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ABSTRACT

An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter

data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a

fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in

both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate

system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two

sequential scans in time (time delay). The lagged coordinate system processing allows for finding and clas-

sifying clusters of data. The classification step is important in determining which clusters are valid aerosol

plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classifi-

cation techniques have skill since both local and global properties are used. Furthermore, more information is

available since both the original data and the lag data are used. Performance statistics are presented for a

limited set of data processed by the algorithm, where results from the algorithm were compared to subjective

truth data identified by a human.

1. Introduction

A human expert analyzing a movie loop of backscat-

ter lidar images can usually differentiate between

aerosol plumes and other similar features resulting from

artifacts such as low signal-to-noise ratio (SNR), hard

targets, or background fields. Consciously or subcon-

sciously, the human is performing subjective image-

processing tasks: clustering regions of like data and then

classifying these clusters as either valid (i.e., aerosol

plumes) or invalid. The goal of many image-processing

algorithms is to mimic the clustering and classification

processes that the human expert performs. Examples of

such algorithms used in the atmospheric sciences include

Cornman et al. (1998) and Weekley et al. (2003, 2004,

2010). In the former, the images consisted of Doppler

wind profiler radial velocity versus range; in the latter,

the images were the time series of anemometer data.

These papers described feature detection and quality

control algorithms based on image analysis and fuzzy

logic methods that mimicked human experts. In fact,

many of the techniques described in this work are an

outgrowth and generalization of the methods described

in Weekley et al. (2010)—that is, image segmentation

via clustering, and fuzzy logic classification using prop-

erties of the original image data and those in the so-

called lag domain.

Image segmentation is the decomposition of an image

into clusters of pixels that correspond to objects of
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interest—for instance, decomposing a satellite image

into clusters of clouds and background features.

Methods currently exist to segment images, and they

rely on segmenting the image in the original (or physi-

cal) domain. The lag domain (sometimes referred to as

the delay domain) consists of ordered pairs of data offset

in either time or space. Themotivation behind the use of

the lag domain comes from the assumption of spatial

and/or temporal correlation in physical processes. For

example, it would be expected that the motion of low-

inertia particles such as aerosols would be reflective of

the wind field within which they are embedded. There-

fore, over small space or time offsets, there should be a

certain amount of correlation in the backscatter field.

On the other hand, data reflective of low SNR would

show the opposite character, that is, low correlation.

This implies that using information from the lag domain

and the physical domain should be useful in differenti-

ating between clusters of aerosols and random clusters

found in low-SNR regions. The quantification and use of

correlated and uncorrelated fluctuations in lidar data is

not new (Lenschow et al. 2000). One of strengths of the

proposed algorithm is its use of both the original and lag

domains in the classification step. Clusters are found in

both domains, and then properties of these clusters are

used to differentiate between valid aerosol plumes and

clusters emanating from nonplume sources.

In the following, a detailed description of the plume

detection algorithm is provided. It should be noted that

while the current application of the algorithm is the

detection of aerosol plumes in backscatter lidar data, the

methods are easily adapted to other data and sensors,

where a correlated field is present.

2. Motivation and example

Consider a constant elevation lidar scan at one time

tm. The backscatter value at the range/azimuth loca-

tion (ri, uj) is denoted yi,j(tm), and so we can think

of the original image as the collection of points,

pi,j(tm)5 [ri, uj, yi,j(tm)]. Next, consider the scan at a

previous time tn pi,j(tn)5 [ri, uj, yi,j(tn)]. The image in

the (temporal) lag domain is then the set of points

[yi,j(tm), yi,j(tn)]—that is, the ordered pair of backscatter

values at the same range/azimuth location but at two

different times. It is important to note, in this paper, a

full scan of lidar data pi,j(tm) is treated as a snapshot of

the atmosphere at a single point in time. In fact, a full

scan of data is collected over multiple seconds, in the

case of the lidar data described in this paper, on the

order of 20 s. It has been shown in previous work

(Sasano et al. 1982) that such a full scan of lidar data is

not a perfect snapshot, but is distorted from the fact the

atmosphere changes during the time it takes to collect a

full scan of data. Such effects are not addressed in this

paper. To simplify the notation, in the following we will

denote yi,j(tm)5 yi,j and yi,j(tn)5 y0i,j. Typically, spatial
structures share similar statistics. For example, the

backscatter from hard targets is usually much greater

than those any of the other aforementioned categories.

One can imagine an algorithm that would cluster data in

an image based on self-similar statistics. A simple ex-

ample of such an algorithm is one that finds all the data

above the given threshold. Another way to find adjacent

data with similar intensity values is to consider the data

in the lag domain. The set of all points of the form (ri, uj)

is called the physical domain, the set of all points of the

form (ri, uj, yi,j, y
0
i,j) is called the lag space, and the set of

all points of the form (yi,j, y
0
i,j) is called the lag domain.

The points in the lag space contain information of not

only the data values but also indicate the point in the

physical domain where these data values occurred. In

the lag domain, the information about where the data

values occurred has been lost, but it is easier to visualize

points in two dimensions than in four.

