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Abstract 

The agent-based framework for renewable energy 
studies (ARES) is an integrated approach that adds an 
agent-based model of industry actors to PLEXOS and 
combines the strengths of the two to overcome their 
individual shortcomings. It can examine existing and 
novel wholesale electricity markets under high 
penetrations of renewables. ARES is demonstrated by 
studying how increasing levels of wind will impact the 
operations and the exercise of market power of 
generation companies that exploit an economic 
withholding strategy. The analysis is carried out on a 
test system that represents the Electric Reliability 
Council of Texas energy-only market in the year 2020. 
The results more realistically reproduce the operations 
of an energy market under different and increasing 
penetrations of wind, and ARES can be extended to 
address pressing issues in current and future wholesale 
electricity markets. 

1. Introduction 

Renewable integration studies such as [1, 2] have 
evaluated many challenges associated with deploying 
large amounts of variable wind and solar generation. 
Using production cost modeling software, these studies 
have evaluated the operational impacts associated with 
variable generation, benefits of improved wind and 
solar resource forecasting, and trade-offs among 
institutional changes. For example, the commercially 
available PLEXOS simulates the commitment and 
dispatch of the power plant fleet to meet load at least 
cost while maintaining system reliability. However, 
these types of studies have not yet considered how 
markets function by means of the interactions among 
strategic entities that compete to supply energy to the 
marketplace. Standard power system software tools are 
limited in their ability to recognize strategic behavior 
that might have significant impacts on market 
outcomes. Generation companies act strategically to 
maximize their own profits, subject to their real and 
perceived risks and technical constraints, and they are 

averse to the risks associated with uncertainty. The 
current literature on electricity markets has looked at 
how different market rules can affect price formation 
[3]–[7] and how bidding behaviors can change based 
on several conditions [8]–[11]. As the level of 
renewable energy sources on the electric grid 
increases, price suppressions coming from the 
deployment of zero-marginal-cost resources such as 
wind and solar may have a significant impact on the 
behavior of generators and decision-makers. This 
contributes to the discussions among power system 
industry actors and those who regulate it about how to 
design future energy markets. Another very important 
issue that affects energy market participants who invest 
in generation assets is the lack of monetary stream that 
can guarantee a recovery from their investments. The 
same issue also affects incentives to build new 
generation facilities if the prices do not increase 
because of administrative actions, such as price caps. 
This phenomenon is often referred to as the “missing 
money problem.” The missing money problem is 
predicted by electricity market theory [12]–[14]. To 
address this, most North-American independent system 
operators (ISOs) have established longer-term markets, 
such as capacity markets (e.g., New York ISO, PJM, 
Midcontinent ISO, ISO-New England, California ISO). 
However, a few (e.g., Electric Reliability Council of 
Texas [ERCOT], the Alberta wholesale market) rely on 
recovering costs from energy, operating reserves, and 
not capacity, and they employ a price cap at the value 
of lost load as a correct scarcity pricing signal to incent 
new generation. 

The main drivers for this research are (1) the need 
for a framework that can evaluate both operational and 
behavioral aspects of wholesale electricity markets and 
(2) to provide guidelines to assist decision makers 
when evaluating what-if scenarios by using an agent-
based model [15]. Hence, to evaluate the impact of 
non-ideal actions of strategic behavior, risk aversion, 
and increasing levels of renewables on the electric grid, 
this paper presents an agent-based framework for 
renewable energy studies (ARES), an integrated 
approach that adds an agent-based model of industry 



2 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

actors to PLEXOS and combines the strengths of the 
two to overcome their individual shortcomings. In this 
paper, we use ARES to study how generation 
companies (Gencos) can exercise market power in an 
ERCOT energy-only test system that has increasing 
levels of wind generation. 

The paper is organized as follows. Section 2 
presents the ARES framework. Section 3 describes the 
ERCOT test system. Section 4 shows results of the 
tests of market power behaviors under high 
penetrations of wind. Section 5 validates the agent-
based model. Section 6 discusses the results. Section 7 
summarizes our findings. 

