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ABSTRACT 

Commercial buildings often experience faults that produce undesirable behavior in 
building systems. Building faults waste energy, decrease occupants’ comfort, and increase 
operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building 
owners discover and identify the root causes of faults in building systems, equipment, and 
controls. Proper implementation of FDD has the potential to simultaneously improve comfort, 
reduce energy use, and narrow the gap between actual and optimal building performance. 
However, conventional rule-based FDD requires expensive instrumentation and valuable 
engineering labor, which limit deployment opportunities. This paper presents a hybrid, 
automated FDD approach that combines building energy models and statistical learning tools to 
detect and diagnose faults noninvasively, using minimal sensors, with little customization. We 
compare and contrast the performance of several hybrid FDD algorithms for a small security 
building. Our results indicate that the algorithms can detect and diagnose several common faults, 
but more work is required to reduce false positive rates and improve diagnosis accuracy. 

Introduction 

Commercial buildings often experience faults: improper operation of equipment and 
controls that produce undesirable behavior in building systems. Building faults waste energy, 
decrease occupants’ comfort, and increase operating costs. Faults in buildings are pervasive and 
excessive; therefore, detection and correction of building faults represent an enormous 
opportunity for energy savings. In the United States alone, faults waste an estimated 0.3 to 1.8 
quadrillion British thermal units (quads) (88 to 528 terawatt-hours [TWh]) of primary energy, or 
between 2% and 11% of total commercial building sector energy consumption (Roth et al. 2005). 

Fault detection and diagnosis (FDD) is the process of detecting operational faults and 
identifying their root causes. Automated fault detection and diagnosis (AFDD) tools perform 
FDD in software with minimal human intervention. Properly implemented, AFDD enables 
building operators to simultaneously improve comfort and reduce energy use, closing the gap 
between actual and optimal building performance. Multiple case studies have validated the 
benefits associated with well-implemented AFDD and other energy information systems 
(Capehart and Brambley 2015; Granderson and Lin 2016). 

Despite these benefits and the rapid expansion of AFDD products available in the 
marketplace, significant barriers to cost-effective AFDD persist, limiting adoption (Capehart and 
Brambley 2015). Successful AFDD implementations in buildings must achieve high accuracy at 
low cost; otherwise, the financial benefits of increased energy and operational efficiency do not 
outweigh the implementation cost. In many cases, the engineering labor and instrumentation 
costs required to configure, deploy, and maintain AFDD software are prohibitively large, 
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particularly for operators of small commercial buildings. Meanwhile, high false positive rates 
and misidentified root causes often overwhelm building operators with frivolous or misleading 
alerts for inconsequential problems, wasting investigative resources and decreasing consumer 
confidence in AFDD. 

FDD methods may be divided into three broad categories: rule-based, model-based, and 
data-driven (Katipamula and Brambley 2005). Rule-based FDD1 compares measured building 
performance to a set of relational rules that describe proper building operation; violation of a rule 
triggers a fault. Because rules are conceptually simple and easy to implement in software, most 
AFDD products presently on the market are rule-based. Properly implemented, rule-based FDD 
can be extremely powerful and highly effective, at both the equipment scale (Zhao, Wen, and 
Wang 2015) and the whole-building scale (Accenture Consulting and Granderson 2015). 
However, the development and tuning of effective rules is time-consuming and requires 
considerable engineering expertise. Moreover, rules created for one building rarely apply to 
another without modification. Meanwhile, sparse and low-quality instrumentation limits which 
rules are feasible to deploy and decreases the value of the results obtained. In many buildings, 
poor instrumentation and poorly tuned rules are the norm rather than the exception. 

Model-based FDD uses a model to make predictions about building energy consumption 
and identifies faults via statistical analysis of the discrepancy between predictions and actual 
measurements. Model-based methods can achieve high accuracy, but the accuracy achieved 
depends heavily on the quality of the model (Katipamula and Brambley 2005). Development and 
tuning of the building model is therefore a major cost consideration. Both complex and 
simplified physical models have been successfully applied to FDD for buildings (O’Neil et al. 
2014; Henze et al. 2015). 

