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Abstract—Non-Intrusive Load Monitoring (NILM) is a set of 

techniques that estimates the electricity usage of individual 
appliances from power measurements taken at a limited number 
of locations in a building. One of the key challenges in NILM is 
having too many data lacking class labels, but being unable to 
label the data manually for cost or time constraints. This paper 
presents an active learning framework that helps existing NILM 
techniques to overcome this challenge. Active learning is an 
advanced machine learning method that interactively queries a 
user for the class label information. Unlike most existing NILM 
systems that heuristically request user inputs, the proposed 
method only needs minimally sufficient information from a user 
to build a compact yet highly representative load signature 
library. Initial results indicate the proposed method can reduce 
the user inputs by up to 90% while still achieving similar 
disaggregation performance compared to a heuristic method. 
Thus, the proposed method can substantially reduce the burden 
on the user, improve the performance of a NILM system with 
limited user inputs, and overcome the key market barriers to the 
wide adoption of NILM technologies. 

Keywords—Electric Load Disaggregation; Active Learning; 
Machine Learning; Event Classification; BLUED Dataset 

I. INTRODUCTION 
Non-intrusive load monitoring (NILM) is an emerging 

class of load disaggregation techniques that estimate the 
electrical consumption of individual appliances from power 
measurements taken at a limited number of locations in a 
building. NILM promises to replace expensive submetering 
and provide actionable information to a variety of customers 
such as homeowners, building operators, service companies, 
and utilities [1]. Applications of NILM include energy 
monitoring, fault detection, and load shed verification [2].  

Many new techniques have emerged since the inception of 
the first NILM technique more than two decades ago [3]. 
Machine learning techniques have been widely adopted to 
improve the performance of the NILM systems. Training is a 
process of learning each appliance’s characteristic signatures 
from the power data with known class labels. A class label is a 
variable or a string that represents an appliance’s type. A major 
challenge of NILM is having too many data without class 
labels, but being unable to label the data manually for cost or 
time constraints. Depending on the level of required effort that 
users exert in labeling, the training process can be divided into 
three categories: manual training, sensor-assisted training, and 
cloud-based training [4]. Although current NILM research is 

moving toward automatic data labeling, users are still involved 
in the labeling process to some extent. Ideally, the most 
informative data should be labeled first, where informativeness 
is defined as the expected improvement in disaggregation 
accuracy. Existing techniques lack the intelligence to select the 
most informative unlabeled data and then obtain the class label 
from a user; instead, they often require extensive user inputs 
which result in inconvenience and a low rate of adoption. 

This paper presents a novel method for efficiently engaging 
a user to provide the class label information. The proposed 
method is built on the framework of active learning [5], a 
machine learning method that interactively queries the user for 
the class label information. Unlike existing NILM methods that 
heuristically request user inputs, the proposed method only 
needs the minimally sufficient data from a user to build a 
compact yet highly representative load signature library. 

The proposed method does not seek to replace any existing 
NILM techniques; on the contrary, it augments existing 
techniques by significantly reducing the burden on a user and 
improving the disaggregation accuracy. There will be little 
incremental cost since the proposed method can leverage the 
existing infrastructure and perform data analytics in the cloud, 
on embedded systems, or on existing mobile platforms. 

II. BACKGROUND 

A. Categorization of NILM Systems 
NILM systems can be categorized into event-based and 

model-based (i.e., non-event-based) approaches. Event-based 
NILM systems rely on the detection and classification of 
events whereas model-based NILM techniques usually first 
generate models of each appliance and then use optimization 
techniques to identify the appliance usage. Event-based 
methods are able to provide accurate disaggregation results, but 
they require a fully labeled training set. 

NILM systems can also be categorized into supervised and 
unsupervised approaches depending on whether or not they 
require a training process to obtain labeled data [6]. A majority 
of existing NILM techniques follow the supervised learning 
approach while unsupervised methods are emerging to reduce 
the effort of acquiring the training data. 