2. ARES 

Standard power system modeling software are 
useful when analyzing the existing electric grid 
infrastructure, but they are not flexible enough to 
provide what-if scenarios about how generator 
behaviors impact market operations. Solutions to these 
problems can be found by using agent-based models 
[14-15], which can address behavioral and technical 
problems and are necessary for efficient policy making 
related to the electricity sector. Current agent-based 
test beds [17]–[21] have shed light on a variety of 
electricity market features by using test cases and 
projecting the aggregated results onto existing U.S. 
ISOs. However, these test beds are limited in their 
applications by several factors, such as the availability 
of realistic operational models of wholesale electricity 
markets. ARES adds an agent-based representation of 
industry actors to a production cost model to study the 
strategic behaviors of generators under different 
penetrations of renewables, market designs, and 
simulation time horizons, as shown in Figure 1. 
Production cost models are formulated to minimize the 
total cost of generating electricity to serve energy 
demand in every time step by committing (determining 
whether a generator is on or off) and dispatching 
(adjusting the output of the committed generators) 
generators while observing constraints on operations, 
transmission flows, and reserves. 

 
Figure 1. Flowchart of a typical ARES 

simulation 

This computational framework can be used to 
represent several strategic market participants, and it is 
herein demonstrated on a test case as a proof of 
concept. Current and future work is utilizing the 
framework to analyze market outcomes in more 
complex settings and simulations. The framework can 
be run using high-performance computing resources, 
and it can simulate multiple years of operations. A 
typical ARES simulation is composed of three stages: 
1. Calibration. During this phase, the learning 

algorithm is tuned after some local searching to 
find a set of parameters that guarantee that the 
agents learn the markup strategy to maximize their 
profits.  

2. Learning. According to the learning horizon, the 
ARES framework simulates hourly/daily/weekly 
bidding strategies, and PLEXOS is called and 
executed a number of times as defined in the 
calibration phase. 

3. Operation. Once the bidding behaviors have been 
learned, PLEXOS is executed with and without 
them to represent the time of operations. 

3. The ERCOT energy-only market in 2020 

ERCOT is the nonprofit entity that operates the 
Texas electric grid. The ERCOT test system used in 
this study was derived from [23]. Below we report a 
summary of its major features. ERCOT has a higher 
capacity of natural gas generation than many other 
markets, but nuclear and coal generators provide more 
than half of the electricity generated in ERCOT. 
Natural-gas-fired combined-cycle plants (NGCC) 
comprise the majority of the installed thermal 
generation capacity (41 GW). Conventional coal-fired 
generators, natural-gas boilers (NGB), and 
combustion-turbine (CT) plants make up 20 GW, 12.5 
GW, and 7.8 GW of capacity, respectively. The system 
has 5.1 GW of nuclear generation capacity, 147 MW of 
biomass generation capacity, and 572 MW of 
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hydroelectric capacity. The total system capacity for 
the ERCOT test system is 87.7 GW, with a peak load 
of 77.1 GW and a planning reserve of 13.7%. The coal 
price for all sub-bituminous units is constant at 
$2.00/MMBTU, lignite is $1.50/MMBTU, and the 
natural gas (NG) price is constant at $4/MMBTU. This 
test system models two classes of operating reserves: 
contingency and regulating. The regulating up and 
regulating down requirements are set at 1% of the 
hourly load. The spinning reserve and non-spinning 
reserve requirements are set to 2,800 MW and 2,000 
MW, respectively. The 2,800-MW spinning reserve 
value was set based on the largest contingency event, 
which is not proportional to load or to a growth in wind 
generation. Table 1 shows the generator parameters 
defined by [23] using the ERCOT LTS data [24]. 

Table 1. ERCOT LTS input data, derived from 
[22]. 

