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Abstract. Using detailed upwind and nacelle-based measurements from a General Electric [GE] 1.5sle model with a 

77m rotor diameter, we calculated power curves and annual energy production (AEP) and explored their sensitivity 

to different atmospheric parameters. This work provides guidelines for the use of stability and turbulence filters in 

segregating power curves to gain a clearer picture of the power performance of a turbine. The wind measurements 

upwind of the turbine include anemometers mounted on a 135m meteorological tower and lidar vertical profiles. We 5 

calculated power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) and 

turbulence kinetic energy (TKE), as well as atmospheric stability parameters such as Bulk Richardson number (𝑅𝐵). 

AEP was also calculated with and without these atmospheric filters and differences between these calculations are 

highlighted in this article. The power curves for different TI and TKE regimes revealed that, at the U.S. Department 

of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory 10 

(NREL), increased TI and TKE undermined power production at wind speeds near rated, but increased power 

production at lower wind speeds. Similarly, power curves for different 𝑅𝐵 regimes revealed that periods of stable 

conditions produced more power at wind speeds near rated and periods of unstable conditions produced more power 

at lower wind speeds. AEP results suggest that calculations done without filtering for these atmospheric regimes 

may be overestimating the AEP. Because of statistically significant differences between power curves and AEP 15 

calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an 

additional step in analyzing power performance data to take atmospheric stability and turbulence across the rotor 

disk into account. 
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1 Introduction 

Calculating and understanding a wind turbine power curve is crucial for power performance testing and annual 

energy production (AEP) assessments. Previous work on power performance emphasizes the role of turbulence 

intensity (TI) and wind shear in influencing power production (Elliot and Cadogan, 1990; Hunter et al., 2001; Kaiser 

et al., 2003; Sumner and Masson, 2006; Gottschall and Peinke, 2008; Antoniou et al., 2009; Rareshide et al., 2009; 25 

Wharton and Lundquist, 2012a, 2012b; Clifton et al., 2013; Dörenkämper et al., 2014). Wharton and Lundquist 
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(2012b) also found that vertical TI and turbulence kinetic energy (TKE) affect power performance and Rareshide et 

al. (2009) found that veer affects power performance. Previous work also shows that atmospheric stability induces 

deviations of power from the manufacturer power curve (MPC) (Motta et al., 2005; van den Berg, 2008; 

Vanderwende and Lundquist, 2012; Wharton and Lundquist, 2012b). Some work has also focused on atmospheric 30 

variations across the rotor disk that influence the power performance results (Sumner and Masson, 2009; Wagner et 

al., 2009; Choukulkar et al., 2015).  

Because the power curve is so closely tied to AEP, factors that influence the power performance typically 

influence AEP calculations as well. The two most closely explored atmospheric factors with regard to AEP are TI 

and wind shear, but the existing studies do not agree on the influence of TI and wind shear on AEP. The simulation-35 

based study of Antoniou et al. (2009) found that low wind shear supported high AEP. For low wind speeds, the 

highest AEP occurred during conditions of high TI, but at higher wind speeds, the highest AEP occurred when TI 

was low. In their analysis of data from a number of wind farms, Rareshide et al. (2009) also compared AEP 

calculated with different TI and shear combinations, and found that AEP typically decreased with increasing TI, but 

increased with increasing shear, in contrast to the findings of Antoniou et al. (2009). 40 

In this study, we also investigated the influence of different atmospheric stability and turbulence regimes 

on wind turbine power curves and AEP calculations, incorporating a broad set of atmospheric parameters as well as 

different approaches to measuring these parameters. In Sect. 2 we describe our data set, which includes an upwind 

meteorological (met) tower with measurements spanning the rotor disk as well as wind-profiling lidar. In Sect. 3 we 

present our data analysis methods, which include filtering the data by atmospheric parameters like shear, TI, and 45 

atmospheric stability. The effects of atmospheric parameters on power curves and AEP are presented in Sect. 4, and 

in Sect. 5 we summarize conclusions about the effects of atmospheric stability and inflow turbulence on power 

curves and AEP calculations.  

2 Data  

2.1 Measurement site 50 

The measurements used in this analysis were collected at the U.S. Department of Energy (DOE) National Wind 

Technology Center (NWTC, Fig. 1) at the National Renewable Energy Laboratory (NREL), located just south of 
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Boulder, Colo., and about 5 km east of the Colorado Front Range (Clifton et al., 2013; Aitken et al., 2014). The 

prevailing wind direction at 80 m (hub height) at this site during this campaign (29 November 2012 – 14 February 

2013) was west–northwesterly. 55 

This wind direction also dominated a 14-year period from a neighboring met tower at the NWTC (Clifton 

and Lundquist, 2012). During the winter, the downslope flow from the nearby Rocky Mountains is frequently 

channeled through Eldorado Canyon, located just west–northwest of the NWTC (Banta et al., 1996; Poulos et al., 

2000, 2007; Clifton et al. 2013; Aitken et al., 2014). The NWTC site slopes upward about 20 m in elevation change 

toward the west. The surface is mostly short grass. 60 

2.2 Upwind measurements 

Upwind measurements were taken using a Renewable NRG Systems (NRG)/LEOSPHERE WINDCUBE v1 

vertically profiling Doppler lidar (Courtney et al., 2008; Rhodes and Lundquist, 2013) and a 135m met tower. The 

tower includes several levels of cup anemometers, vanes, sonic anemometers, and temperature sensors, along with 

precipitation and air-pressure sensors (Fig. 2, Table 1), all on booms pointing in the dominant wind direction (west–65 

northwest). Data were collected during the winter at times of strongest winds at the NWTC (from 29 November 

2012 through 14 February 2013). The lidar is located about 215 m (2.8D) west of the General Electric (GE) 1.5sle 

turbine on the NWTC site. The met tower is located about 170 m (2.2D) west–northwest of the turbine (Fig. 1). 

Because different instruments employ different averaging methods, Fig. 3 shows that all wind speed data sets were 

synchronized and illustrates how the power output responds. 70 

2.2.1 Lidar  

The NRG/LEOSPHERE WINDCUBE v1 lidar measures volumetric-averaged wind speeds and directions every 20 

m from 40 m to 220 m, thereby spanning the entire vertical extent of the turbine rotor disk. The wind speeds are 

measured with an accuracy of 0.2 m s–1 and the wind directions are measured at an accuracy of 1.5° (Pauliac, 2009). 