The proposed active learning framework is an event-based 
supervised learning method because it interacts with a user to 
obtain class label information. The active learning method can 
identify the optimal threshold for event detection and build a 
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library that contains the most distinctive load signatures for 
event classification. 

B. Appliance Signatures for Load Disaggregation 
In event-based NILM techniques, load signatures are 

extracted from the power signals of detected events to be used 
in the subsequent event classification step. Steady-state and 
transient event-based feature extraction methods are widely 
used in many NILM techniques [6]. Steady-state methods 
extract information based on variations in the steady-state 
signatures, such as variations in real and reactive power, higher 
order harmonics, and electromagnetic interference signatures. 
Each appliance’s transient behavior also contains distinctive 
signatures. Information such as transient power can help 
differentiate appliances that have similar steady-state 
characteristics. 

C. Active Learning 
Active learning is a subfield of machine learning and has 

been widely adopted in scenarios where labeled samples are 
difficult, time-consuming or expensive to obtain [7]. Active 
learning overcomes the labeling bottleneck by asking queries 
in the form of requesting class labels of unlabeled samples 
from a user. In this way, active learning-based systems can 
achieve high accuracy using as few labeled samples as 
possible, thereby minimizing the cost of obtaining class labels. 
Active learning is a perfect fit for the NILM problems where 
data are abundant but labels are expensive to obtain. 

Depending on how a query is generated, active learning can 
be categorized into three types:  membership query synthesis 
[8], sequential sampling [9], and pool-based sampling [10]. 
Among these methods, pool-based sampling is well suited for 
NILM problems because it tackles the scenarios where large 
collections of unlabeled samples can be collected at once and 
queries are selectively drawn from the pool. Sequential 
sampling is very similar to pool-based sampling except it does 
not evaluate and rank the entire collection before selecting the 
best query. The membership query synthesis is based on some 
unrealistic assumptions and not suitable for solving the NILM 
problems. Therefore, pool-based sampling is used in this paper 
to optimize the query strategy for handling a large number of 
unlabeled samples in the NILM problem. 

III. ACTIVE LEARNING-BASED NILM 

 
Fig. 1. An active learning framework for augmenting existing NILM systems 

Figure 1 shows an overview of the active learning 
framework that augments the traditional NILM techniques. The 
power signals obtained from advanced metering infrastructure 
(AMI) or similar devices are transformed into a feature space 
to distinguish events generated by different appliances. Each 
point in the feature space represents the time series of an event. 
Data analytics is performed at each step to identify the most 
informative unlabeled samples in terms of the average 
distances from labeled samples. It is more advantageous to 
obtain the class label of an unlabeled sample that is far away 
from all labeled samples. A query is then sent to a user to 
obtain the class label of the selected sample. The active 
learning module may also perform statistical inference to help 
the user to provide accurate labels, which will be stored in a 
library with the extracted features. The same process repeats 
until a stopping criterion is met. A formal formulation of the 
active learning problem is presented below. 

A. Problem Formulation 
Let 𝑿𝑿𝐾𝐾 = {𝒙𝒙1,𝒙𝒙2,⋯ ,𝒙𝒙𝑛𝑛} ∈ ℝ𝑑𝑑 be a set of labeled samples 

in the feature space with known class labels and 𝑿𝑿𝑈𝑈 =
{𝒙𝒙𝑛𝑛+1,𝒙𝒙𝑛𝑛+2,⋯ ,𝒙𝒙𝑛𝑛+𝑚𝑚}  be a pool of unlabeled samples. Let 
𝑑𝑑(𝒂𝒂,𝒃𝒃)  be a distance measure between samples a and b. 
Active learning aims to find an unlabeled sample 𝒙𝒙𝑞𝑞 such that  

