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Abstract—Uncertainties associated with solar forecasts present 
challenges to maintain grid reliability, especially at high solar 
penetrations. This study aims to quantify the errors associated 
with the day-ahead solar forecast parameters and the 
theoretical solar power output for a 51-kW solar power plant 
in a utility area in the state of Vermont, U.S. Forecasts were 
generated by three numerical weather prediction (NWP) 
models—including the Rapid Refresh, the High-Resolution 
Rapid Refresh, and the North American Model (NAM)—and 
a machine-learning ensemble model. A photovoltaic (PV) 
performance model was adopted to calculate theoretical solar 
power generation using the forecast parameters (e.g., 
irradiance, cell temperature, and wind speed). Errors of the 
power outputs were quantified using statistical moments and a 
suite of metrics, such as the normalized root mean square 
error (NRMSE). In addition, the PV model’s sensitivity to 
different forecast parameters was quantified and analyzed. 
Results showed that the ensemble model yielded forecasts in 
all parameters with the smallest NRMSE. The NRMSE of the 
solar irradiance forecasts of the ensemble NWP model was 
reduced by 28.10% compared to the best of the three NWP 
models. Further, the sensitivity analysis indicated that the 
errors of the forecasted cell temperature attributed only 
approximately 0.12% to the NRMSE of the power output as 
opposed to 7.44% from the forecasted solar irradiance.  

Keywords-solar forecasting; uncertainty; numerical weather 
prediction; machine learning; sensitivity analysis 

I.  INTRODUCTION  
Solar power installation has accelerated rapidly in the 

United States due to the establishment of state renewable 
portfolio standards and the decreasing price of photovoltaic 
(PV) system components [1]. Solar power has been 
predicted to provide 14% of the U.S. electricity needs by 
2030 and 27% by 2050 [2]. However, the uncertainty and 
variability of solar power create challenges for grid 
operators to manage the increasing integration of solar 
power while ensuring continued grid reliability. Thus, solar 
power forecasting is important in different operating time 
frames from real time to years to proactively integrate solar 
power. Longer range forecasts at time horizons beyond 
weeks ahead help with operation management and 
planning, maintenance planning, etc. Day-ahead forecasts 
are useful for unit commitment planning and scheduling of 
slow-starting thermal units to ensure the balance between 

generation and anticipated load. Operating schedules are 
adjusted as they get closer to real time to account for 
minutes- to hours-ahead forecasts. Forecasts are valuable to 
assist operators in managing power system reliability and to 
improve economic efficiency [3-4]. However, forecast 
inaccuracies can result in issues in power system 
scheduling, which may lead to significant economic 
consequences [5]. In addition to improving the accuracy of 
forecasts, it is critical to better understand the uncertainties 
inherent in solar power forecasts.  

A. Overview of Solar Forecasting  
Different forecasting methods have been developed to 

forecast solar irradiance and power at time horizons of 
minutes, hours, and days ahead, including physical-based, 
statistical-based, and hybrid approaches. The physical 
approaches, such as cloud movement tracking and 

numerical weather prediction (NWP) models, rely on 
weather forecasts and solar panel specifications to generate 
solar power forecasts [6-8].Short-term irradiance forecasts, 
based on cloud formation using satellite and ground 
observation, range from 3 minutes up to 6 hours ahead of 
the operating point [9]. For forecast horizons beyond 6 
hours, NWP models tend to outperform the cloud-
movement-based forecasts [10]. Further, ensembles of 
individual NWP forecasts using machine-learning 
techniques have been shown to have better accuracies than 
individual forecasts [11]. NWP models are generally used 
in conjunction with PV performance simulation tools, such 
as PV Lib and PVWatts [12-13], to convert harvested solar 
irradiance to solar power. Statistical approaches, such as 
regressive modeling and artificial neural networks (ANNs) 
[14-15], yield power forecasts based on historical data and 
exogenous variables at time horizons ranging from 5 
minutes up to 6 hours [16]. Hybrid forecast methods, such 
as inputting processed satellite images to ANNs [17] and 
utilizing model output statistics for ensemble NWP 
forecasts [18], combine both physical- and statistical- based 
approaches to yield enhanced forecasts.   