First, we filtered the nominally 1Hz measurements of the horizontal wind speeds and directions for suitable carrier-75 

to-noise ratio (CNR). Next, we averaged to 10 min for comparison with the tower and turbine data. The lidar takes a 

volumetric measurement, assuming homogeneity over the entire volume it is measuring. This process introduces an 
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uncertainty in the lidar measurements in inhomogeneous flow (Bingöl et al., 2009; Rhodes and Lundquist, 2013; 

Lundquist et al., 2015); this possible source of error is discussed in further detail in the supplement (Sect. S1).  

2.2.2 Meteorological tower 80 

The M5 met tower (NWTC, 2016, similar to the M4 tower at the site, which was studied by Rinker et al., 2016) is 

instrumented with cup anemometers at 3, 10, 30, 38, 55, 80, 87, 105, 122, and 130 m, and vanes at 3, 10, 38, 87, and 

122 m (Fig. 2 and Table 1). Barometric pressure and precipitation sensors are located at 3 m and temperature sensors 

at 3, 38, and 87 m (Table 1). Sonic anemometers are mounted at 15, 41, 61, 74, 100, and 119 m (Fig. 2 and Table 1). 

The tower booms are directed at 278°, into the prevailing wind direction, slightly north of west. Measurements from 85 

the sonic anemometers at 15 m were used to calculate turbulent fluxes of momentum and heat for assessment of 

atmospheric stability as discussed in the following sections.  

2.3 Wind turbine data 

A GE 1.5MW turbine (GE 1.5/77 sle) with an 80m hub height was chosen for this study. The GE 1.5MW is the most 

widely deployed utility-scale turbine in the world with more than 12,000 turbines deployed around the globe as of 90 

2009 (GE Energy, 2009). The supervisory control and data acquisition (SCADA) system of the DOE GE 1.5sle 

turbine provides 10min averages of nacelle wind speed, nacelle orientation, turbine power, and blade pitch angles. 

These measurements can be compared with the upwind measurements to quantify power curves and AEP. The cup 

anemometer mounted on the nacelle of the turbine is a NRG IceFree Hybrid XT Turbine Control Anemometer. The 

GE 1.5sle reaches its nameplate capacity, 1.5 MW, at a wind speed of 14 m s–1 (GE Energy, 2009). We refer to this 95 

wind speed as the rated wind speed for the rest of this article. The lower and upper extremes of the swept area of the 

GE 1.5sle in this study were 41.5 m and 118.5 m above ground. More details on this turbine and power performance 

testing results as well as instrument and site calibration information can be found in Mendoza et al. (2015). 

3 Analysis methods 

Before calculating atmospheric parameters, all meteorological and turbine data were checked for data quality as 100 

described in Sect. 3.1. 

3.1 Data quality control 
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3.1.1 Lidar  

All lidar-measured wind-speed measurements were filtered by CNR: only measurements with a CNR greater than –

18 dB were retained. Lower CNR results from clean-air conditions (Aitken et al., 2012), which occur frequently on 105 

Colorado’s Front Range in the winter. After additional filtering for quality control purposes (such as removing bad 

data as defined by the manufacturer’s wind speed and temperature limits), the data recovery rate was approximately 

33.5 % for horizontal wind speeds and directions at 40 m, 40 % for horizontal wind speeds and directions at 60 and 

120 m, and 45 % for horizontal wind speeds and directions at 80 and 100 m.  

3.1.2 Meteorological tower 110 

Quality control filtering methods performed on the met tower data followed procedures including discarding data 

that were flagged because of irregular timing (when the time between measurements was inconsistent), insufficient 

number of data points within a 10min averaging period according to the manufacturer, low standard deviation (less 

than 0.01 % of the mean) or constant values during the measurement interval (which indicate icing events), empty 

data channels, bad values as defined by manufacturer limits, or when an instrument recorded a “NaN” in place of a 115 

real measurement. After filtering for quality control purposes, the met tower measured horizontal wind speeds and 

directions and temperatures about 90 % of the time at all levels during this study. 

3.2 Wind speed and direction subselection 

Although the dominant wind direction at the site is west–northwesterly, other wind directions do occur. To ensure 

the lidar and met tower measurements were wake-free (upwind of the turbine), we considered only data from time 120 

periods of hub height wind from the 235°–315° wind direction sector. This sector includes the most frequent and 

highest wind speeds as measured by both upwind instruments (Fig. 4). Only wind speeds between cut-in (3.5 m s–1) 

and cut-out (25 m s–1) were considered to ensure that the turbine was operating.  

3.3 Filtering turbine underperformance 

After filtering for quality control as well as wind speed and direction, we still saw a large number of times when the 125 

turbine was producing significantly less power than expected—underperforming— relative to most of the points, as 
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seen in Fig. 5a. However, blade pitch angles can be used to segregate data and flag most of these underperforming 

periods, as follows. 

Without access to the turbine control system or data more refined than 10min averages, typical blade pitch 

angles can be quantified as a function of wind speed (Fig. 5b). The median value for blade pitch angle for each wind 130 

speed bin as well as ± 3 median absolute deviation (MAD) are shown by the red envelope in Fig. 5b. We used MAD 

here instead of mean absolute deviation so that a few outliers would not bias the calculation. When plotted on a 

power curve using the tower 80m cup anemometer for wind speed, Fig. 5a, the majority of the points outside of the 

± 3 MAD and between 5 and 17 m s–1 showed underperformance. To filter for underperformance, then, we 

calculated MAD blade pitch angles from each blade for each wind speed bin between 5 and 17 m s–1. Time periods 135 

with blade pitch angle outside of ± 3 MAD were discarded. Although it is possible that variability on timescales 

shorter than 10 min may affect turbine operation, the effective filtering seen in the magenta scatter in Fig. 5a 

suggests that this approach is sufficient. This filtering by blade pitch angle also has the advantage of using only data 

to which a typical wind plant operator would have access.   