𝒙𝒙𝑞𝑞 = argmax
𝒙𝒙 ∈ 𝑿𝑿𝑈𝑈

1
𝑛𝑛
�𝑑𝑑(𝒙𝒙,𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

where 𝒙𝒙𝑖𝑖 ∈ 𝑿𝑿𝐾𝐾  and 1
𝑛𝑛
∑ 𝑑𝑑(𝒙𝒙,𝒙𝒙𝑖𝑖)𝑛𝑛
𝑖𝑖=1  is the informativeness 

measure that can be interpreted as the mean distance between 
an unlabeled sample 𝒙𝒙 and all labeled samples in set 𝑿𝑿𝐾𝐾 . This 
results in selecting an unlabeled sample that is the farthest from 
all labeled samples, which brings the maximum amount of 
information. After obtaining the label from a user, the sample 
𝒙𝒙𝑞𝑞  is moved from set 𝑿𝑿𝑈𝑈  to set 𝑿𝑿𝐾𝐾  and the entire process is 
repeated until a stopping criterion is met. 

 We use a gradient-based convergence method [11] to stop 
the active learning process when more labeled samples from 
the pool do not contribute more information, indicated by when 
the decrease in the informative measurement becomes less than 
a fraction of the initial descent. A flow chart is provided in 
Figure 2 to illustrate the active learning process. 

 
Fig. 2. Flow chart of the proposed active learning framework for NILM 
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IV. EXPERIMENT AND RESULTS 

A. BLUED Data set 
The proposed active learning algorithm is evaluated on the 

BLUED data set [12], which is a fully-labeled public data set 
for NILM research. Every state transition of each appliance in 
the test home is labeled and time-stamped, providing the 
ground truth for evaluation of event-based NILM algorithms. 
More than 40 different household appliances are included in 
the data set, although some of the appliances do not have any 
recorded events. 

This paper focuses on evaluating the performance of the 
active learning framework, so only the event classification step 
is considered. Real and reactive power data are generated from 
the raw voltage and current measurements and stored at 60 Hz. 
A window of 150 data points (i.e., 2.5 seconds) is taken around 
an event, simulating the outcome of an ideal event detector. 

For simplicity, we extract three features from the power 
data, namely steady-state variations of real (∆𝑃𝑃) and reactive 
power (∆𝑄𝑄) and transient real power overshoot (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ). 
All three features are normalized. Figures 3 and 4 show 
examples of Phase A and B events in the feature space where 
each data point represents an event. Overall, the appliances 
have quite distinct load signatures except for some of the lights 
and the computers. 

 
Fig. 3. An example of Phase A events shown in the feature space 

 
Fig. 4. An example of Phase B events shown in the feature space 

Active learning is performed separately on Phases A and B 
to utilize the phase information as an additional feature. The 
underlying assumption here is that appliances always connect 
to the same phase. This is a reasonable assumption because 
very few appliances are frequently moved around the home and 
switched to a different phase. 

B. Initial Results 
A four-fold cross-validation is implemented in the 

experiment. In other words, 75% of the entire data set is used 
as the training set whose labels are to be provided by a user and 
25% of the data set is used as the testing set where the ground 
truth is held back for evaluation. We swap the training set and 
the testing set until all the samples have been included in the 
testing set. 

In the proposed active learning algorithm, a k-Nearest 
Neighbors (k-NN) classifier is included in the learning loop to 
perform event classification every time a new label is provided 
by the user.  For comparison, a random selection algorithm is 
implemented following the same cross-validation process. In 
contrast to active learning, which optimizes the query strategies 
based on the informativeness measure, the random selection 
algorithm heuristically selects the unlabeled samples and asks 
the user for the class label. 

To mitigate the effects of randomness on the results, both 
algorithms are implemented for 50 iterations. The results are 
shown in Figures 5 and 6 for Phases A and B, respectively. The 
classification accuracies and stopping point are the mean 
derived from the 50 iterations. The stopping points are 
determined based on the gradient convergence of the 
informativeness measure (not shown in the figures) instead of 
the classification accuracy. For comparison, we continue 
evaluating the classification accuracy of the active learning 
algorithm even though the stopping criterion is met. 