B. Research Objectives 
This research aims to better understand the day-ahead 

solar forecasting errors of three regional NWP models and 
an ensemble machine-learning model through statistical 
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quantification and to compare their relative performances. 
The three studied NWP models are the Rapid Refresh 
(RAP), the High-Resolution Rapid Refresh (HRRR), and the 
North America Model (NAM). The PV Lib tool was used to 
calculate the theoretical solar power generation using the 
forecasted parameters as inputs [12]. Error statistics of 
meteorological parameters and solar power were examined 
at a 51-kW solar power plant in a utility area in Vermont, 
United States. The sensitivity of the power output to each 
forecast parameter was also studied to determine the critical 
parameters in solar forecasting. 

The remainder of the paper is organized as follows. 
Section II summarizes the forecast models and methods 
used in this study. The results and discussion are presented 
in Section III. The conclusion and suggestions for future 
research are included in the final section. 

II. DATA AND METHODS 
A. NWP Models and Ensemble Machine-Learning Model  

Regional NWP models—such as RAP, HRRR, and 
NAM—forecast the atmospheric state based on initial 
conditions defined by the global NWP models and vertical 
atmospheric profile. The three studied regional models 
forecast the atmospheric state at different resolutions and 
time horizons, as shown in Table I [11]. Because of the 
coarse-graining of the physical atmospheric state, the 
regional NWP forecasts often have errors dependent on the 
current weather situation category. To enhance the accuracy 
of solar forecasts, the ensemble forecasting model, named 
Watt-Sun [11, 19], was developed by IBM in collaboration 
with the National Renewable Energy Laboratory, Argonne, 
Northeastern University, and others as part of the project 
work performed under the U.S. Department of Energy’s 
SunShot Initiative for Improving the Accuracy of Solar 
Forecasting [20]. The ensemble forecasts leverage a 
machine-learning-based approach to account for 
categorization parameters— cloud liquid water, ice 
contents, etc.—in addition to the parameters of direct 
interests, such as solar irradiance and temperature. The 
categorization parameters create specific weather categories 
exhibiting the condition-dependent errors in each model. 
Thus, the machine-learning model is trained using both sets 
of parameters from multiple regional models and 
measurements of prediction parameters to yield improved 
forecasts [11]. Forecasts generated by both the ensemble 
model and the individual NWP models were examined in 
this study.  

TABLE I.  RESOLUTION AND FORECASTING HORIZON OF THE NWP 
MODELS 

B. PV Performance Model 
The PV performance model PV Lib was adopted in this 

study to convert available solar irradiance to PV AC power 

generation at a specific location. Forecasts parameters (e.g., 
irradiance, cell temperature) generated from the NWP 
models and the ensemble model were used as the two major 
inputs to yield power generation. The first variable was 
effective irradiance, which refers to the total amount of 
plane of array (POA) irradiance adjusted for the angle of 
incidence losses, soiling, and spectral mismatch. An 
assumption of moderate, cleaned PV arrays with 2% 
irradiance loss was made [21]. Other than directly 
forecasted cell temperature, the cell temperature can also be 
calculated in PV Lib based on module materials, incident 
irradiance, ambient temperature, and wind speed at 10 m. 
More details about the PV Lib model can be found in [12]. 

C. Data Summary 
Hourly solar forecasts from the NWP models and the 

ensemble model of a 51-kW solar power plant were 
analyzed. Forecast parameters included POA irradiance, 
solar irradiance components (direct normal irradiance 
[DNI], diffuse horizontal irradiance [DHI], and global 
horizontal irradiance [GHI]), ambient temperature (TA), cell 
temperature (TC), and wind speed (WS). Measurements of 
four parameters were taken hourly at the site. Hourly data 
was available from 7 a.m. to 10 p.m. between July 2013 and 
February 2014. Parameters available from measurements 
and different models were marked with “+” and are shown 
in Table II.  In this study, to minimize bias errors 
introduced by relatively small irradiance values, hourly data 
with measured irradiance less than the threshold irradiance 
of 5 W/m2 were removed [22]. 

