call such a behavior
here signal-taking, i.e., when a bus makes decisions, it takes
the voltage vi as given but does not take into consideration
the impact of its own decision upon the voltages.2

Recall that vi(q) is the implicit function from the implicit
equation (2) (i.e., the power flow equations (1)), the following
result is immediate.

Theorem 1 The dynamical system (11) can be viewed as the
best response algorithm for the voltage control game Gvc.
Moreover, a point (q∗, v∗) is an equilibrium of (11) if and
only if (q∗, v∗) is an equilibrium of Gvc.

We further show the existence of the equilibrium of Gvc.

2When a bus takes into consideration the impact of its own decision upon
the voltages, we say that this behavior is signal-anticipating [15]. With signal-
anticipating buses, we can define the usual Nash equilibrium for the voltage
control game, which we will investigate in another paper.
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Theorem 2 Given the continuous Volt/VAr control functions
f(·), there exists an equilibrium for the voltage control game
Gvc.

Proof: Recalling from Section III that v(q) is contin-
uously differentiable, we know that the best response algo-
rithm of the game Gvc, i.e., the dynamical system (11), is a
continuous differentiable mapping from Ω to itself. Since Ω
is compact, by Brouwer’s fixed-point theorem there exists an
equilibrium for the game Gvc.

B. Convergence of dynamics and uniqueness of equilibrium

In this subsection, we establish a sufficient condition for
convergence of the dynamical system (11) by leveraging the
pertinent contraction mapping. Existence and uniqueness of its
equilibrium will follow.

To this end, consider rewriting the control dynamics using
the following mapping g : Ω→ Ω as

q(t+ 1) =
[
f(v(q(t)))

]
Ω

:= g(q(t)).

Lemma 2 If condition

αi(1 + η)
∑
j

Xij < 1, ∀i ∈ N (16)

holds, then the mapping g is a contraction mapping.

Proof: Define X̃ = [X̃ij ]n×n with its entries X̃ij =
∂vi

∂qj
, ∀i, j ∈ N . With induced matrix norm ‖ · ‖∞ as the

maximum row sum, we have

‖∇qg‖∞ ≤ max
i

(
|f ′i(vi)|

∑
j

∣∣∣X̃ij

∣∣∣ )
≤ max

i

(
αi

∑
j

∣∣∣X̃ij

∣∣∣ )
≤ max

i

(
αi(1 + η)

∑
j

Xij

)
< 1,

where the four inequalities respectively come from 1) the
possibility of q’s being projected onto the boundary of Ω,
making the corresponding derivative of g equal to zero (as
well as a very small chance for X̃ij to be negative), 2)
assumption A2, 3) Lemma 1, and 4) condition (16). Hence,
given ∀qx, qy ∈ Ω, we have

‖g(qx)− g(qy)‖∞ ≤ ‖
∂g

∂q
‖∞ · ‖qx − qy‖∞ < ‖qx − qy‖∞,

i.e., g is a contraction mapping.
Then, using the contraction mapping theorem [19], the

following result can be demonstrated.

Theorem 3 Under the condition (16), the dynamics (11)
converges to the unique equilibrium point.

Remarks: Notice that when η = 0, i.e., when we ignore line
loss, (16) coincides with the convergence condition for the
same control strategy with linearized model in [8]. While it is
challenging to characterize η, as will be shown by numerical
examples in Section VI-B, by setting η = 0, we usually still

have a practical sufficient convergence condition for non-linear
model, because (16) is a conservative condition, and that η
itself is normally small.

V. EXTENSIONS TO INCREMENTAL CONTROLS

A. Incremental local volt/var controls

In addition to the non-incremental local Volt/VAr control
(11b), we have in previous works proposed three incremental
local Volt/Var control algorithms under linearized model [9]–
[11], and proved their stability. We list these control algorithms
as follows with fixed stepsize γg, γp, γv respectively:

qi(t+ 1) = [qi(t)− γg(vi(q(t))− f−1
i (qi))]Ωi

, (17)
qi(t+ 1) = [qi(t)− γp(qi(t)− fi(vi(q(t))))]Ωi

, (18)
qi(t+ 1) = [qi(t) + γvfi(vi(q(t)))]Ωi

. (19)

By replacing (11b) from dynamics (11) with (17), (18), and
(19) respectively, we can obtain three non-linear dynamical
systems. We will show next that these incremental algorithms
within nonlinear power flow model preserve their stability.

B. Reverse-engineering, equilibrium, and convergence

Since (11b), (17), and (18) can be seen respectively as
best-response algorithm, (sub)gradient algorithm, and pseodo-
gradient algorithm for solving the same minimization problem
(13), all three dynamical systems (11a)-(11b), (11a)(17) and
(11a)(18) can be reverse-engineered as the same voltage con-
trol game Gvc. We can again through contraction mapping give
sufficient convergence conditions, under which the dynamical
systems (11a)(17) and (11a)(18) converge to the unique equi-
librium.

As for dynamics (11a)(19), we first define the following
voltage control optimization problem:

min
q

∑
i∈N
−
∫ vi(q)

0

fi(v)dv.

Although this is a non-convex problem, it is easy to check
that its KKT conditions coincide with equilibrium condi-
tions of (11a)(19). Similarly through showing contraction
mapping, convergence condition can be given to ensure that
this dynamical system converges to acceptable voltage ranges
determined by deadband of control functions. It also indicates
the possibility of infinitely many equilibria for (11a)(19).

These results are consistent with both analytical (with
linearized model) and numerical (with nonlinear model) results
in our previous works [9]–[11] with linear model.