Data-driven FDD methods mathematically relate measured inputs to measured outputs 
and detect faults if the input/output relationship changes significantly. Capozzoli, Lauro, and 
Khan (2015) provide a recent example of several such methods applied to commercial buildings. 
Data-driven methods require little information about the underlying building systems, which 
decreases reliance on engineering expertise. However, data-driven methods require a large 
amount of training data and are limited in extrapolation beyond the training data range. In 
addition, data-driven algorithms have no reference for proper operation apart from the training 
data and therefore cannot detect faults already present in the training data. 

In this paper, we present a hybrid, whole-building AFDD approach that combines energy 
modeling with data-driven analytics. Whole-building AFDD analyzes energy performance 
holistically, at the building scale, rather than for individual equipment; it therefore requires fewer 
sensors and less configuration than traditional rule-based methods. By reducing the engineering 
labor associated with AFDD setup and data integration, this hybrid approach has the potential to 
drive down implementation costs, enabling cost-effective FDD even for small buildings. 
Simulation-based trials with a small security building demonstrate the promise of the approach. 

Algorithmic Approach 

Figure 1 summarizes our proposed hybrid AFDD algorithm. Conceptually, it consists of 
two distinct stages: fault detection and fault diagnosis. The fault detection engine compares 
measured building performance (typically, interval energy consumption data) with expected 
                                                 
1 Katipamula and Brambley (2005) place rule-based FDD within the broader category of “qualitative model-based 
FDD,” which also includes qualitative physics-based modeling approaches. 
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performance using a statistical model constructed from historical measurements, weather history, 
and, if available, a whole-building physics-based model.2 Significant deviation between 
measured and expected performance indicates a fault. Given a detected fault, the fault diagnosis 
engine classifies the type of fault using data-driven models constructed from a large database of 
simulated fault behavior. 

 
Figure 1. An illustration of the proposed hybrid AFDD process. 

Data-driven algorithms require large and comprehensive training data sets, but 
comprehensive measured data for faults are rarely available. The hybrid algorithm addresses this 
weakness by leveraging a pre-simulated database of modeled faults to provide rich training data. 
To create the training data, we superimposed realistic physics-based fault models on a physics-
based whole-building energy model for the actual building (or a sufficiently similar building). 
Both the whole-building energy model and the fault models use the EnergyPlus energy 
simulation software (DOE 2013) and the OpenStudio development environment (NREL 2014). 
The fault model library includes both control and equipment faults. To model each fault, we 
applied first principles and empirical analysis to transform the underlying fault mechanism into 
altered building control or equipment performance parameters, as described by Cheung and 
Braun (2015). We then simulated each building under each individual fault using multiple years 
of weather data to derive time series data of fault impact for use in training the detection engine. 

For the fault detection engine, we explored two broad types of algorithms: regression 
methods and machine learning classification methods. In both cases, historical measurements 
and, if available, modeled whole-building performance using actual meteorological year (AMY) 
weather data provided training data for establishing baseline or expected behavior. The 
regression methods flag abnormal deviation from the expected behavior as a fault, while the 
machine learning methods compare the observed data to the baseline and simulated fault data to 
perform a direct classification of the observed behavior as faulted or un-faulted. 

For the subsequent fault diagnosis step, we employed machine learning methods to 
perform fault classification. Each method constructs a classification or clustering model from 
                                                 
2 An existing energy model may be available from new construction design, a deep retrofit, or an energy audit. If an 
energy model is unavailable, the detection step becomes purely data-driven, but the diagnosis step will fall back on 
fault signatures modeled for a similar generic building. 
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simulated fault data, then attempts to classify new faults into one of the known fault categories. 
In the end, the AFDD algorithm outputs the most probable class of fault, which the building 
operator can use to initiate corrective action. 