 After filtering for hub height wind speed and direction, positive power production, and blade pitch angle, 140 

1,214 out of 7,949 lidar 80m wind speed data points remained (15 %), and 2,196 out of 9,918 met tower 80m wind 

speed data points remained (20 %). Concurrent lidar, met tower, and turbine data that fulfilled the various screening 

criteria occurred during 1,083 10min periods.  

3.4 Power curves  

Power curves based on wind speeds normalized by air density following International Electrotechnical Commission 145 

(IEC) 61400-12-1 (2015) can be used to evaluate turbine performance. The observed power curves, comparing 

power production to 80m tower anemometer wind speeds (Fig. 6a), 80m lidar wind speeds (Fig. 6b), and nacelle 

anemometer wind speeds (Fig. 6c), generally showed good agreement with an approximation of the MPC (GE 

Energy 2009). This approximated MPC was determined by placing the publically available MPC for the GE 1.5sle 

on a grid (with dimensions of 0.5 m s–1 by 50 kW) and estimating expected power produced at each wind bin. 150 

The power curves created from 10min tower and nacelle-mounted anemometers (Fig. 6a, Fig. 6c, 

respectively) showed less variability than the lidar power curve (Fig. 6b). It is especially apparent from the power 
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curve created from 10min lidar measurements (Fig. 6b) that the lidar variability at this particular site is vulnerable to 

inhomogeneity in the flow. Although lidars are widely available and used in the field (Clifton 2015), the variability 

between the lidar and tower measurements (Fig. 7) indicated sufficient inhomogeneity in the flow at this particular 155 

site (as observed by Aitken et al., 2014) to cause us to discuss and show only the upwind data from the tower from 

this point forward. Note, however, that not all sites are subject to the inhomogeneity seen at the NWTC, and all 

instruments available for wind measurement should be considered. Concurrent met tower and turbine data that 

fulfilled the screening criteria occurred during 2,186 10min periods, equivalent to about 364 h of data, which is more 

than twice the 180 h of data that the IEC 61400-12-1 standard (2015) recommends for power performance testing.  160 

3.5 Atmospheric stability regimes  

Numerous approaches are available for classifying the atmospheric stability of a given 10min time period. Bulk 

Richardson number (𝑅𝐵) calculations use temperature and wind speed differences from the lowest met tower 

measurement to the height of the top of the rotor disk to compare the buoyant production of turbulence to the wind-

shear-generated mechanical production of turbulence (Stull, 1988) as 165 

𝑅𝐵 =  
𝑔 ∆𝑇 ∆𝑧

𝑇̅ ∆𝑈2   ,                                                                                                                                                               (1) 

where g is the gravitational constant, ∆z is the change in height, ∆T is the change in 10min averages of temperature 

across ∆z, 𝑇̅ is the mean temperature across ∆z, and ∆U is the change in the 10min averages of horizontal wind 

speed across ∆z. Note that Eq. (1) does not consider wind direction variability because cup anemometer 

measurements provide only information about horizontal wind speed. Typical stability classifications based on 𝑅𝐵 170 

calculations are as follows: turbulent flow in unstable conditions when 𝑅𝐵  is less than 0, laminar flow in stable 

conditions when 𝑅𝐵 is greater than 0.25, and neutral conditions when 𝑅𝐵 is between 0 and 0.25 (Stull, 1988). These 

stability classifications are similar to those used in previous work on stability effects on wind turbine fatigue and 

loading in Kelley (2011), and slightly different from the stability classifications used in Vanderwende and Lundquist 

(2012). The distribution of 𝑅𝐵 calculated from the tower measurements for this campaign (Fig. 8), however, 175 

suggested that slightly different regimes, shown in Table 2, could be used to better represent the data at this site. 𝑅𝐵 

regimes are similarly defined for the NWTC in Aitken et al. (2014).  
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 Obukhov length (L) is also a useful measure of atmospheric stability, relying on surface stresses as well as 

heat fluxes to estimate the height in the surface layer at which the buoyant production of turbulence dominates wind-

shear-generated mechanical production of turbulence (Stull, 1988) as 180 

𝐿 =  −
𝑢∗

3

𝑘 𝑔
 

𝑇𝑣

𝑤′𝑇𝑠′̅̅ ̅̅ ̅̅ ̅̅
   ,                                                                                                                                                         (2) 

where 𝑢∗ is the friction velocity, k is the von Karman constant 0.4,  𝑇𝑣 is the virtual temperature, 𝑤′ is the vertical 

wind speed fluctuation in the 10min averaging period, and 𝑇𝑠′ is the sonic temperature fluctuation in the 10m 

averaging period. Typical stability classifications are used in this work and are based on L calculations as defined by 

Muñoz-Esparza et al. (2012); shown in Table 2. These classifications are slightly different from those used in 185 

Wharton and Lundquist (2012b). The distributions of L are shown in Fig. 9.  

When the 𝑅𝐵 and L stability approaches are compared against one another and against time-of-day, as in 

Fig. 10, the different stability parameters differ slightly in their definitions of unstable and stable. Because of 

differences in stability classes using these different stability parameters, along with their different approaches to 

defining atmospheric stability, we treated 𝑅𝐵-defined stability classes separately from L-defined stability classes in 190 

the power curves. 

3.6 Turbulence regimes  

TI can also be used to describe atmospheric conditions, as demonstrated by Rareshide et al. (2009), Wagenaar and 

Eecen (2011), and Wharton and Lundquist (2012a). TI is typically defined as  

𝑇𝐼 =  
𝜎80𝑚

𝑈80𝑚
∗ 100   ,                                                                                                                                                      (3) 195 

where 𝜎80𝑚 is the 10min standard deviation of the horizontal wind speed at 80 m and  𝑈80𝑚 is the 10min mean 

horizontal wind speed at 80 m. Although the TI approach has been used successfully at other locations, the NWTC 

consistently features strong turbulence likely resulting from the terrain characteristics of the site (Fig. 11, Fig. 12), 

making it difficult to distinguish typical stability classes from TI calculations. This strong ambient turbulence has 

led to the choice of site-specific turbulence classification defined in Table 3.  200 
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When the atmospheric stability regimes are compared to the TI regimes defined here (Fig. 13), the 𝑅𝐵 and 