Category Average 
Heat 
Rate 

(MMBtu
/MWh) 

Min 
Runtime 
(Hours) 

VO&M 
($/MWh) 

Start-Up 
Cost 

($1000s) 

Nuclear 10 168 4 - 
Coal 9.8 24 5 5 

Biomass 13 8 9.5 2.5 
NGCC 7.1-8.5 4-6 2.9-5 3-15 
NGB 11-17.5 1-8 2-8 2.5 
CT 9.2-11.5 1-2 4/13 1-10 
IC 9.8 1 3 - 

This test system assumes an optimal, least-cost 
dispatch for the entire transmission system, whereas 
the adopted load profile is represented by the business-
as-usual load profile defined in the ERCOT LTS data 
for the year 2020, with a minimum demand of 28.6 
GW, a peak demand of 77.1 GW, and a total electricity 
demand of 407 TWh. For this test case, the authors 
modeled five Gencos to attain some market power. 
Each had at least 5% of the overall capacity. The sum 
of the capacities from these Gencos was approximately 
34 GW, which is a sizeable amount relative to the peak 
demand for ERCOT. All PLEXOS simulations within 
the ARES framework used version 6.400 R08 using the 
Xpress-MP 23.01.05 solver with the model 
performance relative gap set to 0.01% and a four-hour 
look-ahead period to avoid end effects. 

4. Market power issues in an agent-based 
model of the ERCOT system 

The literature on modeling strategic bidding in 
electricity markets is vast; for brevity, a brief summary 
is included here. The most prevalent approaches have 

been conducted using real bidding data by formulating 
several theoretical bidding mechanisms and 
reproducing the market outcomes that validate the 
theoretical and the empirical models [3], [4], [10], 
[25]–[30]. Computational, agent-based models that 
simulate the learning behaviors of market participants 
are loosely based on empirical facts that have been 
analyzed by these studies. These two modeling 
approaches are not in competition, but they provide 
different perspectives on the same matter. The latter 
tends to be used to model emergent behaviors in 
electricity markets from a computational perspective 
and assumes standardized yet complex behaviors that 
can be reproduced by simulations. The scope of our 
analysis is to model exercised market power by 
exploiting a bid-markup model that resembles 
economic withholding in ERCOT. The exercise of 
market power, either as capacity or economic 
withholding, is a well-known issue that can affect 
electricity market outcomes. Current electricity 
markets have implemented several methodologies to 
address this, such as the three pivotal supplier tests in 
PJM. Another example is represented by capacity 
markets that have been implemented in part to mitigate 
the capacity-withholding-based exercise of market 
power, as was observed during the California energy 
crisis. 

The topic has been the subject of several research 
papers that looked at its modeling aspects using the 
agent-based paradigm. In [31] the authors analyzed 
market power abuse in England and Wales as part of a 
real regulatory inquiry that was targeting two particular 
generators that could potentially influence wholesale 
prices. The authors of [32] utilized a reinforcement-
learning-based approach on a sample network as a 
discovery tool coupled with two well-known market 
power indexes, the Herfindahl-Hirschmann and the 
Lerner index, and two other indexes that the authors 
defined. However, it is well known that these two 
indexes are very poor indicators for electricity markets. 
[33] investigated market rules and market power 
mitigation rules using the agent-based modeling 
approach on a simplified representation of the PJM 
market. In [34], the authors modeled the EEX 
wholesale market with the EMCAS simulator. ERCOT 
itself has been subject of several studies, such as [35], 
in which the author studied the interaction of 
increasing wind, transmission constraints, production 
tax credits, wind and demand correlation, and 
electricity market prices. To our knowledge, this study 
is the first that specifically targets the issue of market 
power in an agent-based model of the ERCOT system. 