Fault Modeling 

To create the fault model library required for the hybrid AFDD algorithm’s diagnosis 
phase, we used three well-established approaches: physical modeling, semi-empirical modeling, 
and empirical modeling. Physical modeling is the modeling of faults by changing the inputs of 
the building simulation with the fault level directly; semi-empirical modeling involves changing 
the simulation inputs based on a simplified fault mechanism; and empirical modeling represents 
faults by changing the simulation outputs of a building component model using empirical models 
without directly considering the underlying fault mechanism. The models used for the proposed 
algorithm are described by Cheung and Braun (2015), which includes models developing using 
all three methods for air conditioner faults, chiller faults, fan motor faults, and other faults. 

Figure 2 illustrates the impact to building energy consumption for an example  of an 
economizer damper fault. A damper stuck in the open position introduces large amounts of 
unconditioned air to the space. In the winter, the extra cold air increases natural gas 
consumption; in the summer, the extra hot air increases electricity used for cooling. The AFDD 
algorithm leverages these performance data to train fault diagnosis models. 

 

 
Figure 2. Impact of a stuck economizer outside air damper on building energy consumption. 
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Fault Detection 

For the fault detection engine, we tested two different regression methods and five 
different machine learning methods (Table 1). The two regression methods are variants of 
multiple linear regression (MLR). The five machine learning methods represent a variety of 
black-box clustering approaches that have been successfully applied to FDD in other fields 
(Fernández-Delgado 2014). For all methods, the only data required are whole-building energy 
consumption interval data (hourly or 15-minute) and local weather data. 

Table 1. Fault detection methods 

Type Method Name Abbreviation 
regression ordinary least squares OLS 
regression quantile regression QR 
machine learning k nearest neighbor k-NN 
machine learning naive Bayes NB 
machine learning classification and regression tree CART 
machine learning random forest RF 
machine learning support vector machine SVM 

Ordinary Least Squares 

MLR analysis is the de facto standard statistical method for modeling the linear 
relationships between two or more predictor (or independent) variables and one response (or 
dependent) variable. MLR generally uses the ordinary linear least square (OLS) method to 
minimize the sum of squared errors between the predicted and actual responses (Hutcheson 
2011). Estimating prediction intervals is well established and OLS software is readily available. 

Although fairly robust, OLS requires certain assumptions. In particular, the error 
estimated for each predictor variable assumes uniform variance with respect to each predictor 
variable. If this is not the case, the prediction intervals could be incorrectly estimated. Thus, the 
prediction from the resulting model can be heavily influenced by extreme outliers. 

In the fault detection application as implemented, the algorithm fits a separate MLR 
model of energy consumption (electricity or gas) for each calendar quarter in the year using the 
outdoor air drybulb temperature and outdoor air relative humidity as predictor variables. 
Polynomial terms for outdoor air drybulb temperature are included to model the non-linear 
behavior. The day of the week and month of the year are included as time series categorical 
predictor variables to account for the additional changes in the energy use that cannot be 
predicted by the weather variables alone.3 

To refine the model, we implemented a stepwise regression procedure. Stepwise 
regression refines an OLS model using a combination of backward elimination and forward 
selection processes. The procedure adds predictor variables one by one as it applies OLS, 
beginning with the variable most highly correlated with the response. As variables enter the 
model, stepwise regression tests each for significance using the Student-t statistic; any 
insignificant predictors are removed. Throughout this process, Akaike’s information criterion 

                                                 
3 For simplicity, we excluded holidays from the analysis approach and from the simulation trials. However, it is 
straightforward to include holiday schedule as a categorical variable in the regression analysis. 
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(AIC), which expresses the balance between model prediction performance and model 
complexity, is computed for each new model. The procedure terminates when no new trial model 
obtained by adding or subtracting a variable yields a lower AIC.4 

Once the baseline model is constructed, we apply it for fault detection. For each new day, 
the algorithm determines whether the daily average energy consumption falls within the 
prediction interval. Any observation of energy use that falls outside the prediction interval is 
considered a fault for that day.5 