TI regime percentages also differ slightly in their definitions of unstable atmospheric conditions and highly turbulent 

conditions. Most of the daytime points are within the unstable regime as defined by 𝑅𝐵; however, only about 16 % 

of the data fall within unstable conditions with higher TI. This comparison, again, emphasizes the highly turbulent 

characteristics of the NWTC.  205 

 To further understand the turbulence characteristics demonstrated during this campaign, we also calculated 

TKE using the 74m 3D sonic anemometer mounted on the M5 met tower. Although TI is a parameter typically 

calculated and analyzed in the wind industry, TKE has the advantage of including the vertical component of the 

wind: 

𝑇𝐾𝐸 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅)  ,                                                                                                                                       (4) 210 

where we calculate TKE per unit mass, u’ is the perturbation from a 10min average of the u-component of the wind, 

v’ is the perturbation from a 10m average of the v-component of the wind, and w’ is the perturbation from a 10min 

average of the w-component of the wind. Using this TKE approach also revealed the strong turbulence at the NWTC 

with little or no diurnal cycle (Fig. 11, Fig. 14). Turbulence classifications based on TKE were determined by the 

distribution in Fig. 14 and are listed in Table 3. 215 

Many cases with relatively high TI or TKE are considered neutral and stable according to our stability 

definitions in Table 3. Depending on whether TI, TKE, 𝑅𝐵, or L is considered a measure of atmospheric stability, a 

particular time period may be classified differently. In other words, different results are found depending on the 

metric selected. 

3.7 Wind shear regimes 220 

To estimate the effect of the wind speed vertical profile across the rotor disk, the wind shear exponent or power law 

exponent parameter, α, is typically used in the wind energy industry: 

𝛼 =  
log(

𝑈2
𝑈1

)

log(
𝑧2
𝑧1

)
 ,                                                                                                                                                                 (5)  

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-21, 2016
Manuscript under review for journal Wind Energ. Sci.
Published: 17 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



  Page 11 of 37 

where 𝑧1 is the reference height, 𝑧2 is the height above ground level, 𝑈2 is the wind speed at height 𝑧2, and 𝑈1is the 

wind speed at height 𝑧1. At the NWTC during this study, the average wind shear exponent using the 122 m and 38 m 225 

tower wind speeds as 𝑧2 and 𝑧1 is 0.15. The standard deviation is 0.14 and the maximum wind shear exponent is 

1.10, however. Although we found no statistically significant impact of wind shear on the power curves at this site, 

we did include shear exponent in the subsequent analysis, separating regimes of shear exponent as defined in Table 

2 and based on the distribution in Fig. 15. 

4 Results 230 

To explore the variability in the power curves, we applied filters to the power curves based on factors such as 

atmospheric stability, TI, and TKE. We applied a new method to calculate AEP using these classifications. We can 

consider periods with low TI or TKE to be approximately “stable” by 𝑅𝐵 and 𝐿; “unstable” conditions would 

generally have high TI and TKE. Our results showed that, generally, at this site with little veer, stable conditions 

(with varying degrees of significance) lead to overperformance at wind speeds just below rated power. Unstable 235 

conditions lead to overperformance at lower wind speeds with a few exceptions. 

4.1 Power curves 

The NWTC site generally exhibited high TI throughout this data collection period. Even so, some differences in 

power produced emerged at wind speeds between 5 and 7 m s–1 and at wind speeds between 10 and 14 m s–1 after 

separating the TI into relative classes of low, medium, and high TI (Fig. 16a, Fig. 16d, Fig. 17a, Fig. 17d, Table 3). 240 

Statistically distinct differences within each wind speed bin between the TI classes defined in Table 3 were 

determined by the Wilcoxon rank sum test with a 1 % significance level. These are denoted by closed circles in Fig. 

16a, Fig. 16d, Fig. 17a, and Fig. 17d. This statistical test shows that for the power curves using nacelle winds, 

periods of relatively high TI produce significantly more power than periods of relatively low TI at wind speeds 

between 5 and 9 m s–1 (Fig. 16a, Fig. 17a). For the power curves using upwind tower winds, periods of relatively 245 

high TI produce significantly more power than periods of relatively low TI at wind speeds between 5 and 6.5 m s–1 

(Fig. 16d, Fig. 17d). Conversely, power curves using nacelle winds show that at wind speeds between 10.5 and 13.5 

m s–1, periods of relatively low TI produce significantly more power than periods of relatively high TI. Power curves 
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using upwind tower winds show that at wind speeds between 9.5 and 15.5 m s–1, periods of relatively low TI 

produce significantly more power than periods of relatively high TI. Rareshide et al. (2009) found similar behavior.  250 

 On the other hand, power curves separated by 𝑅𝐵-defined stability class show only a few bins that are 

statistically distinct in power produced (Fig. 16b, Fig. 16e, Fig. 17b, Fig. 17e). Power curves using nacelle winds 

show that at some wind speeds between 5.5 and 9.0 m s–1, periods of unstable conditions produce significantly more 

power than periods of stable conditions. Power curves using upwind tower winds show that at wind speeds around 7 

m s–1, periods of unstable conditions produce significantly more power than periods of stable conditions. Power 255 

curves using both nacelle winds and tower winds show that at wind speeds around 12 m s–1, periods of stable 

conditions produce significantly more power than periods of unstable conditions.  

Similarly, Fig. 16c, Fig. 16f, Fig. 17c, and Fig. 17f show periods of low TKE producing significantly more 

power at wind speeds just before rated than periods of high TKE, similar to the TI and 𝑅𝐵 methods. Between 7.5 and 

9.5 m s–1, power curves using nacelle winds show that periods of high TKE produce significantly more power than 260 

periods of low TKE. Interestingly, however, power curves using upwind tower winds show that at 4 m s–1, just after 

cut-in, periods of low TKE produce more power than periods of high TKE.  