VI. NUMERICAL EXAMPLES

We now provide numerical examples to complement the
theoretical analysis in previous sections.
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Fig. 2: Circuit diagram for a SCE distribution system.

TABLE I: Network of Fig. 2: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Capacity
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MW

1 2 0.259 0.808 8 34 0.244 0.046 18 19 0.198 0.046 11 0.67 28 0.27
2 3 0.031 0.092 8 36 0.107 0.031 22 26 0.046 0.015 12 0.45 29 0.2 2 1.05
3 4 0.046 0.092 8 30 0.076 0.015 22 23 0.107 0.031 13 0.89 31 0.27 26 2.1
3 13 0.092 0.031 8 9 0.031 0.031 23 24 0.107 0.031 15 0.07 33 0.45 29 1.89
3 14 0.214 0.046 9 10 0.015 0.015 24 25 0.061 0.015 16 0.67 34 1.34 31 2.625
4 17 0.336 0.061 9 37 0.153 0.046 27 28 0.046 0.015 18 0.45 35 0.13 12 3.15
4 5 0.107 0.183 10 11 0.107 0.076 28 29 0.031 0 19 1.23 36 0.67
5 21 0.061 0.015 10 41 0.229 0.122 30 31 0.076 0.015 20 0.45 37 0.13
5 6 0.015 0.031 11 42 0.031 0.015 30 32 0.076 0.046 21 0.2 39 0.45
6 22 0.168 0.061 11 12 0.076 0.046 38 39 0.107 0.015 23 0.13 40 0.2
6 7 0.031 0.046 14 16 0.046 0.015 38 40 0.061 0.015 24 0.13 41 0.45
7 27 0.076 0.015 14 15 0.107 0.015 43 44 0.061 0.015 25 0.2 Vbase = 12.35 KV
7 8 0.015 0.015 17 18 0.122 0.092 43 45 0.061 0.015 26 0.07 Sbase = 1000 KVA
8 35 0.046 0.015 17 20 0.214 0.046 27 0.13 Zbase = 152.52 Ω
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Fig. 3: (Left) Voltage values of all buses as reactive
power injection from Bus 26 changes; (right) voltage
values of Bus 10 in both linear and non-linear models
as reactive power injection from Bus 26 changes.

A. Simulation Setup

The network topology (Fig. 2) and its parameters (TABLE I)
are based on a distribution feeder of South California Edison.
As shown in Fig. 2, Bus 1 is actually the reference “0” bus,
and a total of five PVs are installed at Bus 2, 12, 26, 29, and
31 respectively.3 AC power flow model (1) is calculated by
MatLab tool MATPOWER 5.1 [18].

We use the piecewise linear droop control functions (10)
with their slopes αi to be determined and analyzed. We assume

3Different from what is implied in the previous sections, in practice we
may not have PVs at all buses. As a result, the convergence condition needs
to be tailored accordingly.

that all the control functions have identical acceptable voltage
range [0.98p.u., 1.02p.u.], i.e., δi = 0.04p.u.,∀i ∈ N .

B. Effects of reactive power injections upon voltage values

In this part, we examine how voltage values change with
different reactive injections. We fix the reactive power injec-
tions of all inverters as 0 except that at Bus 26. We sweep
the reactive power injections at Bus 26 from -1 MW to 1 MW
with granularity of 0.1 MW, and record the consequent voltage
changes at all buses. Similar results are observed by engaging
any other inverters.

According to (8), we do not preclude the possibility of
negative ∂vi

∂qj
, but it rarely takes place since the second term in

(8) is usually much smaller than Xij , almost always resulting
in positive ∂vi

∂qj
, ∀i, j ∈ N , as we can see from the illustration

in Fig. 3 (left).
We then arbitrarily pick Bus 10 to compare its voltage

changes against reactive power injections in both nonlinear
and linear models. As illustrated in Fig. 3 (right), the slopes
exhibiting ∂v10

∂q26
in two models are very close. We can find a

small parameter η, such that the slope in nonlinear model is
upper-bounded by that in linear model multiplied by (1+η). In
this case, η can be set as 0.2. Similar results are observed from
voltage values of any other buses and reactive power injections
from any other inverters, though the slope in nonlinear model

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 4: As the values of αi increase from (a) to (d),
we have slower convergence speed and finally reach a
non-convergent result, when the values of αi get too
large.

is not necessarily greater than that in linearized model due to
the possibility of ∂`lk

∂qj
being negative.

C. Convergence

In this part, we set different αi values in the piecewise linear
droop control functions to see how they affect the convergence
of our Volt/VAr control dynamics (11). As illustrated in Fig.
4, when we increase simultaneously the values of slopes for
all five droop control functions from Fig. 4(a) to Fig. 4(d), we
observe decreasing convergence speeds, until convergence is
no longer available with too large αi, where oscillation occurs
(Fig. 4(d)).

From simulation results, we also observe that, the maximum
allowed slope value max

i
αi ≈ 33, is much larger than the

α < 4.6 upper bound calculated by convergence condition
(16) with η = 0. With larger η, we get even smaller sufficient
upper bound. This is because the sufficient condition (16) is
conservative estimation.

VII. CONCLUSION

In order to analytically characterize the equilibrium and
convergence of the local Volt/VAr control dynamics with
nonlinear power flow model, we reverse-engineer the dy-
namical system with non-incremental control as a voltage
control game. We then establish the existence, uniqueness,
and convergence of the equilibrium by the fixed-point theorem
and pertinent contraction mapping argument. We also extend
the results to the incremental Volt/VAr controls. Numerical
examples are provided to complement the analytical results.
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