Quantile Regression 

Quantile regression (QR) analysis is used in statistics and econometrics. Whereas OLS 
results in estimates that approximate the conditional mean of the response variable from the 
predictor variables, QR estimates either the conditional median or other quantiles of the response 
variable. Unlike OLS, which requires only numerical linear algebra, QR requires solving a linear 
programming problem. Compared to estimates obtained from OLS, QR estimates are more 
robust against outliers in the response measurements. Yet the main attraction of quantile 
regression is that different measures of central tendency and statistical dispersion are available to 
define arbitrary thresholds of frequency of occurrence deemed to represent fault-free behavior.  

In this work, user-specified upper and lower quantiles on the energy consumption define 
the fault detection limits. The QR implementation shadows the OLS implementation. First, the 
algorithm fits one QR model for each calendar quarter using the same predictor variables as for 
OLS. Then, the algorithm determines whether the daily average energy consumption falls 
between the specified upper and lower quantiles; any value outside this range indicates a fault. 

Machine Learning 

Machine learning uses pattern recognition techniques to construct algorithms that learn 
from and make predictions about data (Bishop 2007). When data with example inputs and 
desired outputs are provided, the algorithm is trained in a “supervised” manner and is able to 
make predictions about new data. This is known as supervised learning, which is well-suited for 
FDD problems when training data are available. Machine learning is applicable for both fault 
detection and fault diagnosis; the difference lies in whether the output classification is a binary 
(faulted or un-faulted) or is a match to a specific type of fault. 

Each machine learning method involves three steps: data filtering, feature extraction, and 
pattern classification. Because building energy consumption is a function of load conditions such 
as weather and occupancy, the algorithm requires training data that have similar weather 
conditions and occupancy schedule as the observed data. The data filtering step selects a subset 
of the training data with similar ambient temperature, relative humidity, and day of the week. 

For both the training and testing stages, the feature extraction step partitions the interval 
data into individual days and computes six key statistical features for each day: mean, median, 
maximum, variance, skewness, and kurtosis. The algorithm extracts each feature from the whole-
building hourly electricity and natural gas consumption data, for a total of 12 characteristic 
features. These features represent the load shape in a compact yet informative way.  
                                                 
4 We also explored the least absolute shrinkage and selection operator (LASSO) regression method for model 
construction, but found it unnecessary given the small number of predictor variables. 
5 Lower than expected energy consumption may seem advantageous, but could also indicate equipment failure or 
improper controls operation. Therefore, we consider such observations probable faults. 
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Following feature extraction, the algorithm constructs a pattern classifier based on the 
training features and the corresponding fault types; this classifier is used to predict the types of 
incoming observed faults. Many pattern classifiers have been developed (Fernández-Delgado 
2014); we used the following well-known classifiers in this study: k-nearest neighbors (k-NN), 
naive Bayesian (NB), classification and regression tree (CART), random forest (RF), and support 
vector machines (SVM). 

Fault Diagnosis 

Following detection of a fault, the next step is to identify the fault type based on the 
available data, which is known as fault diagnosis. The machine learning methods described in the 
previous section can also be used for fault diagnosis. The detection stage is a binary 
classification problem (faulted or un-faulted), while the diagnosis stage is a multi-class problem. 
For fault diagnosis, the pattern classifier may follow fault detection, or fault detection and 
diagnosis may be performed in a single monolithic step. For this paper, we tested seven 
combined FDD algorithm variants (Table 2).6 

Table 2. Combinations of fault detection and diagnosis methods examined 

Approach Detection Method Diagnosis Method 
MLR for detection, standalone pattern 
classifier for diagnosis 

OLS CART 
OLS RF 

Machine learning for both detection 
and diagnosis 

k-NN k-NN
NB NB 
CART CART 
RF RF 
SVM SVM 

Results 

To explore the relative merits of the various FDD approaches, we applied each method to 
simulated baseline and faulty energy consumption data obtained from a model of a small security 
building located in Golden, Colorado, USA. Simulated data provide a “best case” scenario that is 
useful for comparing the performance of alternative algorithms, which was a primary goal of the 
research. Testing with simulated data rather than measured data provides several benefits. It: 

• Eliminates potential sensing and data quality issues in the test data
• Allows multiple years’ worth of data to be tested in a short period of time
• Offers completely reliable ground truth knowledge of fault states
• Provides a much richer set of faults than is typically available from a real building.