D. Statistical Metrics 
Three types of errors are present in the process of solar 

forecasts, including measurement errors due to the 
measuring devices for different parameters; forecast errors; 
and irradiance-to-power model errors. In this study, 
measurement errors were assumed to be negligible due to 
the limited information about the measurement device. The 
forecast errors and the model errors were the major focus of 
this study.  

This section presents the statistical metrics used to 
quantify the forecast errors associated with the parameters 
and power outputs. The accuracy of the major forecasted 
inputs and power outputs was determined by comparing 
them to the measurements. The associated errors were 
defined as forecast values minus measurement. A suite of 
metrics were proposed in [23] to evaluate the performance 
of solar forecasts. In this paper, the errors were 
characterized by four statistical moments: mean, variance, 
skewness, and kurtosis. In addition, the 1st order error 
measurement, mean absolute error (MAE), and the 2nd 
order error measurement, root mean square error (RMSE), 
were used to quantify the forecast errors. RMSE provides 
an overall error measure throughout the forecasting period 
while weighing heavily on the extreme forecast errors, 
whereas MAE provides an overall error measure without 
punishing the extreme forecast errors [23, 24]. Normalized 
root mean square error percentages (NRMSE [%]) and 
normalized mean absolute error percentages (NMAE [%]) 
were also calculated to compare performances among the 
four models. Forecast errors of each parameter and power 
output were normalized by the corresponding capacity 

Model Spatial Resolution 
and Coverage 

Temporal 
Resolution 

Forecasting 
Horizon 

RAP 13 km 
15 min 2-
Dimension 

1 h 3-Dimension 
18 h 

HRRR 3 km 
15 min 2-
Dimension  

1 h 3-Dimension 
15 h 

NAM 5 km 1 h 0-60 h 
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values, i.e., 1,000 W/m2 for irradiance, 19.54°C based on 
the average measured cell temperature, and 51 kW for the 
analyzed solar power plant.  

Wind speed is also an input of the PV Lib model. A 
power law was used to estimate the measured wind speed at 
10 m, assuming that the solar power plant location has 
neutral atmospheric conditions: 

 =  ×  (1) 

where  is the elevation (m) [25].  
To analyze and compare the forecast errors at different 

cloudy conditions, the daily average cloudy conditions were 
characterized by using the daily average clearness 
index ( ) , which is the ratio of the forecasted (or 
measured) irradiance to the irradiance from the clear-sky 
model [26] .  Based on the daily average clearness index, 
data were then categorized into different cloud conditions 
[27], as shown in Table III. 

TABLE II.  AVAILABLE PARAMETERS FROM DIFFERENT MODELS 
AND MEASUREMENT 

TABLE III.  CLEARNESS INDEX CATEGORIZATION 

Clearness Index (k*) Cloud Conditions Category 
 0.3 Overcast 

0.3 <   0.7 Mostly cloudy 
0.7 <    1 Partly cloudy 

 > 1 Sunny 

E. Sensitivity Analysis  
Theoretical power generation was computed using the 

PV Lib. A design of experiments was applied to generate a 
total of 13 scenarios based on the inputs extracted from the 
measurements and the forecast models, as shown in Table 
IV. Through comparisons of outputs from different 
scenarios in the sensitivity analysis, the errors of the power 
outputs were investigated to pinpoint the inputs that had a 
larger influence on the power output and to evaluate the 
forecast models’ performances. Identifying the critical 
parameters could allocate necessary efforts to reduce 
forecast errors associated with the specific parameters.  

At the beginning of the sensitivity analysis, systematic 
errors attributed by the PV Lib model were quantified by 
inputting both measured POA and measured Tc in scenario 
A1. Systematic errors calculated in A1 were later used to 
subtract from the errors calculated in the following case 
studies as a way to account for the model error. The first 
case study focused on examining the sensitivity of power 

outputs to irradiance compared to cell temperature in the 
ensemble model. Errors associated with power outputs 
based on both measured and forecasted inputs of effective 
irradiance and cell temperature from the ensemble model 
were compared in scenarios B1-3. The second case study 
compared the performance of the power outputs among 
individual forecast models to the ensemble model. 
Forecasted parameters from each model were used to 
convert to solar power in scenarios B-, C-, D-, and E-1. The 
third case study investigated the effects of individual solar 
irradiance components and POA irradiance on calculated 
cell temperature and on power forecasts in each NWP 
model in scenarios C-, D-, E-1, C-, D-, E-2 and C-, D-, E-3. 
Through the sensitivity analysis, optimal combinations of 
forecast inputs were identified to yield more accurate power 
forecasts. 