Wishart (1969) used the idea of a lag domain in 1969 to

find outliers in scatterplots. The lag domain, also called

time lag space, is used in dynamics to find attractors

(Rosenstein and Cohen 1998) and novelties in time se-

ries (Ma and Perkins 2003). Other techniques for image

segmentation include the level set method discussed in

Airouche et al. (2009). Mathematical morphology is

discussed in Shih (2009). Various clustering techniques

are compared in Kettaf et al. (1996) and could be used to

find plumes in lidar images as well. Some morphology

techniques are used in the present paper to classify

certain features associated with hard targets. Plumes can

be found as a range (statistical) anomaly using hyper-

spectral signal processing techniques (Ben-David et al.

2007). In the Ben-David paper, each shot is processed

one at a time; anomalies may also be detected in time as

well using the lag domain. A statistical model for each

shot is calculated and assumes the first few range gates

consist only of background signal with no anomalies. A

probability model is assumed and statistical anomalies

are then detected using this model.

In the present paper, fuzzy maps are used in the

classification. Once the classification fuzzy maps have

been defined in the original space, the largest value of

the maps is computed. If this maximum occurs for, say,

the plume map, then the point is classified as a plume

point. Every point in the entire two-dimensional image

is classified, using both the lag domain and the original

image, as dead zone, noise, persistent, background, or

plume points. The dead zone is a region of the back-

scatter waveform that begins at the origin and tapers off
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gradually due to geometrical overlap of the laser beamand

the receiver field of view. In the Raman-Shifted Eye-Safe

Aerosol Lidar (REAL), full overlap should be achieved

by the 500-m range (Mayor and Spuler 2004; Mayor et al.

2007). In addition the persistent classification will use in-

formation from a larger number of previous scans.

Before defining the classifications, a motivating ex-

ample is presented. This example utilizes two individual

shots of the lidar, whereas in the subsequent discus-

sion, the techniques of the algorithm are applied to full

PPI scans of data. In this paper a PPI scan is radial

data collected at a fixed elevation angle and multi-

ple azimuths. Figure 1 illustrates two radial shots from

the same azimuth, at two sequential times, from a

horizontal-pointing scanning lidar, that is, the REAL.1

The horizontal scanning lidar transected a total azimuth

of about 71.58; shots are equally spaced in time and were

assigned to a regularly spaced grid in azimuth ever 0.258,
and radial range gates had 3-m spacing from 0 to roughly

6 km, and the elevation angle was near zero. Each scan is

roughly 21 s in duration. Two radial shots are shownwith

the same azimuthal value and separated in time by about

20 s. The first shot in Fig. 1a is shown as a solid blue line.

Notice several features in this data. The data form a

ramplike feature, where the intensity increases from 0 to

above 30dB (see the appendix for details on the con-

version) in the first third of a kilometer (the dead zone).

The data have a flat region with several spikes from 0.5

to about 2.5 km. At distances greater than 3.5 km, the

data have a low SNR. A human expert inspecting the

entire two-dimensional image determined that the spike

in the data at about 5.75 km is a hard target. The other

elevated intensity values in the 0.5–2.5-km range were

classified as plumes, again from inspecting the two-

dimensional image, and the remainder of the points in

the flat region, where the intensity was not changing

much, were classified as background. The second shot is

shown color-coded by the classification algorithm. The

green data near the origin in Fig. 1b denote a dead zone,

the bright red data are noise, the yellow data are plume,

and the sky blue data are classified as background. The

black data at about 5.75 km are classified as persistent.

The classifications shown in Fig. 1b were found using the

current algorithm that uses two-dimensional data from

the two scans adjacent in time and the two-dimensional

data from the lag domain. The previous 100 two-

dimensional scans were used to find the persistent data.

To classify points in the original domain, it is neces-

sary to develop scores in that domain. Some of these

scores are transferred from the lag domain by defining a

FIG. 1. (top) Backscatter as a function of distance for a given azimuth. (bottom) Backscatter

at the same azimuth from the next scan; the color indicates the classification assigned to the data

by the algorithm.

1 The data presented and analyzed in this paper are the property

of STAR LLC.
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transformation F from the original domain to the lag

domain as F(ri, uj)5 (yi,j, y
0
i,j). Suppose the point

(yi,j 1 y0i,j) has been assigned the score Ii,j; then all of the
points in F21(yi,j 1 y0i,j) will also be assigned the score

Ii,j. In this way, a score is defined for every point in the

original domain. Transferring a score from the origi-

nal domain to the lag domain is more problematic. If

the point (ri, uj) has been assigned the score ti,j,

then we assign the same score to (yi,j, y
0
i,j) if

F(ri, uj)5 (yi,j, y
0
i,j). It is possible that the point (yi,j, y

0
i,j)

could be assigned more than one score this way. This

could happen if two different points in the original

domain have the same datum in the present and the

previous scan. Thus, this assignment is multivalued,

and in fact the number of scores could be as large as

the number of elements in F21(yi,j, y
0
i,j). In spite of this

difficulty, it is still useful to study the location of points

in the lag domain. For example, if the point (ri, uj) has

been assigned the classification of a noise point, then

assign the classification of a noise point to the point

(a, b) if F(ri, uj)5 (yi,j, y
0
i,j)5 (a, b) for some (ri, uj).