However, the converse of these advantages is that the algorithms as presented are not yet 
validated in a real-world operating environment, with all the corresponding nuance, noise, and 
uncertainty. Testing with a real building is the next logical step and is planned as future work. 

6 As will be seen in the results section, we found QR to produce significantly higher false positive rates than OLS 
when used for fault detection. Therefore, we did not test a full FDD method that used QR in the detection step. 
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Building Model 

We tested the FDD algorithms using a calibrated model of an 880 ft2 (82 m2), single-story 
security building located in Golden, Colorado, USA. We selected this model because it 
represents an actual building with known sequences of operation and because the model had 
previously been calibrated using measured utility data. The building contains one thermal zone 
and one plenum zone. The thermal zone is conditioned by a split air conditioner which provides 
heating using an 8.3-kW gas furnace and cooling using a 17-kW direct expansion coil. To 
expand the range of possible faults, we modified the model to include an economizer for free 
cooling and ventilation.  

We simulated the building under both normal (un-faulted) and faulted building operation. 
For testing, we selected a set of seven common HVAC equipment and controls problems found 
in commercial buildings (Table 3). This is not a comprehensive set of faults applicable to the 
building model used for the test. However, we chose to limit the faults under consideration in 
order to concentrate on algorithm development and initial performance evaluation. Future work 
will include expanding the algorithm to consider more faults types. 

Table 3. Description of faults modeled for algorithm comparison tests 

Fault Description Fault Level Control Variable 
Duct fouling Increase of flow resistance and 

pressure drop across air ducts due 
to dust accumulation at heat 
exchangers or in air filters 

Percentage increase of air duct 
pressure drop, following the 
model in Cheung and Braun 
(2015) 

Thermostat bias Fixed bias in thermostat reading of 
the zone air temperature 

Bias from the real air 
temperature, following the 
model in Barsarkar et al. (2011) 

Economizer outside air 
temperature sensor bias 

Fixed bias at the temperature 
sensor readings for economizer 
damper control: return air or 
outside air, depending on the fault 

Bias from the real air 
temperature, following the 
model in EnergyPlus version 8.1 Economizer return air 

temperature sensor bias 
Economizer damper 
stuck fault 

Inability of the economizer 
controller to vary outdoor air 
intake because the damper is stuck 
at a fixed position. 

Damper fixed percentage open, 
following the model in Barsarkar 
et al. (2011) 

Blower fan motor 
efficiency degradation 

Degraded efficiency of fan motor 
as a result of bearing fault and 
stator winding fault 

Percentage reduction in fan 
motor efficiency, per the model 
in Cheung and Braun (2015) 

Excessive infiltration Deterioration of building 
envelope, increasing infiltration 
airflow to the building 

Percentage increase of air 
infiltration to the building, 
modeled as an increase in 
airflow through the walls 
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Training and Testing Data Sets 

To test the FDD algorithms, we constructed separate training and testing data sets, both 
based on simulation. The training data are required to train the data-driven fault diagnosis 
algorithms; thus, construction of a similar training data set would be required for any real-world 
deployment of the hybrid AFDD algorithm. The simulated testing data, on the other hand, serve 
as a proxy for measured fault data—data that ultimately will be collected from an actual building 
in near-real-time using whole-building energy meters. 

To create the training data, we simulated both the baseline model and the seven faults at a 
variety of fault levels (Table 4). Imposing the fault models with fault levels in Table 4 creates 40 
fault scenarios. Together with the baseline, these scenarios were simulated using 2012 weather 
data for Golden, Colorado to create 41 full-year time series. The results were divided into 14,965 
daily simulation results to serve as training data for the FDD algorithms. 