ERCOT attempts to mitigate market power with an 
ex-ante mitigation rule, also called the “small fish rule” 
[36]. The Public Utility Commission of Texas’s 
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(PUCT’s) Substantive Rule No. 25.504(c) states, “A 
single generation entity that controls less than 5% of 
the installed generation capacity in ERCOT; excluding 
uncontrollable renewable resources, is deemed not to 
have ERCOT-wide market power.” PUCT Rule No. 
25.5(60) defines “installed generation capacity” as 
including mothballed generation. As such, the most 
recent listing totals 81,597 MW of capacity, and 5% of 
that is 4,080 MW. The rule covers only the exercise of 
system-wide market power, and it does not shield 
generators from measures designed to mitigate local 
market power. One of the most interesting features of 
agent-based frameworks is the possibility of modeling 
strategic behaviors to generate what-if scenarios of 
existing power systems. In this respect, we used the 
ARES framework to model Gencos that exercise 
market power using an economic-withholding bidding 
strategy. The rationale behind the economic 
withholding strategy is to increase the level of prices 
by adding a markup to the true production costs of the 
generators and therefore to earn more money by 
supplying energy. The risk of adding a markup is that 
only the marginal generator sets the price, and offering 
too high could cause the market operator to select an 
alternative generator with a lower offer.  Therefore, the 
economic withholding strategy can lead to different 
outcomes according to the location of the generation 
company on the supply curve. If a generating entity 
operates a set of power plants that can be marginal and 
are positioned close to the marginal price for many 
time periods, it can drive up the prices and therefore 
earn higher profits. A generating entity that is unlikely 
to be marginal will not have an incentive to have a 
markup strategy that can place itself out of the supply 
curve. A generating entity that owns baseload plants 
will most likely bid their true production costs 
(assuming the entity controls less than 5% of the 
installed capacity). Based on the above hypotheses and 
assumptions, we defined generation companies 
(Gencos) that participate in the ERCOT energy market 
to implicitly have market power and to re-create an 
oligopoly structure.  

In our ERCOT agent-based model, we chose five 
representative Gencos, each with an approximately 
equal amount of NGCC capacity (see Table 2). They 
own more than 5% of the model’s maximum capacity 
(see Table 1), and this provides them with the ability to 
exercise market power based on the ERCOT PUCT 
rule [36]. The Gencos select a markup for their entire 
fleet of NGCCs for the daily energy market auction 
using a reinforcement-learning algorithm, described in 
Section 4.2. All of the non-NGCC generators in 
ERCOT are assumed to offer at their marginal cost. 

Table 2. Total Capacity of the Modeled Gencos 

Genco MW # of power plants owned 
G1 7,016 MW 7 
G2 6,945 MW 11 
G3 7,017 MW 13 
G4 6,014MW 14 
G5 7,092MW 26 

Electricity markets are characterized by inherent 
complexity and repeated games that require modeling 
the strategic behaviors of market participants. This task 
is usually achieved by endowing the market actors with 
learning capabilities. Computational learning is 
increasingly finding application as the most effective 
methodology to develop insights into price formation 
in complex markets in which there may be imperfect 
competition and when analytical results are elusive in 
all but the oversimplified stylizations. As such, 
electricity markets have been quite extensively 
analyzed in this way using a variety of learning 
algorithms (see [37] for a review). The literature on 
agent-based electricity market models points out three 
major types of learning algorithms: zero-intelligence 
algorithms [38], reinforcement and belief-based 
models [39], and an evolutionary approach [39]. In this 
paper, we modeled the strategic behaviors that the 
Gencos exhibited using a reinforcement-learning 
algorithm, the Variant Roth-Erev algorithm developed 
by [40]. The original Roth and Erev learning model 
considers three psychological aspects of human 
learning: 
1. The power law of practice, i.e., learning curves are 

initially steep and tend to progressively flatten out; 
2. The recency (or forgetting) effect, i.e., agents’ 

recent experience plays a larger role than past 
experience in determining their behavior; 

3. The experimentation effect, i.e., not only the 
experimented strategy but also similar strategies 
are reinforced. 

In this model, the markup bid by the Genco on the 
ERCOT market represents the action that is learned 
using the VRE algorithm [40]. 