Distinct differences between power curves calculated from nacelle winds and power curves calculated from 

upwind tower winds occurred in the power curves of all three of these atmospheric parameters. Statistically distinct 

wind speed bins in power curves calculated from nacelle winds tended to be similar to those in power curves 265 

calculated from tower winds near rated speed. At lower wind speeds, however, between about 5 and 9 m s–1, many 

more statistically distinct differences emerged between nacelle power curves than between tower power curves, 

most notably in the power curves segregated by TI regimes. Turbine operations were especially variable in this 

region of rapid increase in power with wind speed. The turbine reacted directly to the conditions as measured by 

instruments on the turbine. 270 

Agreement between the TI, 𝑅𝐵, and TKE methods means that at wind speeds around rated, low TI,  high 

stability, and low TKE result in overperformance relative to high TI, low stability, and high TKE. All three methods 

also agree that somewhere in between cut-in and rated, sometimes called “region 2,” high TI, low stability, and high 

TKE result in overperformance relative to low TI, high stability, and low TKE. Power curves separated by L-defined 
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stability class do not show any statistically significant differences in power produced between unstable and stable 275 

periods (not shown). 

4.2 Annual energy production 

AEP allows developers and operators to quantify the projected energy production of a turbine. To quantify the 

impact on AEP of these stability- and turbulence-driven differences in power curves, we used a Weibull distribution 

for wind speed and calculated AEP with no filter, as well as with TI, shear, and stability filters. These turbulence 280 

and stability filters for the AEP calculations can be further explained as AEP calculated using the power curves 

calculated from upwind tower winds shown in Fig. 16. These power curves are used together with a sample wind 

distribution using Weibull distribution parameters representative of the data set (λ = 10.13 m s–1, k = 2.62) as 

suggested by IEC 61400 12-1 (2015) for a site-specific AEP. For each of these filters, separate AEP calculations 

were made for each regime, weighted by the number of data points in that regime, and then added together to 285 

compare with the AEP calculated with no atmospheric filter. Note that although data were collected only during 2.5 

months in the winter of 2012, AEP was calculated for an entire year to show values closer to a representative AEP 

value.  

Results in Table 4 show a higher AEP when using no filter, followed by an AEP calculated with a TI filter 

and then a shear filter. Although it is shown in the power curves in Fig. 16 and Fig. 17, a TKE filter to calculate 290 

AEP is not presented here because the result was a significantly smaller AEP, most likely resulting from the lack of 

data points in comparison to the other filters. The lower AEP calculated when separating by stability and turbulence 

regimes suggests that the AEP calculated using no filters may be overestimating the production, perhaps because the 

higher and lower extremes of the parameter ranges bias the averages in each bin.  

When the AEP’s low and high regimes are compared to the medium regimes of their respective 295 

atmospheric parameter, the AEP for medium-TI periods is higher than that for low-TI periods and for high-TI 

periods (Table 5). Using low- and high-TI power curves results in an AEP smaller than that calculated using the 

medium-TI power curve. These results are likely obtained because the low-TI power curve loses production at lower 

wind speeds and the high-TI power curve loses production around rated speed. When using a shear filter, the AEP 

calculated with the high-shear power curve is higher than that with the low-shear power curve (Table 5). 300 
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Conversely, when using a stability filter, the AEP calculated with the low-𝑅𝐵 power curve is higher than that with 

the high-𝑅𝐵 power curve (Table 5). This contrast between AEP calculated for the low stability regime and AEP 

calculated for the high stability regimes suggests that the unstable power curve (Fig. 16b,e) gains enough production 

near rated wind speed to surpass the production gain by the stable power curve (Fig. 16b,e) at lower wind speeds. 

5 Conclusions 305 

Using 2.5 months of data from upwind and nacelle-based instruments, we calculated power curves for different 

regimes of atmospheric stability and turbulence as well as AEP with and without these atmospheric filters. This 

work focuses not only on the idea of calculating different power curves for different atmospheric conditions for 

power performance testing, but also highlights the differences in AEP that can emerge from the application for 

stability- or turbulence-dependent power curves. 310 

Statistically significant differences emerge among power curves segregated by TI, TKE, and 𝑅𝐵 .  At wind 

speeds between 5 and 7 m s–1, during periods of high TI, significantly more power is produced than during periods 

of low TI. From about 10 to 14 m s–1 (near rated wind speed), during periods of low TI, significantly more power is 

produced than during periods of high TI. Similarly, periods of high TKE produce significantly more power between 

7.5 and 9.5 m s–1 than during periods of low TKE, and periods of low TKE produce significantly more power around 315 

12 m s–1 than during periods of high TKE. During periods of stable conditions, significantly more power is produced 

than during periods of unstable conditions around 12 m s–1; significantly less power is produced than during periods 

of unstable conditions at some wind speeds between 5.5 and 8.5 m s–1. Statistically significant distinctions in power 

curves did not occur when filtering for L, yaw error, wind shear, or wind veer for this data set at this site, perhaps 

explaining why stable conditions promote overperformance here, as in Wharton and Lundquist (2012b). A site with 320 

veer, however, exhibits underperformance in stable conditions (Vanderwende and Lundquist 2012). 

After calculating an AEP for each regime and comparing the high and low regimes with the medium 

regime, differences between AEP calculated using different atmospheric filters are revealed. An AEP calculated 

with no atmospheric or turbulence filter is higher than any AEP calculated with these filters. In addition, the AEP 

calculated using a TI filter shows that the AEP calculated with the medium TI regime is greater than the AEP 325 

calculated with the low or high TI regimes. The AEP calculated with the shear filter shows that the high regime AEP 
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is higher than the AEP in the low and medium regimes; the AEP calculated with the 𝑅𝐵 filter shows that the low 

regime AEP is much larger than the AEP in the high and medium regimes. 

 As discussed by Rareshide et al. (2009), manufacturers are increasingly filtering out data that represent 

what they consider anomalous or extreme atmospheric conditions for power performance testing. The IEC-61400-330 

12-1 standard (2015) calls for at least 180 h of data to be used in a power performance test. Consequently, if 

manufacturers filter out data based on higher TI values, for instance, this means that more data must be gathered to 

make up for the discarded data. We see this discarding of data as unnecessary and potentially more costly. We 

suggest that instead of discarding these data, different power curves be calculated for different conditions. This will 

allow for a more refined understanding of how the turbine is operating in different atmospheric conditions, and may 335 

lead to a more accurate and reliable performance result and AEP calculation. 