Table 4. Fault levels imposed on the building model to construct the training data set 

Fault Location Fault Levels 
Duct fouling Split AC 

blower fan 
Increased pressure drop across air ducts by 10%, 
20%, 30%, 35% 

Thermostat bias Thermal zone −5K, −3K, −2K, −1K, +1K, +2K, +3K, +5K 
Economizer outside air 
temperature sensor bias 

Economizer −5K, −3K, −2K, −1K, +1K, +2K, +3K, +5K 

Economizer return air 
temperature sensor bias 

Economizer −5K, −3K, −2K, −1K, +1K, +2K, +3K, +5K 

Economizer damper 
stuck fault 

Economizer Opening stuck at 0%, 25%, 50%, 75%, 100% 

Blower fan motor 
efficiency degradation 

Split AC 
blower fan 

Decreased efficiency by 10%, 20%, 30%, 40% 

Excessive infiltration Thermal zone Increased infiltration airflow by 10%, 20%, 30% 

We applied a similar procedure to produce a data set for testing but with a randomized set 
of fault levels and a different weather year (2011), which yielded 10,585 daily simulation results. 
In the absence of information regarding the relative prevalence of each fault type, we elected to 
sample the data such that each fault model was imposed on an equal number of simulated days. 

The simple presence of an active fault model does not necessarily produce faulty 
behavior in the building. For example, if the economizer damper is stuck closed when weather 
conditions dictate it should be closed, no fault is present. Instead, we defined faulty behavior as 
any behavior that produces a 5% deviation (minimum 100 W) from the simulated baseline daily 
energy consumption (either electricity or natural gas).7 Using this definition for a fault, the test 
data contained 4,805 days—roughly 45% of the samples—exhibiting faulty behavior. 

Algorithm Performance 

To test the relative merits of the algorithms, we implemented each algorithm in the R 
statistical computing environment (R Core Team 2016) using various open source packages 
(Koenker 2015; Kuhn 2016; Liaw and Wiener 2002; Meyer et al. 2015; Therneau, Atkinson, and 
                                                 
7 Herein is the advantage of using simulated data: the deviation from the baseline for each fault is known exactly. 
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Ripley 2015). All methods had access to only two weather predictor variables (outside air dry 
bulb temperature and relative humidity) and two response variables (whole-building electricity 
and natural gas energy consumption). Most algorithms also employed auxiliary categorical 
variables calculated from the time data, such as the month of the year and day of the week. 

The test procedure involved two steps. First, we provided each FDD algorithm with the 
baseline and fault data in the training data set to allow model construction. Second, we tested the 
FDD algorithm against each of the daily simulations in the testing data set. For each day, the 
algorithms output two pieces of information: a classification of the behavior as faulted or un-
faulted and, if a fault was present, a prediction of the fault type. We compared these results 
against the ground truth known from the testing data set to compute the true positive rate (TPR), 
false positive rate (FPR), and frequency of diagnosis statistics for each algorithm. 

Figure 3 displays the receiving operating characteristic (ROC) curve for the seven fault 
detection methods; the ROC curve plots TPR against FPR. For the MLR methods, the plot shows 
a curve derived by varying the confidence level used to determine the control limits for fault 
detection. For example, a confidence level of 90% indicates that 90% of normal days would 
theoretically fall in “un-faulted” category. For the machine learning methods, the plot shows the 
binary classification results from a single trial. The gray diagonal line represents the theoretical 
performance of a “random chance” detection algorithm, as would occur if the algorithm simply 
flipped a virtual coin to classify each input day as faulted or un-faulted. 

Figure 3. ROC curve for the fault detection methods tested. For OLS and QR, the annotations 
indicate the progression of confidence levels used to obtain the fault detection control limits. 

