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Abstract: The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements
for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving

characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent

control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world

origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and

3%, respectively. These represent substantial opportunities considering that they only require software adjustments to implement.
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1. Introduction

Energy security, fuel cost and air quality concerns
have led to increased powertrain electrification in new
vehicles. At the same time, the ubiquitous availability
of advanced vehicle telematics systems, such as OnStar,
has made real-time information on driving routes,
traffic and road topology readily accessible. Together,
these trends offer the potential for increased powertrain
efficiency, particularly in vehicles with both a traction
battery and a combustion engine. Such vehicles can
leverage route-specific information to anticipate road
loads and schedule power flows in the most efficient
manner possible.

Significant research exists in the literature exploring
pathways for increasingly connected vehicles to
optimize modern transportation systems. Some
example applications include:

* routing algorithms that leverage digital maps to
make drive cycle predictions with the goals of
travel time, and/or

minimizing energy  use
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emissions [1-4];

* vehicle speed advisory programs targeted at
encouraging efficient driving habits, such as gradual
accelerations and intermediate travel speeds [5-8];

* predictive powertrain controls that employ drive
cycle predictions for optimal energy management in
hybrid electric hybrid
vehicles [9-19].

As a contribution to this growing field of research,
the NREL (National Renewable Energy Laboratory)
and General Motors, in collaboration with the U.S.

and plug-in electric

Department of Energy, evaluated
connectivity-enhanced route selection and adaptive
control techniques to further increase energy efficiency
in the Chevrolet Volt platform. The project included
both simulation and chassis dynamometer testing to
develop energy prediction algorithms applied to the
Volt over multiple real-world driving profiles. The
algorithms were used to implement and evaluate green
control mode

routing and adaptive intelligent

scheduling for the Volt over predicted travel routes.
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2. Approach

Fig. 1 illustrates the overall methodology for
developing the energy predictions that serve as the
basis for the green routing and adaptive control energy
efficiency enhancements. The process begins by
identifying candidate routes for traveling between a
given (or predicted) O/D (origin and destination) pair.
Each route is divided into segments characterized by
road type information and that may also take real-time
traffic and driver aggression predictions as inputs. A
drive cycle model (developed as part of this project)
then makes predictions of drive cycle characteristics
expected over each driving segment. Based on these
cycle metrics, as well as road grade and the current
vehicle/battery state, a look-up table model (also
developed for this project specific to the Volt
powertrain) estimates the vehicle’s
segment-by-segment fuel and electricity consumption.

This methodology, particularly the drive cycle and
Volt PT (powertrain) models illustrated in Fig. 1, was
very computationally heavy to develop, involving
processing, analyzing and simulating hundreds of
thousands of drive cycles. However, the resultant
look-up table models become quite computationally
light to implement in a vehicle by eliminating the need
for predicting a second-by-second speed trace or for
real-time simulation using a computationally intensive

vehicle model.

3. Results
3.1 Cycle Metric Prediction

After establishing one or more potential driving

Candidate

routes between a given O/D pair (including map
matching each segment of the route to an underlying
road layer from a provider, such as HERE or TomTom),
the project team drew on information, such as road
segment type (FC (functional class), speed category,
etc.) from the underlying road layer to predict
representative cycle metrics (such as average speed,
acceleration, road grade and stops per mile) over each
segment of the driving route. A data-driven correlation
between road type and drive cycle characteristics was
established by

second-by-second real-world driving profiles collected

analyzing thousands of
with global positioning system devices and archived in
NREL’s TSDC (Transportation Data
Center) [18]. After map-matching the TSDC driving

profiles to the underlying road layer (as described

Secure

above), the driving profiles were subdivided into
smaller increments, such as the 0.1-mile “nanotrips”
illustrated in Fig. 2.

