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Abstract: The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements 
for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving 
characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent 
control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world 
origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 
3%, respectively. These represent substantial opportunities considering that they only require software adjustments to implement. 
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1. Introduction 

Energy security, fuel cost and air quality concerns 

have led to increased powertrain electrification in new 

vehicles. At the same time, the ubiquitous availability 

of advanced vehicle telematics systems, such as OnStar, 

has made real-time information on driving routes, 

traffic and road topology readily accessible. Together, 

these trends offer the potential for increased powertrain 

efficiency, particularly in vehicles with both a traction 

battery and a combustion engine. Such vehicles can 

leverage route-specific information to anticipate road 

loads and schedule power flows in the most efficient 

manner possible. 

Significant research exists in the literature exploring 

pathways for increasingly connected vehicles to 

optimize modern transportation systems. Some 

example applications include: 

 routing algorithms that leverage digital maps to 

make drive cycle predictions with the goals of 

minimizing travel time, energy use and/or    
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emissions [1-4]; 

 vehicle speed advisory programs targeted at 

encouraging efficient driving habits, such as gradual 

accelerations and intermediate travel speeds [5-8]; 

 predictive powertrain controls that employ drive 

cycle predictions for optimal energy management in 

hybrid electric and plug-in hybrid electric     

vehicles [9-19]. 

As a contribution to this growing field of research, 

the NREL (National Renewable Energy Laboratory) 

and General Motors, in collaboration with the U.S. 

Department of Energy, evaluated 

connectivity-enhanced route selection and adaptive 

control techniques to further increase energy efficiency 

in the Chevrolet Volt platform. The project included 

both simulation and chassis dynamometer testing to 

develop energy prediction algorithms applied to the 

Volt over multiple real-world driving profiles. The 

algorithms were used to implement and evaluate green 

routing and adaptive intelligent control mode 

scheduling for the Volt over predicted travel routes. 
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Fig. 5  Discretized correlation between cycle characteristics, SOC, and electric consumption rate generated from detailed 
simulation results when the Volt engine was on.  
 

 
Fig. 6  Engine-on fuel rate estimates correlate with the difference or “error” between the hybrid (engine-on) electric rate and 
the all-electric (engine-off) electric rate estimates.  
 

target SOC around the middle of the figure) and the  

product of  the average  speed and  acceleration 

characteristics of the nanotrip. Consistent results 

within this space for nanotrips with similar 

characteristics again enable discretization of the data 

into a look-up map as illustrated by Fig. 5. The 

engine-on fuel rate relationship was found to correlate 

well with the difference between the engine-on and 

engine-off electric rate estimates (as provided by the 

cycle-characteristic-based look-up maps in       

Figs. 4 and 5). Fig. 6 illustrates the resulting correlation 

established as compared to the actual results from the 

detailed simulation. 

The described look-up maps/correlations define 

everything needed to predict energy use (fuel and 

electricity consumption) from speed and acceleration 

cycle characteristics. The predictions can be further 

refined by establishing similar correlations for 

additional cycle segment characteristics, such as road 

grade. Fig. 7 illustrates the translation model (trained 

by the detailed simulation and test data over cycles  

with different baseline (Wh/mi) demands run at different 
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Fig. 7  Grade-based electric rate translation model created to adjust the zero-grade look-up maps described in Figs. 4-6 to 
account for driving segment grade.  

 
Fig. 8  The grade translation model agrees well with individual electric rate adjustments observed from simulation and test 
data over similarly characterized nanotrips at different road grades. 
 

grades) to estimate electric rate impact as a function of 

road grade for similarly characterized nanotrips. As 

shown in Fig. 8, the grade-based translation model 

shows a very good ability to predict the grade-adjusted 

electric consumption rates based only on the 

zero-grade electric rate as an input. 

As a point of validation, the energy prediction maps 

(trained on simulation data) were evaluated against test 

data from an instrumented Chevrolet Volt run on a 

vehicle dynamometer over a comprehensive range of 

driving conditions including combinations of 

speed/acceleration characteristics, positive and negative  
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(a) 

 
(b) 

Fig. 9  Distributions when comparing energy estimation maps to dynamometer test data: (a) modeled electric; (b) fuel rate 
errors.  
Red dashed line represented zero error. 
 

road grades, control modes (CD/CS), and battery SOCs. 

Fig. 9 provides a snapshot of these comparisons by 

showing distributions of model error (energy 

prediction map minus measured test data) for both 

electric and fuel use rates. Model error distributions 

can be seen to center around zero (represented by the 

red dashed lines). Further evaluation of model error 

will be an important part of future work, to include 

assessing fuel and electricity consumption impacts 

when the driving type predictions turn out to be 

incorrect. 
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monetary value of time spent in the vehicle. The top 

line in the plot corresponds to total percent increased 

travel time, and the bottom line corresponds to total 

percent energy (and resulting energy cost) reductions 

provided by the “greenest” routes. 