5. Validation of the agent-based model 

The PLEXOS energy market model was tested against 
real historical prices in [23]. Because the simulations 
provide a what-if analysis for the year 2020, it is not 
possible to compare the simulated prices to the 
historical prices. In this section, the agent-based model 
is validated. Electricity markets around the world are 
characterized by distinctive phenomena: these features 
are typically called stylized facts [41], [42]. Examples 
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of these features are price jumps or spikes, extreme 
volatility, seasonality, mean reversion, and an 
underlying probability distribution that follows power 
law or is hyperbolic and exhibits heavy tails. Any 
agent-based model that represents an electricity market 
should try to mimic these features to reliably and 
accurately depict reality, and to be eventually used to 
forecast electricity market prices [43]. Because there is 
not a standard validation process to follow when 
validating an agent-based model, in this paper we 
analyzed a sample of the monthly market prices 
realized with the agent-based model and studied their 
statistical properties. The first phenomenon that we 
analyzed was the non-stationarity of the price time 
series; when its statistical properties such as mean, 
variance, and autocorrelation are all constant over time, 
a time series is stationary. Electricity market prices are 
not stationary because of the intrinsic nature of the 
commodity being traded. This feature is usually 
determined by using a hypothesis test, such as the 
Augmented Dickey-Fuller test, whose null hypothesis 
is that the time series is non-stationary. Accordingly, 
we applied the Augmented Dickey-Fuller test to the 
monthly electricity market prices generated with the 
ARES framework. The statistic for the null hypothesis 
is -1.176, and its corresponding critical values at levels 
1%, 5%, and 10% with 694 observations are -2.58, -
1.95, and -1.62 respectively. Hence, we could not 
reject the null hypothesis that the time series is non-
stationary at these confidence levels. Another stylized 
fact typical of electricity market prices is the fat-tail 
phenomenon: the distribution of returns displays heavy 
tails with positive excess kurtosis. This phenomenon is 
noticeable after filtering the data to remove the 
underlying seasonality and trend.  In general, returns of 
market prices are more meaningful for modeling and 
finding heavy-tailed distributions. These are typical of 
power-law distributions (e.g., Pareto) and can be 
inspected in a log-log graph of the complementary 
cumulative distribution of the returns. Figure 2 shows 
two simulated models of returns distributions (a 
Power-law distribution and a log-normal distribution), 
and we compared them to the actual time series 
simulated with the behavioral framework. The market 
returns showed a fat-tail phenomenon, matching the 
simulated power-law distribution. 

6. Results and discussion 

The computational framework allows us to model 
how market participants interact within the ERCOT 
system: the outcomes from an agent-based simulation 
are different from the ones that are defined by a least-
cost optimal dispatch that does not take strategic 
behavior into account. 

 
Figure 2. Fat-tail phenomenon observed in one 

sample of market prices obtained with the 
agent-based model. 

This model studies how behaviors change 
according to a different demand profile under 
increasing penetration levels of wind: the simulations 
are carried out in a low demand and a high demand 
scenario, and they depict a monthly market operation. 
To this aim, in Section 6.1 we discuss some of the 
differences between the baseline scenario (referred to 
in the pictures as “B”) and the agent-based scenario 
(referred to in the pictures as “A”) to address the 
changes in the market operations as well as in the way 
the Gencos are exercising their market power. In 
Section 6.2 we discuss the effect of theoretical high 
penetration levels of wind in the ERCOT system in 
2020. 

6.1. Least-cost optimization vs. agent-based 
modeling 

The first difference between the behavioral 
approach and the least-cost dispatch is the level of 
prices: when generating entities try to increase the 
level of prices to increase their profits accordingly, if 
they are successfully in doing so, the general level of 
prices will be higher. This difference is shown in 
Figure 3: the top graph shows a sample of the different 
wind penetration scenarios during the high demand 
scenario, and the bottom graph shows the same sample 
of scenarios during the low demand scenario. 
However, a higher price is not a straightforward 
consequence of adding a behavioral layer on top of a 
production-cost software. Indeed, PLEXOS could still 
determine that the generators that are being 
strategically offered by the Gencos, are less 
economical, and as such, are not scheduled to be 
dispatched and decrease how the Gencos’ market 
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power is exercised, and therefore decrease the 
generation supplied by the Gencos. We can see these 
effects in Figure 4, where we compare three Gencos’ 
energy dispatch in all scenarios and under different 
wind penetration levels. 