The speed and acceleration characteristics for these
nanotrips were then correlated to the road functional
1 corresponds to
and FC = 5

neighborhood

class being traversed (FC =
high-throughput interstate travel,
corresponds to  low-throughput
streets). As illustrated in Fig. 3, this resulted in
reasonable speed and

predictions of average

acceleration characteristics simply given
information on the functional class of the current
and the previous 0.1-mile segment of the given
driving route. Further precision would be obtained
by factoring in additional inputs, such as real-time
traffic over  the driving

speeds given

segment.
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Fig. 1 Overall energy use estimation methodology that provides the basis for green routing and adaptive control efficiency

enhancements.
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Fig. 2 Illustrative division of real-world driving “microtrip” (profile starting and ending at zero speed) into smaller
“nanotrip” distance intervals.
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Fig. 3 Significant concentration of nanotrip data around hard accelerations when transitioning from an FC-4 to an FC-3
road segment (i.e., to a higher speed/capacity roadway).



52 Connectivity-Enhanced Route Selection and Adaptive Control for the Chevrolet Volt

3.2 Energy Use Prediction

In the next component of the project, estimated cycle
metrics (such as average speed, acceleration, road
grade, etc.) were converted into vehicle energy use
predictions over a given route. The method developed
to accomplish this involved generating detailed energy
use maps for the vehicle using detailed simulations
(complemented by physical vehicle data collection)
over tens of thousands of drive cycles. As mentioned in
Section 2, these energy use maps are computationally
heavy to develop, but once they are built, they are
computationally light to implement for a green routing
or dynamic control application.

For the Chevrolet Volt powertrain used in this study,
the energy use maps included both electricity and fuel
consumption relationships, and considered CD (charge
depleting) operation, CS (charge sustaining) operation
and the need to track vehicle SOC (state of charge) via
the electricity consumption relationships to determine
the correct operating mode. The effort relied primarily
upon simulations using an internal General Motors
powertrain model and secondarily on test data
collected from a Chevrolet Volt that had been modified
to allow on-the-fly initiation of CS operation even at a
high vehicle battery SOC. It should be noted that the
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: > ..gt :: :

4 """""""""" ."Ezg_gf" """ ol
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results shown here omit proprietary data values
specific to the Volt powertrain, but nonetheless convey
the relative trends and overall steps employed in the
analysis.

The simulation and test results were post-processed
into nanotrips using the methods described in Fig. 1. In
addition to the

characteristic

previously mentioned cycle

categorization  (average  speed,
acceleration, etc.), the simulation and testing permitted
associating each nanotrip with values for electricity
and fuel consumption (each value referenced as well to
the battery SOC at the start of the nanotrip). Fig. 4
illustrates a discretized look-up map of engine-off
electric rate in the average speed and acceleration space.
This map was derived from all the engine-off nanotrip
simulation results, which showed consistent electric
consumption rates for nanotrips with similar speed and
acceleration characteristics. Once again, due to the
proprietary nature of the Volt powertrain data, the
precise consumption rate values have been excluded
but the general trends are apparent.

Fig. 5 provides a similar visualization of the electric
consumption rate while the vehicle engine is on, this
time organized in a space defined by the SOC of the

nanotrip (where the CS hold mode was engaged at a

Vehicle ABS acceleration (mph/s)

(/g Ay ) 9yer oLodTy

0 10 20 30 40
Vehicle average speed (mph)
Fig. 4 Discretized correlation between cycle characteristics and electric consumption rate generated from detailed simulation

results when the Volt engine was off.
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Fig. 5 Discretized correlation between cycle characteristics, SOC, and electric consumption rate generated from detailed

simulation results when the Volt engine was on.

Fuel rate (gal/mi)

Electric rate estimation error (hybrid-all-electric)

Fig. 6 [Engine-on fuel rate estimates correlate with the difference or “error” between the hybrid (engine-on) electric rate and

the all-electric (engine-off) electric rate estimates.

target SOC around the middle of the figure) and the
product of the average speed and acceleration
characteristics of the nanotrip. Consistent results
this with

characteristics again enable discretization of the data

within space for nanotrips similar

into a look-up map as illustrated by Fig. 5. The
engine-on fuel rate relationship was found to correlate
well with the difference between the engine-on and
engine-off electric rate estimates (as provided by the
cycle-characteristic-based in

look-up maps

Figs. 4 and 5). Fig. 6 illustrates the resulting correlation

established as compared to the actual results from the
detailed simulation.