TABLE IV.  SCENARIOS SIMULATED IN THE PV LIB MODEL 

Scenarios 
Input 1- 
Effective 

Irradiance 
Input 2 – Cell Temperature 

Measurement 

A1 Measured 
 Measured  

Ensemble Model 

B1 Forecasted 
 Forecasted  

B2 Measured 
 Forecasted  

B3 Forecasted 
 Measured  

RAP, HRRR, NAM 

C, D, E1 Forecasted 
 Forecasted TC 

C, D, E2 Forecasted 
 

Calculated cell temperature ( , ) based on 
forecasted  &  &  

C, D, E3 Forecasted 
 

Calculated cell temperature ( , ) based on 
forecasted 

, ,   &  &  

III. RESULTS AND DISCUSSION 

A. Error Quantification of Forecast Parameters  
This section presents the forecast errors associated with 

the POA irradiance, , and . Table V shows that the 
ensemble model forecasts had the smallest errors in all 
forecast parameters. The RMSE of the POA forecast from 
RAP, HRRR, NAM was 240.88, 275.42, and 254.59 /

, respectively. The RMSE of the ensemble POA forecast 
using the machine-learning approach based on additional 
categorization parameters was 173.18 / , which is an 
approximate 28.10% error reduction compared to the best 
of the individual model. Similarly, the ensemble forecast in 
cell temperature and wind speed also enabled error 
reductions better than the best of the individual NWP.  

In correlating the error statistics of the irradiance 
forecasts and the clearness index distribution in Fig. 1, the 
ensemble model was found to have the largest number of 
days with correct forecasted cloud conditions, as shown in 
Table VI. Forecast models were found to predict accurate 
cloud conditions most often on sunny days. However, 
because of the use of POA irradiance instead of GHI, the 
predictions of the cloud structure in a larger spatial area 
might be limited. 

Parameters Measure-
ment RAP HRRR NAM Ense-

mble 
AC Power (W) +     
POA (W/m2 ) + + + + + 

GHI (W/m2 )  + + +  
DNI (W/m2 )  + + +  
DHI (W/m2 )  + + +  

TC (°C) + + + + + 

TA (°C)  + + +  
WS

2 
(m/s) +    + 

WS
10 

(m/s) 
 + + +  
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The performance of the forecasts of different parameters 
was sensitive to the NWP models. The NRMSE (%) of the 
POA irradiance forecasts generated by the RAP was the 
smallest, which was approximately 24.09%. As for cell 
temperature forecasts, the NAM had the smallest NRMSE 
(%), which was approximately 35.79 %. Last, the HRRR 
had the smallest NRMSE (%) for the  forecasts. The 
observed better forecasts in a specific forecast model could 
have been caused by the unique spatial and temporal 
resolutions utilized in each NWP model. It is important to 
note that these results were observed at the specific studied 
location, which may not apply to other sites.  

Figure 1.  Cumulative distribution of daily clearness index for 
measurement, three NWP models, and the ensemble model 

TABLE V.  STASTICAL QUANTIFICATION OF ERRORS ASSOCIATED WITH FORECAST PARAMETERS 
Plane of Array Irradiance (POA) 

Metrics Mean (W/m2) STD (W/m2) Skewness Kurtosis RMSE (W/m2) NRMSE (%) MAE (W/m2) NMAE (%) 

RAP 108.70 215.02 0.71 5.26 240.88 24.09 161.51 16.15 

HRRR 145.07 234.18 0.90 4.17 275.42 27.54 184.93 18.49 

NAM 114.99 227.20 0.75 5.07 254.59 25.46 169.59 16.96 

Ensemble -0.94 173.23 0.18 5.17 173.18 17.32 118.54 11.85 

Cell Temperature ( ) 