Figure 2 illustrates the classification for noise

(Fig. 2a), background, plume (Fig. 2b), dead zone

(Fig. 2c), background, and persistent (Fig. 2d) from

Fig. 1 in the lag domain. The colors used in Figs. 2a–d

correspond to the colors used in Fig. 1. In Figs. 2a–d

the horizontal axis is associated with the data from the

present scan and the vertical axis is associated with the

data from the previous scan. Notice that the classifica-

tions shown in Fig. 1 map to coherent clusters in the lag

FIG. 2. Scatterplots of the data classified by the algorithm in the lag domain, where the color indicates the

classification assigned by the algorithm.

700 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33



domain in Fig. 2. The gray data points in each of the

figures indicate data with classifications other than the

classification under consideration. These figures indicate

how clusters with different classifications may overlap in

the lag domain.

For example, the noise points overlap or nearly

overlap all of the other point types (see Figs. 2b–d). This

indicates that backscatter values alone cannot produce

a unique classification. Consequently, an independent

classification score for noise points was developed,

based on certain statistical measures of correlation.

Persistent and background points often overlap in the

lag domain (Fig. 2d). Similarly, an independent score is

required to separate persistence points from the other

point types. For example, a hard target such as a building

has a large backscatter, but it is also persistent over time.

The background points are separated from the other

point types by a score based on density in the lag do-

main. Many points in the background region have a low

local spatial and temporal variance and are clustered

around a backscatter value near 35 dB. This means that

the background points in the original domain will map

into a small, densely populated region centered around

the point (35,35) in the lag domain. The classification of

dead zone data also uses a lag density approach. The

remaining classification to consider is plume points,

which are classified using a score derived from relative

backscatter intensity.

Moving on from classification of radial data, consider

the classification of points in a two-dimensional lidar

image. The image to be segmented is shown in Fig. 3a

and is a scan of relative backscatter intensity (dB) con-

sisting of multiple radial shots. Notice the plumes be-

tween 0.5 and 3.5 km. Noise begins to dominate the scan

between about 3.5 and 6km, and the bright data—

specifically, values greater than 40 and farther than

3.5 km—are mostly hard targets. A human analyst

classified the data by watching time-lapse animations of

the data. Figure 3b is the associated lag domain image

for the data shown in Fig. 3a and the previous scan (not

shown). The y5 x line is shown for reference. Notice the

structure of full scan data is similar to that for the single

shot shown in Fig. 2: there is a well-correlated region

between roughly 10 and 30, a broad region with less

dense and less correlated data (the arrowhead shape)

between 30 and 40, and a second, less dense and sparser

region greater than 40.

Sets of scores are to be defined in the original and lag

domains to indicate if a point belongs to a plume, noise,

background, persistent, or is in the dead zone. The

scores are calculated using methods in either the phys-

ical domain, the lag domain, or via a combination. For

instance, the noise score is calculated using fuzzy logic

techniques and statistics in the physical domain, whereas

the background score is based on a density statistic

calculated in the lag domain. One might start by

calculating a score in the physical domain and then

translate it to the lag domain. A new score may be cal-

culated for all the points in the lag domain and then

translated back to the physical domain. This back and

forth calculation—physical domain to lag domain and

back to the physical domain—will be used to calculate a

score for the dead zone region of the lidar image. Once

all the scores have been calculated, each data point in

FIG. 3. (a) Backscatter as a function of distance (km) from the

lidar located at the origin. (b) Lag domain for the above-mentioned

image and the previous image.
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the original domain is classified as noise, plume, persis-

tent, dead zone, or background according to the maxi-

mum score for each classification type.

3. Fuzzy logic

The classification of the lidar image uses a fuzzy logic

approach; that is, scores are calculated for each of the

data types, which are then used to determine the final

classification assigned to the data. The basic idea behind

fuzzy logic is to assign a value that indicates the degree a

condition is satisfied rather than a certainty, as would be

done with a Boolean zero or one value. For instance,

suppose one has a time series with outliers. A fuzzy score

might be created to indicate the overall confidence in a

given data point, as opposed to a discrete good-or-bad

assignment (Weekley et al. 2010). Typically, the fuzzy

score is in the interval [0,1], Fuzzy scores are often

normalized in this way to facilitate combining the scores

by fuzzy rules. A membership function can be applied

to a statistic (or score) to create a membership value.

This can also be seen as a way of classifying data—for

example, to determine whether the statistic is small,

medium, or large. In the case of an outlier score one

might apply a membership function to the score to

classify the large outliers. Membership values may be

further combined to create additional scores. Statistics

and scores for plumes, noise, background, the dead

zone, and persistence (which includes hard targets) are

developed and discussed. Membership functions are

defined and membership values are found and used to

classify the data. The statistics themselves are calculated

from a number of methods applied in the physical do-

main, the lag domain, or both.