The described look-up maps/correlations define
everything needed to predict energy use (fuel and
electricity consumption) from speed and acceleration
cycle characteristics. The predictions can be further
refined by establishing similar correlations for
additional cycle segment characteristics, such as road
grade. Fig. 7 illustrates the translation model (trained
by the detailed simulation and test data over cycles

with different baseline (Wh/mi) demands run at different
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Vehicle electric rate (Wh/mi)

Road grade

Fig. 7 Grade-based electric rate translation model created to adjust the zero-grade look-up maps described in Figs. 4-6 to

account for driving segment grade.

Simulated electric rate (Wh/mi)

Predicted electric rate (Wh/mi)

Fig. 8 The grade translation model agrees well with individual electric rate adjustments observed from simulation and test

data over similarly characterized nanotrips at different road grades.

grades) to estimate electric rate impact as a function of
road grade for similarly characterized nanotrips. As
shown in Fig. 8, the grade-based translation model
shows a very good ability to predict the grade-adjusted
electric consumption rates based only on the

zero-grade electric rate as an input.

As a point of validation, the energy prediction maps
(trained on simulation data) were evaluated against test
data from an instrumented Chevrolet Volt run on a
vehicle dynamometer over a comprehensive range of
conditions combinations  of

driving including

speed/acceleration characteristics, positive and negative
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Fig. 9 Distributions when comparing energy estimation maps to dynamometer test data: (a) modeled electric; (b) fuel rate

errors.
Red dashed line represented zero error.

road grades, control modes (CD/CS), and battery SOCs.
Fig. 9 provides a snapshot of these comparisons by
showing distributions (energy

prediction map minus measured test data) for both

of model error

electric and fuel use rates. Model error distributions
can be seen to center around zero (represented by the
red dashed lines). Further evaluation of model error

will be an important part of future work, to include
assessing fuel and electricity consumption impacts
when the driving type predictions turn out to be
incorrect.

3.3 Green Routing

Evaluation of the connectivity-enabled green routing
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and route-based control enhancements again involved
leveraging the TSDC—specifically the large set of real
O/D locations contained in the database. NREL
leveraged Google Maps’ application programming
interface to generate route options between each O/D
pair and applied the cycle metric and fuel/electricity
prediction approach outlined above to evaluate each
route. Fig. 10 categorizes the results for the nearly
43,000 O/D pairs and highlights that for many O/D
pairs Google’s routing software either recommends

only one route, or the fastest recommended route also

turns out to be the most energy efficient route.
However, 37% ofthe time the fastest route does not
correspond with the greenest route, so that fraction of
driving trips is taken to be the potential opportunity
where green routing could result in energy-saving
benefits (relative to the fastest route being the assumed
default).

Under this set of assumptions, any green routing
energy savings will come at a cost of increased travel
time. Fig. 11 explores this tradeoff by arranging the

results as a function of the vehicle operator’s hypothetical

42,825 O/D pairs

One option
(21%)

Fig. 10 Results for the 42,825 O/D pairs.

______________________________
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_________________________________________

Percentage of change (relative to fastest route) (%)

-20 i 1 i

____________________

_15 R R R LR LR R

Value of passenger time ($/h)

Fig. 11 Trade-off between aggregate energy/cost savings and total increases in travel time as a function of passenger/driver
value of time (for the 37% of O/D pairs where the least energy-consuming route prediction was not the fastest route).
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monetary value of time spent in the vehicle. The top
line in the plot corresponds to total percent increased
travel time, and the bottom line corresponds to total
percent energy (and resulting energy cost) reductions
provided by the “greenest” routes.

To facilitate interpretation, consider two example
vertical slices on this plot. In the first example, the
points intersecting the y-axis represent the extreme
scenario with no value of time penalty counted against
increased time requirements by the green routes. The
aggregate results represented by this scenario could
realize a 12.3% reduction in energy use and cost, but a
14.4% increase in travel time. The second example
considers the vertical slice at a time value of $35/h. For
this scenario, the qualifying alternative green routes
could decrease overall energy use and cost by 1.0%
with a negligible increase in travel time.