Metrics Mean 
(°C) STD (°C) Skewness Kurtosis RMSE (°C) NRMSE (%) MAE (°C) NMAE (%) 

RAP 4.02 6.29 0.55 4.52 7.46 38.17 5.49 28.11 

HRRR 6.08 6.46 0.77 3.94 8.87 45.38 6.72 34.39 

NAM 3.14 6.26 0.37 4.29 7.00 35.79 5.17 26.46 

Ensemble -0.02 4.76 0.42 4.51 4.76 24.36 3.52 17.98 

Wind Speed at 10m ( ) 
 

Metrics Mean (m/s) STD (m/s) Skewness Kurtosis RMSE (m/s) MAE 
(m/s) 

RAP 1.60 1.40 -0.27 3.56 2.13 1.82 

HRRR 1.24 1.27 -0.13 4.09 1.78 1.46 

NAM 2.34 1.70 0.15 3.42 2.89 2.47 

Ensemble -0.01 1.01 -0.98 6.41 1.01 0.73 

TABLE VI.  NUMBER OF DAYS WITH ACCURATE CLOUD CONDITIONS FORECASTS 

 
Model 

Overcast  
(  0.3) 

Mostly Cloudy 
(0.3 <   0.7) 

Partly Cloudy 
(0.7 <    1) 

Sunny 
(  > 1) 

Total # of correct 
days 

% of 
accuracy 

Measurement 37 46 48 33 164  RAP 19 20 16 27 82 50.00% 
HRRR 10 14 15 26 65 39.63% 
NAM 18 15 21 23 77 46.95% 

Ensemble 24 33 25 23 105 64.02% 

B. Systematic Errors in the Conversion Model 
Systematic errors of the PV Lib model were first 

quantified based on the measured POA irradiance and 
measured  in scenario A1. The measurement errors were 
assumed to be negligible because of limited information, 
and thus errors obtained in scenario A1 were assumed to be 
attributed by the PV Lib model. The PV Lib model was 
found to have a strong tendency to overpredict, as shown in 
the positive mean in scenario A1 in Table VII. The NRMSE 
and NMAE were found to be 9.55% and 3.83%, 
respectively, which were used to subtract from the 
normalized errors associated with the other 12 scenarios.  

C. Sensitivity Analysis for Inputs in the Ensemble Model 
In analyzing the errors introduced by individual input, 

the NRMSE attributed by the   forecasts (B2) and POA 
irradiance forecasts (B3) were found to be 0.12 % and 
7.44%, respectively, as shown in Table VII. Results 
illustrated that accurate POA irradiance forecasts were able 
to improve the power output accuracy in a larger magnitude 
compared to the   forecasts. By changing the input from 
forecast irradiance in scenario B1 to measured irradiance in 
scenario B2, the NMAE was reduced by 6.35%. As for 
scenario B3, by inputting measured cell temperature, the 
NMAE was reduced only by 0.48%, as observed in Fig. 2.  
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D. Performance Comparison Among Models 
As shown in Table VII, the power output forecasts 

yielded by the ensemble model (B1) outperformed the three 
NWP models (C, D, and E-1). The NRMSE was 6.63% for 
ensemble forecast compared to 14.04% for RAP, 17.14% 
for HRRR, and 14.88% for NAM. The NRMSE of the 
ensemble model had an error reduction of 52.83% 
compared to the best individual NWP model. 

The distribution of the power errors of each model is 
shown in Fig. 3. The positive error tails indicated that all 
models exhibited an over-forecast tendency. The 
distribution of errors in the ensemble model was narrower 
than the other individual NWP models, and it had a larger 
probability with smaller errors. Among the individual 
NWPs, the power outputs of RAP were the most accurate, 
followed by the NAM and the HRRR. 