Acknowledgements 

The authors express appreciation to the Center for Research and Education in Wind for supporting this work, to 

Thomas Fischetti at GE Power & Water for his assistance in turbine data collection and interpretation, and to the 

reviewers of a previous version of this work. This work was supported by the U.S. Department of Energy under 340 

Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was 

provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies 

Office. 

The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. 

Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 345 

form of this work, or allow others to do so, for U.S. Government purposes. 

 

References 

Aitken, M.L., Lundquist, J.K., Pichugina, Y.L., and Banta, R.M.: Quantifying wind turbine wake characteristics 

from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787, doi:10.1175/JTECH-D-13-00104.1, 2014. 350 

Aitken, M.L., Rhodes, M.E., and Lundquist, J.K.: Performance of a wind-profiling lidar in the region of wind 

turbine rotor disks, J. Atmos. Ocean. Tech., 29, 347–355, doi:10.1175/JTECH-D-11-00033.1, 2012. 

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-21, 2016
Manuscript under review for journal Wind Energ. Sci.
Published: 17 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



  Page 16 of 37 

Antoniou, I., Pedersen, S.M., and Enevoldsen, P.B.: Wind shear and uncertainties in power curve measurement and 

wind resources, Wind Engineering, 33, 449–468, doi:10.1260/030952409790291208, 2009. 

Banta, R.M., Oliver, L.D., Gudiksen, P.H., and Lange, R.: Implications of small-scale flow features to modeling 355 
dispersion over complex terrain,  J. Appl. Meteorol. , 35, 330–342, 1996. 

Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning LIDAR error in complex terrain, Meteorologische 

Zeitschrift, 18, 189–195, doi:10.1127/0941-2948/2009/0368, 2009. 

Choukulkar, A., Pichugina, Y., Clack, C.T.M., Calhoun, R., Banta, R., Brewer, A. and Hardesty, M.: A new 

formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting, Wind 360 
Energy, doi: 10.1002/we.1929, 2015. 

Clifton, A. Remote sensing of complex flows by Doppler wind lidar: issues and preliminary recommendations, 

NREL, Golden, Colo., 1–42, 2015. 

Clifton, A., Kilcher, L., Lundquist, J. K., Fleming, P.: Using machine learning to predict wind turbine power output, 

Environ. Res. Lett., 8, 8 pp., doi: 10.1088/1748-9326/8/2/024009, 2013. 365 

Clifton, A., and Lundquist, J.K.: Data clustering reveals climate impacts on local phenomena, J. Appl. Meteorol. 

Clim., 51, 1547–1557, doi:10.1175/JAMC-D-11-0227.1, 2012. 

Clifton, A., Schreck, S., Scott, G., and Lundquist, J.K.,: Turbine inflow characterization at the National Wind 

Technology Center, J. Sol. Energ.-T ASME, 135, doi:10.1115/1.4024068, 2013. 

Courtney, M., Wagner, R., and Lindelöw, P.: Testing and comparison of LIDARs for profile and turbulence 370 
measurements in wind energy, IOP Conference Series Earth and Environmental Science, 1, 1–14, doi:10.1088/1755-

1307/1/1/012021, 2008. 

Dörenkämper, M., Tambke, J., Steinfield, G., Heinemann, D., and Kühn, M.: Atmospheric impacts on power curves 

of multi-megawatt offshore wind turbines, Journal of Physics: Conference Series, 555, 1–11, doi: 10.1088/1742-

6596/555/1/012029, 2014. 375 

Elliott, D.L., and Cadogan, J.B.: Effects of wind shear and turbulence on wind turbine power curves, Proc. European 

Community Wind Energy Conference and Exhibition, Madrid, Spain, 1990. 

GE Energy: 1.5 MW wind turbine, 2009, http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-

MW-Broch.pdf, last access: 21 January 2013. 

Gottschall, J., and Peinke, J.: How to improve the estimation of power curves for wind turbines, Environ. Res. Lett., 380 
3, 1–7, doi: 10.1088/1748-9326/3/1/015005, 2008. 

Hunter, R., Pedersen, T.F., Dunbabin, P., Antoniou, I., Frandsen, S., Klug, H., Albers, A., and Lee, W.K.: European 

wind turbine testing procedure developments: Task 1: measurement method to verify wind turbine performance 

characteristics, Risø National Laboratory, Roskilde, Denmark,1–120, 2001. 

IEC 61400-12-1 Ed 2.0: Wind turbines – Part 12-1: power performance measurements of electricity producing wind 385 
turbines, IEC, Geneva, Switzerland, 2015. 

Kaiser, K., Hohlen, H., and Langreder, W.: Turbulence correction for power curves, Wind Energy Proc. European 

Wind Energy Conference and Exhibition, Madrid, 159–162, 2003. 

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-21, 2016
Manuscript under review for journal Wind Energ. Sci.
Published: 17 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



  Page 17 of 37 

Kelley, N.D.: Turbulence-turbine interaction: the basis for the development of the TurbSim Stochastic Simulator, 

NREL, Golden, Colo., 2011. http://www.nrel.gov/docs/fy12osti/52353.pdf, last access: 8 May 2016. 390 

Lundquist, J.K., Churchfield, M.J., Lee, S., and Clifton, A.: Quantifying error of lidar and sodar Doppler beam 

swinging measurements of wind turbine wakes using computational fluid dynamics, Atmospheric Measurement 

Techniques, 8, 907–920, doi: 10.5194/amt-8-907-2015, 2015. 

Mendoza, I., Hur, J., Thao, S., Curtis, A.: Power performance test report for the U.S. Department of Energy 1.5-

megawatt wind turbine, NREL, Golden, Colo., 1–55, 2015, last access: 8 May 2016, 395 
http://www.nrel.gov/docs/fy15osti/63684.pdf. 

Motta, M., Barthelmie, R.J., and Vølund, P.: The influence of non-logarithmic wind speed profiles on potential 

power output at Danish offshore sites, Wind Energy, 8, 219–236, 2005. 

Muñoz-Esparza, D., Cañadillas, B., Neumann, T., and vanBeech, J.: Turbulent fluxes, stability and shear in the 

offshore environment: mesoscale modelling and field observations at FINO1, Journal of Renewable and Sustainable 400 
Energy, 4, 1–16, doi: 10.1063/1.4769201, 2012. 