In both cases, the classification accuracy of the random 
selection method increases rapidly with the first few user 
inputs, but slows down afterwards. In contrast, by carefully 
selecting user inputs, the active learning method can achieve 
vastly improved accuracy with minimally sufficient user 
inputs. The active learning method reaches its peak or near-
peak performance by automatically selecting about only 10% 
of the total user-labeled samples. This result is very significant 
because it indicates that an active learning-based NILM system 
is able to reduce the amount of required user inputs by 90% 
while still achieving similar disaggregation performance that 
can be accomplished in the other heuristic method only by 
obtaining the labels of all training samples. The results of both 
algorithms are summarized in Table I. 

TABLE I.  PERFORMANCE COMPARISON BETWEEN ACTIVE LEARNING 
(AL) AND RANDOM SELECTION (RS) 

Phase Method 
Use Stopping Criterion Peak Performance 

# of Queries Accuracy # of Queries Accuracy 

A 
AL 23 99.72% 23 99.72% 

RS N/A 89.99% (w/ 
23 queries) 

260 99.72% 

B 
AL 23 98.82% 31 99.38% 

RS N/A 92.79% (w/ 
23 queries) 

206 99.42% 
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Fig. 5. Performance comparison between active learning and random 
selection on Phase A. Results shown here are the average of 50 iterations. 

 
Fig. 6. Performance comparison between active learning and random 
selection on Phase B. Results shown here are the average of 50 iterations.  

C. Future Research  
We will explore proactive learning, semi-supervised 

learning, informativeness measure, labeling assistance, and 
holistic integration with other NILM systems in future 
research. 

Although the proposed active learning method has shown 
to significantly reduce the labeling efforts compared to the 
random selection method, active learning assumes the user is 
infallible or indefatigable, which may be unrealistic in many 
real-world situations. A proactive learning method is proposed 
in [13] to bridge the gaps between traditional active learning 
and many practical problems. The goal of extending active 
learning to proactive learning is to reach out to the user with 
the appropriate query at the appropriate cost without assuming 
the user is infallible or indefatigable. 

Unlike active learning methods that exploit the least 
confident samples, semi-supervised learning methods exploit 
the most confident ones from the unlabeled samples [14]. It 
may be advantageous to combine these two methods to 
generate a new learning scheme where only highly uncertain 

samples are labeled by a user while all others are automatically 
labeled to further reduce the labeling effort. 

The informativeness measure used in the paper is based on 
the Euclidean distance measure. Other measures such as 
information-theoretic measures should be explored. We will 
also generalize the proposed method to make it work with 
other NILM techniques that are not event-based. 

The time-of-use and frequency-of-use information can be 
used to assist the labeling process because thermostatically-
controlled appliances (e.g., HVAC, water heater, refrigerator) 
behave quite differently from the appliances with user-initiated 
cycles (e.g., dishwasher, clothes dryer). We will develop a 
labeling assist module to infer the class label and further 
reduce the number of queries for a user. 

In addition to the electric load disaggregation, NILM 
techniques have been implemented to identify the sources of 
water and gas consumption [15]. Active learning has been used 
to calibrate the HydroSense system that uses a single pressure 
sensor on the plumbing line to infer water usage [16]. 
Integrating these active learning-based NILM techniques will 
address all of the energy sensing needs in residential buildings 
in a systematic and efficient way and create a holistic solution 
for home energy management. 

V. CONCLUSION 
This paper presents an active learning framework to reduce 

the labeling effort from a user, which is one of the key 
challenges in the NILM research. Unlike most existing NILM 
techniques that heuristically request user inputs, the proposed 
method only needs the minimally sufficient information from a 
user to build a compact yet highly representative load signature 
library by querying the most informative samples first. Initial 
results on the BLUED data set indicate the proposed method is 
able to reduce the user inputs by up to 90% while still 
achieving similar disaggregation performance compared to a 
heuristic method. Therefore, the proposed method has the 
potential to substantially reduce the burden on the user, 
improve the performance of a NILM system with very limited 
user inputs, and overcome the key market barriers to the wide 
adoption of NILM technologies. The proposed method can be 
implemented in the cloud, on embedded systems, or on mobile 
platforms, which will minimize the incremental cost over 
existing methods. 
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