E. Sensitivity Analysis on Calculated Cell Temperature 
and Power Output in Individual NWP Models   
This section studied whether calculated cell temperature 

would yield more accurate power forecasts compared to 
directly forecasted cell temperature. Calculated cell 
temperature was based on  ,   , and either POA 
irradiance (scenario C, D, and E2) or individual solar 
irradiance components (scenario C, D, and E3). Table VII 
shows that by changing the forecasted cell temperature in 
C, D, and E1 to the calculated cell temperature in C, D, and 
E2 in all three models, the RMSE increased by at most 14 
W and the MAE increased by at most 4 W, accounting for 
less than 0.02% of the site’s solar capacity. No 
improvement in the accuracy of solar power output was 
observed. 

By using calculated cell temperature based on 
individual solar irradiance components in C, D, and E3, the 
RMSE was decreased for the RAP but increased for the 

HRRR and the NAM. In contrary, the NMAE was reduced 
by 35 W for the RAP and the HRRR and 24 W for the 
NAM, indicating that the overall errors were reduced by 
approximately 0.05%.  

 
Figure 2.  Relative RMSE and MAE percentage for the power outputs in 
scenarios B1-3 accounting for the systematic errors, which are represented 

by the darker parts of the bar.  

 
Figure 3.  Error distribution of power outputs in scenarios B,C,D, and E1, 

where all scenarios used forecast POA irradiance and cell temperature. 

TABLE VII.  STATISTICAL QUANTIFICATION OF POWER ERRORS FOR ALL SCENARIOS 

Metrics Mean (W) STD (W) Skewness Kurtosis RMSE (W) NRMSE 
(%) MAE (W) NMAE 

(%) 
Theoretical Power based on measurement 

A1 1840.70 4508.69 6.36 53.12 4868.82 9.55 1950.75 3.83 

Ensemble 

B1 2022.55 7997.94 1.00 6.71 3378.78 6.63 3412.48 6.69 

B2 1973.32 4519.16 5.93 48.34 61.26 0.12 175.75 0.34 

B3 2021.44 8424.81 1.05 6.73 3792.88 7.44 3656.32 7.17 

RAP 

C1 6642.53 10033.71 0.98 5.13 7162.13 14.04 6257.44 12.27 

C2 6643.67 10046.34 0.99 5.14 7173.29 14.07 6259.45 12.27 

C3 6606.64 10055.58 1.00 5.16 7160.62 14.04 6222.86 12.20 

HRRR 

D1 8157.81 10896.54 1.03 4.22 8740.73 17.14 7321.67 14.36 

D2 8160.12 10912.51 1.03 4.24 8754.90 17.17 7325.06 14.36 

D3 8125.76 10924.18 1.04 4.25 8743.70 17.14 7286.20 14.29 
NAM 

E1 7042.59 10279.75 0.92 4.80 7589.66 14.88 6584.63 12.91 

E2 7043.33 10287.69 0.92 4.81 7596.63 14.90 6585.99 12.91 

E3 7019.16 10304.64 0.93 4.82 7596.99 14.90 6560.67 12.86 
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IV. CONCLUSIONS AND FUTURE WORK 
This paper characterized and analyzed errors and 

uncertainties inherent in forecast parameters generated by 
the three NWP models and the ensemble model. The 
sensitivity of power output to different forecast parameters 
was also quantified. The study was applied to a 51-kW 
solar power plant. Results showed that the ensemble model 
performed better than the three individual NWP models. 
Among the three individual NWP models at the studied 
site, the RAP was able to yield more accurate forecasts in 
POA irradiance, the HRRR in wind speed, and the NAM 
in cell temperature. 

To analyze the sensitivity of power output to different 
forecasted solar parameters, a total of 13 scenarios were 
investigated. Results showed that (i) POA irradiance had a 
larger influence on the power outputs compared to cell 
temperature; (ii) all four models presented over-forecast 
behaviors; and (iii) using the calculated cell temperature 
instead of directly forecasted cell temperature can slightly 
increase the overall forecast accuracy of the solar power 
generation. 

Future studies will focus on quantifying uncertainties in 
forecast parameters for particular seasons or for a longer 
period of time, as well as for other geographical regions. 
Further, future sensitivity analyses will attempt to identify 
an optimal set of forecast parameters that can generate 
more accurate solar power forecasts. 
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