Fuzzy logic was first used in engineering (Zadeh 1965)

and has been used in the atmospheric sciences for some

time—for example, the identification and tracking of

gust fronts (Delanoy and Troxel 1993) and to improve

moment estimation for Doppler wind profilers

(Cornman et al. 1998; Morse et al. (2002). Fuzzy logic

has also been used extensively in image processing (see

Chi et al. 1996; Blackledge and Turner 2001; Nachtegael

et al. 2007). In Weekley et al. (2010) fuzzy logic was

applied to both the physical and lag domains to study

time series, and it was noted therein that such techniques

could be applied to images.

4. The fuzzy power statistic

The REALmeasures digitizer count values related to

the backscattered intensity as a function of range and

azimuth, and the backscatter intensity is large (after

preprocessing described in appendix A) for plumes,

noise, and hard targets. Consequently, the backscatter

is a goodmeasure for each of these features. However, if

the backscatter is unnormalized, the scaling can change

as a function of time and range and could be detrimental

to the processing in both the physical and lag domains. A

preprocessing (or normalization) algorithm was pro-

vided to the authors by themanufacturer of the lidar and

by STAR LLC. The normalized backscatter data are

referred to as the relative backscatter intensity (also

referred to as simply backscatter, for the sake of space,

in the figures). This quantity is shown in Figs. 1 and 3.

Figure 3b is the lag domain for the relative backscatter

intensity.

The relative backscatter is converted to a fuzzy

statistic—that is, a quantity on the closed interval [0,1]—

by applying a piecewise linear function to the relative

backscatter, where f (y)5 0 for 0# y# 30,

f (y)5 (y2 30)/15 for 30, y, 45, and f (y)5 1 for

45# y. The power statistic is defined as the arithmetic

mean of the rescaled backscatter statistic for the present

time and for the previous time pi,jf[f (yi,j)1 f (y0i,j)]/2g and
is shown in Fig. 4a, where a warm color indicates a value

close to one and a cool color indicates a value close to

zero. Figure 4 is very similar to Fig. 3a, but we now have a

quantity whose value ranges between zero and one,

which is needed when assigning a classification using

fuzzy logic; that is, a decision is made regarding what

classification to assign to a point based on score, so all the

scores need to have similar scaling. Notice that the

plumes and hard targets are bright relative to the noise

FIG. 4. Backscatter rescaled to the interval [0,1] by a piecewise

linear map.
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and background, but the power statistic by itself does not

separate plumes from hard targets; that is, the fuzzy

power score for the hard targets found at distances

greater than 3.5km are similar to those in the brighter

plumes found between 1 and 3km, and hence further

classification is required to distinguish plumes from hard

targets.

5. The fuzzy noise statistic

As mentioned previously, a statistic is developed to

find noise in the lidar image. Figure 5a (black curve) is a

plot of a single shot of backscatter data from the lidar

as a function of range. One can see from the plot that the

noise in the black curve increases as a function of range

[as expected as the signal-to-noise ratio decreases with

range (ri, uj)] and begins to appear more noticeable

around 3km. The green curve in Fig. 5a is the final noise

statistic assigned to each point in this radial shot, and the

intermediate statistics used to calculate the final noise

statistic are shown in Figs. 5b–d. Our statistical measure

of noise is defined as data that have a large sample

standard deviation (Miller and Miller 2003) over an in-

terval and a small R-square value, both calculated over

31 range gates. The number of range gates was chosen to

be large enough to calculate a meaningful statistic but

small enough to resolve features in the data on a scale of

about 100m (the range gates are about 3m in width). In

general, noisy data are not well correlated. This can be

quantified to some degree by the R-square statistic or

the sample correlation coefficient (Miller and Miller

2003) between the two variables yi,j and yi11,j, where yi,j
is the backscatter data at the point (ri, uj) and yi11,j is the

backscatter data at the point (ri11, uj). In Fig. 5b the

black curve shows the standard deviation calculated

over the 31-point running window for the data shown in

Fig. 5a (black curve). The red curve is a fuzzy score

derived from the 31-point running standard deviation

using a simple membership function (a high standard

deviation is given a high noise score). Similarly, Fig. 5c

shows theR-square statistic calculated over the 31-point

running window (black) and a fuzzy score (red; a low

FIG. 5. Intermediate statistics and scores used to calculate the weighted noise statistic. (a) Backscatter as

a function of distance (black) and the final weighed noise statistic (green). (b),(c) Intermediate statistics (black) and

scores (red) after the application of a membership function (sigmoid). (d) Geometric mean of the scores from

(b) and (c) (red) and the average noise score over an entire scan (blue).

APRIL 2016 WEEKLEY ET AL . 703



R-square statistic is given a high score). In Fig. 5d, the

red curve is the geometric mean of the two fuzzy scores

from Figs. 5b and 5c, and the black curve is the median

of this score over multiple azimuths. The geometric

mean is used to mimic a ‘‘logical and’’ between the two

scores. Noise tends not to be consistent over multiple

azimuths, so themedian value is taken to provide amore

stable spatial quantity. The geometric mean was chosen

because for the fuzzy noise score to be large, both the

R-square fuzzy score and the standard deviation fuzzy

score must be large; that is, at a fixed range in the shot,

one assigns a fuzzy score to be the median fuzzy score

(Fig. 5d, red) at all other points at that fixed range.