To facilitate interpretation, consider two example 

vertical slices on this plot. In the first example, the 

points intersecting the y-axis represent the extreme 

scenario with no value of time penalty counted against 

increased time requirements by the green routes. The 

aggregate results represented by this scenario could 

realize a 12.3% reduction in energy use and cost, but a 

14.4% increase in travel time. The second example 

considers the vertical slice at a time value of $35/h. For 

this scenario, the qualifying alternative green routes 

could decrease overall energy use and cost by 1.0% 

with a negligible increase in travel time. 

3.4 Control Mode Scheduling 

The intelligent CD vs. CS mode scheduling 

evaluation involved similar large-scale analysis, 

specifically, of over 100,000 potential routes identified 

from the TSDC O/D database. The evaluation required 

first adding an extra analysis layer to compare the 

default mode schedule (CD followed by CS) as 

compared to the optimal (least fuel consuming) mode 

schedule. As a simplified overview, the methodology 

included in the added layer begins by assuming that all 

driving could be accomplished in CD mode (initially 

ignoring energy limits of the vehicle battery). It then 

incrementally substitutes driving segments from CD to 

CS operation, until the final trip SOC equals that from 

the default CD followed by CS operation. Trip 

segments are prioritized for substituting from CD to CS 

control based on minimizing the cost/benefit ratio of 

doing so, where the cost is defined as the increased fuel 

use incurred by the substitution, and the benefit is 

defined as the decreased electric depletion rate. 

The top plot in Fig. 12 shows an example of a 

nominal vs. optimal battery SOC depletion profile 

generated by the methodology described above. It 

should be noted that when evaluating this project’s 

high-level CD vs. CS mode scheduling opportunity, 

each trip considered was assumed to begin at an initial     
 

 
Fig. 12  Nominal (solid blue line) vs. optimal (dashed red line) battery SOC and fuel use profiles for one example route.  
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Fig. 13  Efficiency improvements from control mode scheduling optimization evaluated across over 100,000 representative 
driving routes. 
 

SOC such that 50% or more of the trip was completed 

in CS mode. The bottom plot in Fig. 12 shows the 

corresponding fuel consumption profile for the 

nominal vs. optimal control mode scheduling over the 

example profile. In this example, fuel consumption was 

reduced 25% by scheduling CS operation during 

highway driving segments in the first half of the route 

and saving CD operation for the city driving 

anticipated at the end of the route. 

Fig. 13 shows the scatter of fuel savings opportunity 

from optimal mode scheduling applied to over 100,000 

trips. These results indicated that very large percent 

fuel savings results predominantly occur at short 

driving distances, which may be an artifact of the 

reduced starting SOC approach applied for these 

shorter trips. However, a number of trips (even longer 

than 30~40 miles in length) realize fuel savings on the 

order of 10%, and the average fuel savings across all 

trips exceeds 3%.   

4. Conclusions 

Under this project, NREL collaborated with General 

Motors to evaluate connectivity-enabled efficiency 

enhancements for the Chevrolet Volt. Project 

accomplishments included developing and 

demonstrating the ability to estimate drive cycle 

characteristics over anticipated driving routes. The 

project team further developed a high-level model to 

predict vehicle fuel and electricity consumption based 

on driving characteristic and vehicle state inputs. The 

team combined and leveraged these techniques in 

pursuit of energy efficiency optimization via green 

routing and intelligent control mode scheduling. 

The green routing and intelligent control mode 

scheduling enhancements were evaluated using 

prospective driving routes between tens of thousands 

of real-world O/D pairs. Considering the aggregate 

green routing benefit multiplied by the fraction of O/D 

pairs where the default (fastest) route consumed more 

fuel, the overall green routing fuel savings opportunity 

could approach 5% (assuming a low value of passenger 

time). The average efficiency benefit from intelligent 

high-level scheduling of CS vs. CD control showed a 

similar magnitude—a little over 3% potential fuel 

savings on trips that require some mix of CS and CD 

operation. An 8% fuel savings (when taken as additive 

benefits) represents a substantial opportunity 

especially considering that only software adjustments 
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are required to realize this efficiency gain. 

Future work efforts could include adding 

route-based optimization to lower-level controls (in 

addition to the high-level CD vs. CS control mode 

scheduling), formally incorporating real-time 

traffic/congestion information to further improve cycle 

metric predictions, and evaluating result sensitivity to 

various conditions and erroneous predictions. 

Additional options could include implementing, 

refining and more robustly testing both green routing 

and adaptive control approaches in a development 

vehicle, and/or considering additional vehicle 

platforms/powertrains. 
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