NWTC 135-m Tower Data: https://nwtc.nrel.gov/MetData, last access: 18 May 2016. 

Pauliac, R.: WINDCUBE user’s manual, 2009. 

Poulos, G.S., Bossert, J.E., Pielke, R.A., and McKee, T.B.: The interaction of katabatic flow and mountain waves I: 

observations and idealized simulations, J. Atmos. Sci., 57, 1919–1936, 2000. 405 

Poulos, G.S., Bossert, J.E., Pielke, R.A., and McKee, T.B.: The interaction of katabatic flow and mountain waves II: 

case study analysis and conceptual model, J. Atmos. Sci., 64, 1857–1879, 2007. 

Rareshide, E., Tindal, A., Johnson, C., Graves, A.M., Simpson, E., Bleeg, J., Harris, T., and Schoborg, D.: Effects of 

complex wind regimes on turbine performance, AWEA Windpower 2009 meeting, Chicago, Ill., 2009. 

Rhodes, M.E., and Lundquist, J.K.: The effect of wind-turbine wakes on summertime US Midwest atmospheric 410 
wind profiles as observed with ground-based Doppler LIDAR, Boundary-Layer Meteorol. 149, 85–103, 

doi:10.1007/s10546-013-9834-x, 2013. 

Rinker, J.M., Gavin, H.P., Clifton, A., Veers, P.S., and Kilcher, L.F.: Temporal coherence: a model for non-

stationarity in natural and simulated wind records, Boundary-Layer Meteorol., 159, 373–389, doi: 10.1007/s10546-

015-0121-x, 2016. 415 

Stull, R.B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Netherlands, 1988. 

Sumner, J., and Masson, C.: Influence of atmospheric stability on wind turbine power performance curves, J. Sol. 

Energ.-T ASME, 128, 531–538, doi:10.1115/1.2347714, 2006. 

van den Berg, G.P.: Wind turbine power and sound in relation to atmospheric stability, Wind Energy, 11, 151–169, 

2008. 420 

Vanderwende, B., and Lundquist, J.K.: The modification of wind turbine performance by statistically distinct 

atmospheric regimes, Environ. Res. Lett., 7, 1–7, doi:10.1088/1748-9326/7/3/034035, 2012. 

Wagenaar, J.W., and Eecen, P.J.: Dependence of power performance on atmospheric conditions and possible 

corrections, European Wind Energy Association (EWEA) 2011 conference, Brussels, Belgium, 2011. 

http://www.ecn.nl/docs/library/report/2011/m11033.pdf, last access: 9 May 2016. 425 

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-21, 2016
Manuscript under review for journal Wind Energ. Sci.
Published: 17 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



  Page 18 of 37 

Wagner, R., Antoniou, I., Pedersen, S., Courtney, M., and Jorgensen, H.: The influence of the wind speed profile on 

wind turbine performance measurements, Wind Energy, 12, 348–362, doi:10.1002/we.297, 2009. 

Walton, R.A., Takle, E.S., and Gallus Jr., W.A.: Characteristics of 50–200-m winds and temperatures derived from 

an Iowa tall-tower network, J. Appl. Meteorol. Clim., 53, 2387–2393, doi:10.1175/JAMC-D-13-0340.1, 2014.  

Wharton, S., and Lundquist, J.K.: Atmospheric stability affects wind turbine power collection, Environ. Res. Lett., 430 
7, 1–9, doi:10.1088/1748-9326/7/014005, 2012a. 

Wharton, S. and Lundquist, J.K.: Assessing atmospheric stability and its impacts on rotor-disk wind characteristics 

at an onshore wind farm, Wind Energy, 15, 525–546, doi:10.1002/we.483, 2012b. 

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-21, 2016
Manuscript under review for journal Wind Energ. Sci.
Published: 17 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



  Page 19 of 37 

Table 1. 135m met tower instrument information 

Type Instrument Mounting Heights (m) Accuracy 

Cup anemometer Met One SS-201 3, 10, 38, 87, 122 0.5 m s–1 

Cup anemometer Thies 4.3351.10.0000  30, 55, 80, 105, 130 0.2 m s–1 

Wind vane Met One SD-201  3, 10, 38, 87, 122 3.6° 

Air temperature 

sensor 

Met One T-200A platinum 

RTD 

3, 38, 87 0.1°C 

Differential 

temperature sensor 

Met One T-200A 38, 87, 122 0.1°C 

Sonic anemometer ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.01 m s–1 

Boom triaxial 

acceleration sensor 

Summit 34201A 15, 41, 61, 74, 100, 119  

Sonic temperature ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.1°C 

Barometric pressure 

sensor 

AIR AB-2AX 3  

Dewpoint 

temperature sensor 

Therm-x 9400ASTD 3, 38, 87, 122  

Precipitation sensor Vaisala DRD11A 3  
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Table 2. Defined stability regimes 

Stability class 𝑹𝑩 L (m) α 

Unstable conditions 𝑅𝐵 < –0.03 –1,000  < L ≤ 0 α < 0.11 

Neutral conditions –0.03 < 𝑅𝐵< 0.03 |L| ≥ 1,000 0.11 < α < 0.17 

Stable conditions 𝑅𝐵 > 0.03 0 ≤ L < 1,000 α > 0.17 

 

Table 3. Defined turbulence regimes 

Turbulence regime TI (%) TKE (m2 s–2) 

High turbulence  TI > 20 TKE > 5 

Medium turbulence 15 < TI < 20 2.5 < TKE < 5 

Low turbulence TI < 15 TKE < 2.5 

 

Table 4. AEP in megawatt-hours/year calculated for different atmospheric and turbulence regimes using a Weibull distribution 

with a scale factor of 10.13 m s–1 and a shape factor of 2.62.  

 No filter TI filter α filter 𝑹𝑩 filter 

AEP (MWh/y) 7,546.5 7,384.1 7,343.9 6,780.2 

 

Table 5. AEP in percentage calculated for different filter regimes using a Weibull distribution with a scale factor of 10.13 m s–1 

and a shape factor of 2.62. Medium regime is set at 100 % and low and high regimes are percentages compared to the medium 

regime. Boxes with the highest value within that row are italicized. 