Notice that the median fuzzy score over all azimuths has

the desired properties; that is, the fuzzy noise score

gradually grows as a function of range. The final fuzzy

noise statistic (ni,j), the green curve in Fig. 5a, is the

geometric mean of the two functions shown in Fig. 5d.

Observe the large noise statistic at the end of the dead

zone region. Notice that the green curve in Fig. 5a tends

to be smaller for the plumes and for the hard target.

Although these features have large variances, they also

have a smaller noise score because they tend to be more

correlated than noise. Figure 6 shows the noise statistic

plotted for an entire scan. Notice that the plumes get a

low noise score, as do the near edges of the hard targets.

This indicates that the noise statistic can also be used to

separate noiselike points from plumes. Finally, notice

the high noise values at the end of the dead zone region

near the origin and the transition to higher noise sta-

tistics at about 2.5 km.

6. The lag density statistic

Recall that the lag plots in Fig. 2 are created from

successive lidar shots and the time difference between

each shot is roughly 20 s. Over such a short time interval,

one would expect the power statistic of background

points not to change by a large amount. Also, from

Fig. 1b it can be seen that the background is clustered

around a power of 35 dB with a fairly low spatial vari-

ance, and one expects a low temporal variance as well

because of the previous discussion. This results in a re-

gion of densely packed data around (35,35) in the lag

space. This motivates the use of density calculated in the

lag domain to find the background data in the physical

domain. Density in the lag domain is estimated using a

set of overlapping tiles with a fixed size and calculating

the percentage of the data in each tile—that is, for a

fixed tile count, the number of points (ri, uj, yi,j, y
0
i,j) in

the lag space (also known as delay space) where (yi,j, y
0
i,j)

is in this fixed tile, including possible repeats. To convert

from counts to density, the total number of points in the

lag space divides the count for a tile. This number is

assigned to the center point of the given tile, and in this

way, the density forms a gridded field. Next, linear in-

terpolation is used to compute a lag density for every

point (yi,j, y
0
i,j) in the lag domain. Since the densities can

be small, we normalize each density by the largest

density. This gives the density statistic di,j scaled to the

closed interval [0,1]. The choice of tile size depends on

the quantization of the underlying backscatter data. In

this case the tile size is 0.5 units [recall the backscatter is

in arbitrary units (dB) after the preprocessing]. The idea

is to set the bin size to be small enough to resolve detail

but not so small that it contains too few data points. The

lag density statistic (score) is shown in Fig. 7b. Notice the

large density around (35,35). The statistic for the point

(ri, uj) in Fig. 7a is di,j and is called the lag density sta-

tistic, where the statistic di,j is transferred from the lag

domain to the physical domain. Here a cool color

represents a low density and a warm color represents a

high density. Notice that the plumes, noise regions, and

hard targets (Fig. 7a) have a lower density score than the

background points. This is because the relative back-

scatter intensity of these point types changes more be-

tween scans than for the background points. In other

words, the power in these regions is more spread out.

Thus, these point types tend to be farther from the dense

region in the lag domain and form less dense regions.

The background points have the highest density. Since

some noise points have high lag density, it is important

FIG. 6.Weighted noise score for a single lidar scan, where a warm

color indicates a large noise statistic and a cool color indicates a low

noise statistic.
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FIG. 7. (a) Densities calculated in the lag domain in the spatial domain, where a warm color

indicates a large density and a cool color indicates a low density. (b) Density calculated in the

lag domain. The background data correspond to the warm cluster centered on a backscatter

near 35.
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to use the noise statistic to separate noise points from

background points. The lag density statistic is adaptive

since it depends only on the lag density, which is calcu-

lated from the present and previous scans.

7. The dead zone statistic

Recall the dead zone is a region of the backscatter

waveform that begins at the origin and tapers off grad-

ually due to geometrical overlap of the laser beam and

the receiver field of view. In the REAL, full overlap

should be achieved by the 500-m range. Notice that in

Fig. 1a, the backscatter increases from zero until it

reaches a value near 30 dB and then flattens out. In

Fig. 3a, the dead zone appears as a small dark blue tri-

angular wedge near the origin. Figure 8a shows the final

dead zone statistic in the physical domain. The calcula-

tion of the dead zone score is performed in several steps.

First, an initial statistic Ii,j is computed by setting Ii,j 5 1

if the point (ri, uj) is within 0.325 km of the lidar; oth-

erwise, it is set to zero. This is shown in Fig. 8b. The

statistic Ii,j is then assigned to the point (ri, uj, yi,j, y
0
i,j) in

the lag space. Next, a density statistic is computed in the

lag domain similar to the lag density statistic. The count

is over all points in the lag space, where (ri, uj, yi,j, y
0
i,j)

has an initial score of one and (yi,j, y
0
i,j) is in the tile. The

count of points in a tile includes repeats since the count

is over all points (ri, uj, yi,j, y
0
i,j). This density is the dead

zone statistic dzi,j for each point (yi,j, y
0
i,j) in the lag do-

main and is shown in Fig. 8c. Finally, the dead zone

statistic is mapped back to the physical domain and the

result of this process is shown in Fig. 8a. The in-

terpretation of this statistic is that a point farther away

from the lidar than 0.325 km may have a high dead zone

statistic if the corresponding lag point has nearby dead

zone points; that is, the receiver may not be able to

process points near the dead zone, so points near dead

zone points (in the lag domain) should also have a higher

dead zone statistic. This is the only case where an initial

statistic in the physical domain is transferred to the lag

domain and then used to define a statistic in the

physical domain.