Of all the detection methods, OLS provided the best balance of TPR and FPR. QR 
provided marginally higher TPR than OLS for the same confidence levels, but also a 
significantly larger FPR. In trials, we observed that the QR method resulted in very tight control 
limits and consistently experienced numeric difficulty when fitting the outer quantiles. We 
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hypothesize that the highly structured and non-random nature of simulation data may be the 
primary cause for this behavior. Therefore, QR should not be discounted entirely based on these 
results, as it has been known to perform well when used with real-world data (Henze et al. 2015). 
The machine learning methods collectively performed slightly more poorly than OLS for this 
building, which may indicate that the selected features were not sufficiently discriminative. 
Feature selection or the addition of more features may improve performance; this is future work. 

All detection methods had higher FPR than is desirable. For the MLR methods, this may 
be because the control limits indicate bounds much tighter than the 5% threshold we set as a 
definition of faulted behavior—which results in flagging “faults” with only a very minor energy 
impact. This may again be an artifact of highly structured simulation data, but it could also occur 
with well-behaved real buildings. One possibility for reducing FPR is to introduce a secondary 
significance check that examines the percentage difference from the expected energy 
consumption and avoids flagging days that fall within the 5% threshold; similar desensitization is 
possible for machine learning algorithms by tuning the input parameters. This type of tuning is 
analogous to finding the correct thresholds in rule-based AFDD, but the model-based approach 
has a natural advantage: sensitivity is intuitively tied directly to energy and therefore to cost. 

Figure 4 compares the frequency of diagnosis of the seven FDD methods for each fault. 
For the combined MLR/machine learning methods, we present the results that used OLS at a 
confidence interval of 95%, which provided the best tradeoff between TPR and FPR. 

 

 
Figure 4. Frequency of correct diagnosis of each fault type for the seven FDD methods tested. 

Diagnosis results varied by fault. All methods consistently misclassified the economizer 
outside air temperature sensor bias and excessive infiltration faults. Thermostat bias had the 
highest diagnosis performance overall but was the most common incorrect identification for 
other faults. For example, nearly all excessive infiltration faults were misclassified as a 
thermostat bias. These results hint that the underlying fault signatures may be very similar at the 
level of whole-building energy consumption. The similarity of signatures in turn suggests that 
other simple metrics, such as an estimate of unmet hours based on internal temperature data, may 
improve diagnosis accuracy—at the expense of additional instrumentation. Future work will 
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explore fault signatures to discover differences that can be exploited in the fault classification 
process. 

Conclusion 

When trained using simulated fault data, both regression and machine learning methods 
show great potential for whole-building FDD using minimal input data. The proposed hybrid 
approach has unique advantages with respect to pure rules-based, model-based, and data-driven 
approaches. Unlike rules-based approaches, the hybrid approach can diagnose faults using only 
whole-building data. Hybridization with data-driven regression and pattern-recognition 
algorithms allows the use of pre-simulated data for fault diagnosis, rather than real-time 
simulation of faults as might be required in a pure model-based approach. Finally, the hybrid 
approach overcomes the excessively long training period that is often required by pure data-
driven approaches by using modeled fault data for training. 

Nevertheless, the proposed hybrid approach faces challenges. In our initial trials, 
detection rates were high, but false positive rates were also greater than desired. Future work 
should explore algorithm tuning and heuristic methods for reducing false positives, the 
cost/benefit tradeoff of making additional variables available to the detection and diagnosis 
algorithms, and the performance of the algorithms for more buildings, both simulated and real. 
Benchmarking of model-based algorithms against conventional rule-based FDD using controlled 
real-world tests would also improve understanding of the tradeoff between instrumentation cost 
and FDD accuracy for each approach. 

Ultimately, the proposed hybrid approach has the potential to drive down FDD 
implementation costs, enabling cost-effective FDD with high accuracy for a wide range of 
commercial buildings. However, despite the projected reduction in deployment cost compared to 
rule-based FDD, it is unclear whether sufficiently accurate physics-based models can be obtained 
at a sufficiently low cost to make the approach financially viable. Automatic generation of high-
quality physics-based models may overcome this barrier; we suggest this as future work. 
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