 

 
Figure 3. Price duration curve comparison 

between the high demand scenario (top graph) 
and the low demand scenario (bottom graph). 

Baseline scenario = B, agent-based  
scenario = A 

It is clear from the two graphs that the Gencos were 
able to strategically supply more energy on the market 
in the low demand scenario, but they did not in the 
high demand scenario. This might be considered one of 
the limitations of the currently implemented bidding 
strategy that does not assume temporal variations, i.e., 
the markups do not change within the two demand 
scenarios However, if the Gencos are generating less 
supply when they are strategic, how does this outcome 
affect their exercise of market power and their profits? 
Figure 5 represents the number of hours during which 
each of the Gencos had a unit that was marginal 

throughout the simulation. This result depicts how the 
Gencos were able to strategically raise the levels of 
prices using the economic withholding strategy and 
also set the market prices. 

 
Figure 4. Dispatched energy comparison 

between the high demand and low demand 
scenarios for three representative Gencos. 

Baseline scenario = B, agent-based  
scenario = A 

In general, almost all Gencos were able to set the 
price when they were strategic in both demand 
scenarios. In particular, Genco 5 benefited the most 
from the training session, because it could double the 
hours (total) during which it was marginal with its 
owned generators (therefore setting the price in the 
ERCOT region). The effect of wind on the Gencos’ 
ability to set the market price of course increased as 
wind increased in the system. In this respect, all 
Gencos could not set the price as much as they did in 
the no wind scenario or the low wind scenario (8%). 
Genco 5 appeared to be setting the price most in the 
high demand scenario, with 18% wind penetration. The 
behavioral model was also able to show what the 
overall Gencos profits would look like in a market 
environment. From the above discussion, we have 
shown that the Gencos supplied less energy to the 
market when they bid, they increased their ability to set 
the market price, and they accordingly increased the 
general level of prices. Figure 6 reports the distribution 
of the profits made by the Genco agents in the two 
demand scenarios and under different wind 
penetrations. 
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Figure 5. Difference in setting the marginal 

price between the Gencos in the high demand 
scenario (top graph) and low demand  

scenario (bottom graph) 

 
Figure 6. Distribution of each Gencos profits 

within the simulation. Profits have been 
normalized by each Gencos total capacity. 

Baseline scenario = B, Agent-based  
scenario = A 

The bidding strategy allowed the Gencos to 
maximize their profits and to produce less energy than 
they did under a least-cost dispatch model. This result 
is not in contradiction with what we have shown 
above. Finally, Table 3 reports the change in the ability 

of exercising market power by all Gencos throughout 
the simulations. The behavioral simulation, even 
without a high level of sophistication, allowed for a 
better representation of how generating entities can 
have an impact on the operation of an energy market 
under increasing wind penetrations. Profits in the low 
demand scenario consistently decreased and assumed 
negative values for all Gencos. It is worth mentioning 
that the model currently does not take into account the 
possibility of receiving make-whole payments when 
profits are negative. This is an offline feature that will 
be added in the next release of the ARES framework. 
By adding this feature, the profits would have a 
minimum value of zero. 

Table 3. Percentage of hours with respect to 
the two months of simulation during which the 
Gencos were marginal. Baseline scenario = B, 

Agent-based scenario = A 

Wind 
penetrati

on 
0% 8% 16% 40% 

Genco/Sc
enario A B A B A B A B 

G1 14
% 

15
% 

12
% 9% 8% 6% 6% 5% 

G2 13
% 9% 12

% 6% 12
% 5% 6% 2% 

G3 17
% 

10
% 

15
% 8% 10

% 6% 7% 3% 

G4 4% 2% 5% 4% 5% 2% 3% 1% 

G5 19
% 9% 14

% 7% 13
% 6% 8% 5% 

TOT 67
% 

45
% 

58
% 

34
% 

48
% 

25
% 

30
% 

16
% 

6.1. The effect of high penetration levels of 
wind on the ERCOT test system 

We begin with an examination of the operation of 
the ERCOT test system in all renewable scenarios 
performed using the behavioral model. Figure 7 shows 
the two monthly generation mixes of the wind 
scenario. At low penetrations, wind tended to displace 
natural gas generators. As wind penetration increased, 
coal began to be displaced, particularly when demand 
is low (top panel). Overall, the introduction of zero-
marginal-cost renewables displaced fossil-fueled 
generation, reducing their capacity factors and 
revenues. There was also a strong interaction among 
wind level and prices, which can be influenced by 
generator strategic behavior.  