8. Classification

A single classification is assigned to a data point (ri, uj)

once the individual scores are calculated for the point—

specifically, power (pi,j), dead zone (dzi,j), lag density

(di,j), and noise (ni,j). To assign a classification to a data

point, fuzzy maps are applied to the statistics to convert

them into membership values. For instance, a plume

membership value is calculated by applying a fuzzy map

FIG. 8. (a) Dead zone statistic in the physical domain, where a warm color indicates a large

value and a cool color indicates a low value. (b) Initial guess of the dead zone region. (c) Initial

dead zone region in the lag domain.
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to the power statistic. This map takes the shape of a

logistics curve, which approaches one as the power sta-

tistic increases to one. The fuzzy score for the plume

statistic is called the plume score, denoted pl
i,j, and is

motivated by Fig. 4, where the plumes have large power

values. Similar scores tli,j are computed for each of the

classifications of noise, lag density, and dead zone. The

score dl
i,j is called the background score and is motivated

by reference to Fig. 7a, where it was shown that back-

ground points have a large lag density statistic. Each of

these fuzzy maps has similar shapes, but they have dif-

ferent parameters. These parameters allow for a certain

amount of tuning. Once these four scores have been

computed, individual classifications may be calculated.

The point (ri, uj) is given the classification score

Si,j 5max(pl
i,j,n

l
i,j, dz

l
i,j,d

l
i,j) and is given the classification

Ci,j, where the classification is that of the category where

the maximum was attained. For example, if Si,j 5 pl
i,j,

then the point (ri, uj) is classified as a plume point.

Similarly, if Si,j 5 nl
i,j, dz

l
i,j, then the point (ri, uj) is

called a noise, or dead zone, point. In the case of a tie,

pick the first index (as determined by the order of the

scores in the max) where the maximum occurs. This

strategy slightly favors selecting a plume classification.

Every point in the image is classified as either a plume

point, a noise point, a dead zone point, or a background

point. The fuzzy values are thus transformed, or de-

fuzzified, into classifications by categories; that is, a point

is most like the classification that has the highest score.

Hard target points have yet to be classified. These

points have a high power score, as do bright plumes. To

distinguish between bright cluster points and hard target

points, we look for clusters of points that make up hard

targets. Specifically, clustering is used to assign a clas-

sification to the data inside the cluster. Hard targets,

such as buildings and the shadow regions behind the

buildings, persist in time. For example, consider the

bright target in Fig. 3a and the elevated (in backscatter)

streak behind this target in the upper-left-hand corner of

the figure called a shadow region. Notice how the

shadow feature is roughly aligned with the radial. The

average relative backscatter over some previous scans is

used to find these persistent features. In this paper 100

previous scans were used. Figure 9a (persistent statistic)

shows the average relative backscatter for the 100 scans.

The hard targets and shadow regions are clearly visible

as warm colors. The bright region on the extreme upper-

left edge of Fig. 4 does not appear in Fig. 9a, suggesting

that this feature is not persistent in time and is likely a

bright plume. Also, this possible bright plume does not

contain a shadow region.

A logistic fuzzy membership function is applied to the

persistence statistic to create the persistence score. An

example of this is shown in Fig. 9b. The persistence score

helps to classify the hard targets and shadow regions.

However, it could be that there are bright, persistent

plumes from sources such as incinerators or heating

plants that could be confused with hard targets. To

perform this separation, mathematical morphology

techniques are applied. A threshold is applied to the

points in the persistence image (Fig. 9b) and clusters of

points above this threshold (see Shih 2009) are formed.

It is the large persistence clusters that are aligned with

radials that form the shadow regions. To detect these

radial clusters, a kernel or structuring element is used

FIG. 9. (a) Persistence statistic, which is the average backscatter

over 100 lidar scans. (b) Large persistence score after a sigmoid is

applied to the persistence statistic.
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(Shih 2009). This kernel has the shape of six azimuths by

90 range gates. A thick persistence score is calculated by

taking a morphological opening followed by a mor-

phological closing with the structuring element and the

large persistence score. Clusters are found in the large

persistence score by finding the connected components

above a threshold value (0.2). A thick score for each

cluster is calculated as the average of the morphological

thick score found previously. If enough data inside the

cluster are thick, then the cluster is labeled as such;

otherwise, it is identified as thin. All of the points in the

thick and thin radial clusters are classified as persistent.

The persistent classification given to these points in the

cluster takes precedence over any previous classifica-

tions assigned to the data.