3.4 Control Mode Scheduling

The intelligent CD vs. CS mode scheduling
evaluation involved similar large-scale analysis,
specifically, of over 100,000 potential routes identified

from the TSDC O/D database. The evaluation required
first adding an extra analysis layer to compare the
default mode schedule (CD followed by CS) as
compared to the optimal (least fuel consuming) mode
schedule. As a simplified overview, the methodology
included in the added layer begins by assuming that all
driving could be accomplished in CD mode (initially
ignoring energy limits of the vehicle battery). It then
incrementally substitutes driving segments from CD to
CS operation, until the final trip SOC equals that from
the default CD followed by CS operation. Trip
segments are prioritized for substituting from CD to CS
control based on minimizing the cost/benefit ratio of
doing so, where the cost is defined as the increased fuel
use incurred by the substitution, and the benefit is
defined as the decreased electric depletion rate.

The top plot in Fig. 12 shows an example of a
nominal vs. optimal battery SOC depletion profile
generated by the methodology described above. It
should be noted that when evaluating this project’s
high-level CD vs. CS mode scheduling opportunity,

each trip considered was assumed to begin at an initial
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Fig. 12 Nominal (solid blue line) vs. optimal (dashed red line) battery SOC and fuel use profiles for one example route.
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Fig. 13 Efficiency improvements from control mode scheduling optimization evaluated across over 100,000 representative

driving routes.

SOC such that 50% or more of the trip was completed
in CS mode. The bottom plot in Fig. 12 shows the
corresponding fuel consumption profile for the
nominal vs. optimal control mode scheduling over the
example profile. In this example, fuel consumption was
reduced 25% by scheduling CS operation during
highway driving segments in the first half of the route
and saving CD operation for the city driving
anticipated at the end of the route.

Fig. 13 shows the scatter of fuel savings opportunity
from optimal mode scheduling applied to over 100,000
trips. These results indicated that very large percent
fuel savings results predominantly occur at short
driving distances, which may be an artifact of the
reduced starting SOC approach applied for these
shorter trips. However, a number of trips (even longer
than 30~40 miles in length) realize fuel savings on the
order of 10%, and the average fuel savings across all
trips exceeds 3%.

4. Conclusions

Under this project, NREL collaborated with General
Motors to evaluate connectivity-enabled efficiency
Chevrolet Volt.

enhancements for the Project

accomplishments included developing and
demonstrating the ability to estimate drive cycle
characteristics over anticipated driving routes. The
project team further developed a high-level model to
predict vehicle fuel and electricity consumption based
on driving characteristic and vehicle state inputs. The
team combined and leveraged these techniques in
pursuit of energy efficiency optimization via green
routing and intelligent control mode scheduling.

The green routing and intelligent control mode
scheduling enhancements were evaluated using
prospective driving routes between tens of thousands
of real-world O/D pairs. Considering the aggregate
green routing benefit multiplied by the fraction of O/D
pairs where the default (fastest) route consumed more
fuel, the overall green routing fuel savings opportunity
could approach 5% (assuming a low value of passenger
time). The average efficiency benefit from intelligent
high-level scheduling of CS vs. CD control showed a
similar magnitude—a little over 3% potential fuel
savings on trips that require some mix of CS and CD
operation. An 8% fuel savings (when taken as additive
benefits)

especially considering that only software adjustments

represents a substantial  opportunity
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are required to realize this efficiency gain.
efforts
route-based optimization to lower-level controls (in
addition to the high-level CD vs. CS control mode
scheduling),

Future work could include adding

formally  incorporating  real-time

traffic/congestion information to further improve cycle
metric predictions, and evaluating result sensitivity to

various conditions and erroneous predictions.

Additional options could include implementing,

refining and more robustly testing both green routing
and adaptive control approaches in a development

vehicle, and/or considering additional vehicle

platforms/powertrains.
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