Figure 8 shows the price duration curves for the 
two monthly simulations under increasing penetrations 
of wind. As shown, prices were determined by the 
marginal generators on the system at a given time 



8 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

interval. As wind penetration increased and gas was 
displaced, the number of hours with coal (the less 
expensive fuel) on the margin increased. However, 
there were also an increased numbers of hours when 
the high amount of wind (especially in the low demand 
scenario; bottom panel of Figure 8) was the marginal 
unit in the system. It is worth noting that we did not 
explicitly consider any bidding strategy that a wind 
generator can have in the energy market (e.g., bidding 
their production tax credit); including this feature 
would suppress more the prices to negative values 
because wind generators bid negative costs. 

 

 
Figure 7. Breakdown of high demand (top 

panel) and low demand (bottom panel) 
generation by type. 

 
Figure 8. Price duration curves for the low 

demand scenario (bottom panel) and the high 
demand scenario (top panel). 

In a high demand scenario, and with the ability of 
being marginal by actually bidding higher than their 
marginal costs, Gencos can gain high profits. This is 
reported in Table 4, which presents the Gencos average 
markups in the high demand scenario. However, to 
keep earning money once wind in the system increases, 
Gencos have to increase their markup levels, both in 
the low demand and the high demand scenarios. In 
doing so, the agents are profiting less with high wind 
penetrations. 
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Table 4. Average markup levels in the two 
demand scenarios. 

Scenario Genco/Wind 
Penetration 0% 8% 16% 40% 

High 
Demand 

G1 12.0 20.0 20.1 17.1 
G2 9.4 9.0 16.4 21.6 
G3 11.6 12.1 14.0 17.5 
G4 13.5 18.0 18.0 23.0 
G5 12.0 13.0 15.7 19.2 

      
Low 

Demand 
G1 8.6 9.3 8.6 10.1 
G2 11.7 9.6 11.2 9.6 
G3 11.5 11.7 13.0 12.7 
G4 10.5 10.2 10.2 10.0 
G5 12.6 13.0 14.0 13.2 

7. Conclusions 

With an increase in the level of renewable energy 
sources deployed in the power system at zero cost, 
price suppression may have a significant impact on the 
behavior of generators, the power system industry, and 
those who regulate it. To evaluate the impact of 
nonideal actions of strategic agents this paper has 
presented ARES, an integrated research framework 
that adds an agent-based model of industry actors to 
PLEXOS. The framework has been demonstrated by 
depicting how a test system that represents the ERCOT 
energy-only market might operate in 2020 under high 
penetration levels of wind. We studied how generation 
companies that are deemed to have and exercise 
market power do so in a test system that represents the 
ERCOT market by reproducing their decision-making 
processes in an agent-based model. Given the novelty 
of this modeling approach, we presented some 
differences between a standard, least-cost, production 
modeling simulation and a behavioral one.  The agent 
framework improved the realism of the model as 
follows: It increased generator profits compared to 
simple marginal-cost bidding; the level of the market 
prices was higher when strategic resources tried to 
increase their profits, bidding their true production 
costs and a markup. The bidding strategy helped the 
Gencos to supply less energy but at a higher economic 
reward. However, the impact of high penetrations of 
wind reduced the Gencos ability to manipulate the 
prices. The results obtained with the agent framework 
reproduce with more realism the operations of an 
energy market under different and increasing wind 
penetrations.  There are many open questions that the 
framework can address, and further analyses will 
investigate more sophisticated bidding behaviors and 
how generating entities can recover from their capital 
costs under current or future electricity markets. 
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