Figure 10 shows the classifications assigned to the data

shown in Fig. 3a. Comparing Figs. 3a and 10, notice that

the desired separation between hard targets (buildings

and shadow regions) and plumes has now occurred. A

database of hard targets and shadow regions could be

constructed over time using the persistent classification

information. The classification of the plumes roughly

agrees with the classification a human might give by

looking at Fig. 3a. The dead zone region is seen at the

apex of the scan, and there is a noise region at the end of

dead zone (see Figs. 1a and 1b). The background region

is for themost part a solid region around the plumes, and

there are some background points among the noise

points at distances greater than 3km. This is also seen in

Fig. 1b. The impression given in Fig. 3a is also that some

background points persist beyond 3kmbut are swamped

by noise because of weak backscatter return at larger

ranges. Clusters of points that are plumes can be iden-

tified and not every point has to have a perfect classifi-

cation in order to find these plumes. In Fig. 10, notice the

cluster of points in the upper-left extreme edge has been

classified as a plume and illustrates how bright (and

large) plumes may sometimes be detected even though

the surrounding points are mostly noise points.

Figures 11a–d show the point classifications in the lag

domain. Given the point (ri, uj, yi,j, y
0
i,j), if the point

(ri, uj) has classification Ci,j, then the point (yi,j, y
0
i,j) will

also have classification Ci,j. A point (yi,j, y
0
i,j) could have

more than one classification. Besides a point having

more than one classification, there is also the problem

that if two classification types are intermixed in the lag

domain, the colors tend to run together when plotted.

Figure 11 shows only one or two of the classifications

at a time. Two classifications are plotted together only

when they are separated in backscatter, and again that

illustrates that backscatter alone does not separate

these point types. In Fig. 11a both background and

plume are plotted. Notice the background points re-

main close to the y5 x line because background points,

in the cases studied, do not change much in relative

backscatter from scan to scan. Some of the plume

points are away from the line y5 x because these

plumes are moving in time. Edge points of the plume

may change quite a bit in time since the plume is

moving, so background points could become a plume

point or vice versa. It is also possible that some of the

plume points away from the y5 x line are misclassified

and might be noise and may have happened because

the plume points were defined in terms of power only.

Figure 11b shows the dead zone data; it can be seen that

most of these points are near the line y5 x. Figure 11c

shows the noise points. Notice that since noise is not

consistent over time, there are a large number of points

far from the y5 x line. Notice that part of the noise

region overlaps with the dead zone region. In this case

both the dead zone data and the noise data have similar

backscatter, which may arise from noise at the end of

the dead zone region. Notice also, that noise points can

have a wide backscatter range. This means that scores

depending only on power could misclassify some

points. Misclassification of noise is not a severe prob-

lem for finding plumes since noise points tend not to

form coherent clusters with similar backscatter or

power values. Figure 11d shows the persistent points in

the lag domain. As expected, the persistence points

have elevated power values. The points far from the

y5 x line could be misclassified noise points. Clusters

of data classified as persistent tell us the locations of

suspect data such as hard targets and shadow regions,

and are regions where the backscatter is not from the

true atmosphere. These figures suggest a change in

classification may be needed if a point is far from the

y5 x line and has low density in the lag domain. For

instance, one could consider changing the classification

to noise. However, the reclassification of the persistent

FIG. 10. Classifications for the entire lidar scan in the

physical domain.

708 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33



data has not been done since these problematic points

appear to have low impact on finding plume clusters.

9. Tuning and validation

To validate the algorithm described above, plumes

were identified in multiple PPI scans through a human

truth effort. A bounding box was drawn around a plume

of interest and a threshold was set; points above the

threshold and inside the box were marked as plumes. A

similar mask was created for the results of the algorithm;

specifically, points that were identified as plume were

assigned a value of one and all other classifications were

given a value of zero.

The entire dataset consisted of 142 scans, 100 scans of

which were used to build the persistent target score,

leaving 42 scans for truth. These remaining 42 scans

were split roughly evenly before and after the 100 scans

used for the persistent score. The early scans, numbered

1–21, were mostly clear with only a few small plumes in

near-range gates—specifically, range gates less than

2.5 km (the noise region started roughly at 2.5 km). The

second group of scans used in the human truth effort

numbered 122–142 and were much larger, and extended

much further in range. In all the scans truthed, plumes

were not identified in regions where noise persisted to

avoid contaminating the statistics with noisy data.

A single scan of human-truthed data was used to

further tune the algorithm by finding the best set of

parameters for the plume and background fuzzy mem-

bership functions. The best set of parameters was found

by creating a coarse mesh for the membership function

FIG. 11. Classifications for the entire lidar scan in the lag domain; gray data points indicate the scatterplot of all the data in the lag domain,

and the classified data are shown in color.

APRIL 2016 WEEKLEY ET AL . 709



parameters, running the algorithm for each parameter

setting, calculating a plume mask for the algorithm, and

finding the absolute difference between the algorithm

mask and the human truth mask. To test that the algo-

rithm was not overtrained, an early scan, which was

mostly clear with just a few small plumes, was evaluated.

It was found that the algorithm did not overclassify

plume regions in this case. Figure 12 shows the skill

metrics for a single scan of data—specifically, the true

positive data (green), false alarms (red), true negative

(gray), and missed detections (yellow). Notice that the

leading and trailing edges of the plumes are classified as

either missed detections or false positive values and is

caused by the plume moving between scans. Addition-

ally, there are a few radials that are misidentified as

plumes by the algorithm. These misidentified plumes

were caused by what is called spoking.2 The REAL data

in particular exhibit this characteristic. It is due to the

difficulty of making high-precision measurements of

laser pulse energy. Scanning micropulse lidar systems

appear to be less prone to this idiosyncrasy (Mayor et al.