Filter Low regime Medium regime High regime  

TI 88.11 100.00 84.63 

α 101.18 100.00 102.20 

𝑹𝑩 147.80 100.00 118.89 
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Figure 1. Top: Google Maps image of the NWTC with instrument locations. The green rectangle represents the location of the 

met tower, the purple rectangle represents the location of the turbine, and the blue rectangle represents the location of the lidar. 

Map Data © 2016 Google. 
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Figure 2. 135m meteorological tower configuration. A few key heights are labeled. This tower is slightly different from the M4 

tower described in Clifton et al. (2013), but data are available online (NWTC, 2016). 
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Figure 3. Time series from 11 January 2013 from 08:00 to 17:00 Mountain Standard Time (MST): (a) is a time series of 80m 

wind speeds measured by the cup on the tower; (b) is a time series of 80m wind speeds measured by the lidar; (c) is a time series 

of the hub height wind speeds measured by the cup anemometer on the nacelle; and (d) is a time series of the power output from 

the turbine.  
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Figure 4. Wind roses for (a) lidar 80 m and (b) met tower 87 m (altitude closest to hub height with both a cup and vane). Wind 

bins are 2 m s–1 and wind directions bins are 10°. Black outline highlights the chosen wind direction sector. 
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Figure 5. (a) Scatter power curve using the tower 80m wind speed. The blue scatter shows the points that are outside of the MAD 

envelope in (b) and the red scatter shows the points that are within the MAD envelope in (b); (b) blade pitch angle from a single 

blade versus tower 80m wind speed. Red envelope represents ± 3 MAD of the blade pitch angle within wind speed bins 0.5 m s–1 

wide. 
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Figure 6. Power curves after filtering for wind speeds between 3.5 and 25 m s–1, wind directions between 235°and 315°, and 

blade pitch angle within ± 3 MAD: (a) turbine power production versus 80m cup anemometer wind speed from the met tower; 

(b) turbine power production versus 80m wind speed from the lidar; (c) turbine power production versus hub height wind speed 

from the anemometer on the nacelle. Grey line represents an approximation of the manufacturer power curve for the GE 1.5sle 

(GE Energy, 2009). Wind speed is normalized for density following IEC 61400-12-1 (2015).  
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Figure 7. Lidar 80m wind speeds compared to tower 80m wind speeds filtered for wind speeds between 3.5 and 25.0 m s–1, wind 

directions between 235° and 315°, and blade pitch angle within ± 3 MAD. Black dashed line represents a 1:1 relationship. 
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Figure 8. 𝑅𝐵 distribution using thresholds in Table 2. Includes data filtered for tower 80m wind speeds between 3.5 and 25.0 m 

s–1, 87m wind directions between 235° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 9. L distribution using thresholds in Table 2. Note that some neutral cases are outside of these axes. Includes data filtered 

for tower 80m wind speeds between 3.5 and 25.0 m s–1, 87m wind directions between 235° and 315°, and blade pitch angle 

within ± 3 MAD. 
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Figure 10. L versus 𝑅𝐵. Blue box represents where both L and 𝑅𝐵 agree on the stable conditions; percentage represents the 

percentage of data points in this box. Red box represents where both L and 𝑅𝐵 agree on the unstable conditions; percentage 

represents the percentage of data points in this box. Includes data filtered for tower 80m wind speeds between 3.5 and 25 m s–1, 

87m wind directions between 235° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 11. TI (a) and TKE (c) calculated with near hub height tower measurements versus time of day, where hour 0 and hour 24 

represent midnight. The blue line represents the mean TI in the corresponding hour and the error bar represents the standard 

deviation. The blue rectangle represents nighttime hours and the red rectangle represents daytime hours. Mean and standard 

deviation of TI (b) and TKE (d) calculated with near hub height tower measurements in each wind speed bin. Includes data 

filtered for tower 80m wind speeds between 3.5 and 25.0 m s–1, 87m wind directions between 235° and 315°, and blade pitch 

angle within ± 3 MAD. 
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Figure 12. TI distribution using thresholds in Table 3. Includes data filtered for tower 80m wind speeds between 3.5 and           

25 m s–1, 87m wind directions between 235° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 13. TI versus 𝑅𝐵 . Blue box represents where both TI and 𝑅𝐵 agree on the stable conditions; percentage represents the 

percentage of data points in this box. Red box represents where both TI and 𝑅𝐵 agree on the unstable conditions; percentage 

represents the percentage of data points in this box. Includes data filtered for tower 80m wind speeds between 3.5 and 25 m s–1, 

87m wind directions between 235° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 14. TKE distribution using thresholds in Table 3. Includes data filtered for tower 80m wind speeds between 3.5 and 25.0 

m s–1, 87m wind directions between 235° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 15. Shear exponent distribution using thresholds in Table 2. Includes data filtered for tower 80m wind speeds between 3.5 

and 25.0 m s–1, 87m wind directions between 235̊° and 315°, and blade pitch angle within ± 3 MAD. 
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Figure 16. Nacelle anemometer power curves with (a) TI regimes; (b) 𝑅𝐵 regimes; and (c) TKE regimes. Eighty-meter tower 

anemometer power curves with (d) TI regimes; (e) 𝑅𝐵 regimes; and (f) TKE regimes. Statistically distinct differences within each 

wind speed bin between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and denoted by 

closed circles. Includes data filtered for tower 80m wind speeds between 3.5 and 25.0 m s–1, 87m wind directions between 235° 

and 315°, and blade pitch angle within ± 3 MAD. Envelopes represent ± 1 MAD for each wind speed bin. 
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Figure 17. Nacelle anemometer power curves shown as the anomaly from the neutral or medium power curve of the (a) TI 

regimes; (b) 𝑅𝐵 regimes; and (c) TKE regimes. Eighty-meter tower anemometer power curves shown as the anomaly from the 

neutral or medium power curve of the (d) TI regimes; (e) 𝑅𝐵 regimes; and (f) TKE regimes. Statistically distinct differences 

within each wind speed bin between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and 

denoted by closed circles. Includes data filtered for tower 80m wind speeds between 3.5 and 25.0 m s–1, 87m wind directions 

between 235° and 315°, and blade pitch angle within ± 3 MAD. Envelopes represent ± 1 MAD for each wind speed bin. 
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