2015). In general, the algorithm performs well in

matching how a human characterized the data. Notice

there is some disperse data that are missed by the

algorithm (yellow) near 4 km, which is a result of the

method used to truth the data. These were in fact in-

correctly identified as plumes by the human truth effort.

A total of 1 355 285 pixels were identified as true posi-

tives in the human truth scans, 320 921 pixels were

identified as false positives, 8 522 371 pixels were iden-

tified as true negatives, and 267 638 pixels were identi-

fied as missed detections. Using these values yields a

true skill score of 0.798.

10. Future work

The current dataset used in both the development and

evaluation of the algorithm was limited. Future work

should include expanding the cases evaluated to more

thoroughly test the assumptions and performance of the

algorithm and to identify examples cases to improve the

algorithm. Such cases should include transient hard

targets, such as insects and wires. Tuning the algorithm

should use more sophisticated optimization techniques

and more data to improve the estimation of the pa-

rameters in the membership maps. To this point, syn-

thetic data might be used to train the algorithm and

further develop and refine the detection capabilities of

the algorithm; for instance, Hamada et al. (2016) made

use of synthetic aerosol data in testing their algorithm.

Future work might also include the addition of a track-

ing algorithm (Dérian et al. 2015; Hamada et al. 2016). A

tracking algorithm would help detect plumes that are

moving with the wind at a high rate of speed and im-

prove the detection of plume edges and might help in

estimating the ambient wind. To address issues with

leading and trailing edges of plumes, it would useful to

include geometrical information such as lag spaces cre-

ated by shifting the given present image in azimuth and

radial directions. The background classification should

be used in the preprocessing of the data (refer to the

appendix) rather than making assumptions about the

data—specifically, what data belongs to the background.

Also, lag space techniques should be used to identify

radials with elevated power relative to the immediate

neighbors in azimuth (previously termed spoking).

All of these techniques should be applicable to a wide

range of devices such as radars, wind profilers, and

sodars. These methods could also be applicable to

medical imaging devices, such as computerized axial

tomography (CAT) scans, magnetic resonance imaging

(MRI), and ultrasound images. The authors have done

some studies applying these techniques to analyze sat-

ellite, radar, and CAT images. It may be that lag and

other fuzzy scores may prove to be useful feature vectors

in machine learning algorithms for image segmentation,

and object classification.

FIG. 12. Plot of skill metrics: true positive (green), false positive

(red), true negative (gray), missed detections (yellow), and data

outside of the truth dataset (purple). The leading and trailing edges

of the plume correspond to the false positive and missed detection

values (along with regions that were misidentified as plume data).

Notice that edge values and a few radial features have been mis-

labeled as plume data.

2 Spoking refers to an artifact in the lidar data that is caused by

shot-to-shot fluctuations in the laser pulse energy that result in

what appears as radial streaks in the image data.
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11. Conclusions

The goal of classifying lidar backscatter data using

scores in the physical and lag spaces has been achieved.

Scores for multiple classes of data found were developed

as part of the classification scheme. Specifically, scores

for background, persistent features, plumes, noise, and

the dead zone were developed. An important use of the

lag domain was to compute the lag density of points,

which was used in the classification of background

points. The definition of shadow regions used tech-

niques from morphology and was done in the physical

domain. The plume score was based only on back-

scatter in the physical domain. The noise score was

defined in the physical space by statistical means. Both

the lag domain and physical domain was used to score

the points in the dead zone; both the lag and the

physical domains are useful in classifying points in the

physical domain. These classifications are generated

for each scan and are used to identify the plumes. The

algorithm not only classifies plumes, but it locates hard

targets and shadow regions behind hard targets. In

addition, the algorithm may be used to identify per-

sistent plumes coming from sources such as incinera-

tors and power plants.
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APPENDIX

Calculation of Relative Backscatter Power

The steps to calculate the relative backscatter power

are as follows: 1) power normalization. The data in each

shot are divided by a normalization factor provided by

the lidar for each shot. This factor accounts for the fact

that the power in each shot is not constant. 2) Range

correction. The data value is multiplied by the square of

the range because the backscatter drops off by the in-

verse square law. This keeps the backscatter in a com-

parable range throughout the image. 3) Reduce dynamic

range. This is to make the data look more like radar

data and reduce the dynamic range of the data. Simi-

lar to radar data, the backscatter Z is replaced by

Y5 10 log10(Z) and is not allowed to be below a set

minimum value. 4) To further mitigate variations in

transmitted laser pulse energy, the average of the data

of a set of predetermined range gates is computed,

subtracted from the data, and then a predetermined

constant is added to the data. The predetermined range

gates are set outside of the dead zone region but well

away from the noise region. It is assumed that these

predetermined range gates contain only background

points. Steps 1, 2, and 4 mitigate the problem of spoking,

where spoking is a radial with large power relative to its

immediate neighbors in azimuth.
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