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Abstract: Inferring mathematical relationships with quantified uncertainty from measurement data is common to
computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian
inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because
collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is
compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in
renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.
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The Measurement Problem

A measuring system can be represented by the statistical
model

y = g(x ;θ) + ε,

where we seek to measure the quantity value x , and
the indication y is generated by the measuring system,
ε is the noise in the indication, with a distribution model,
the function g models the measuring system, and
the calibration parameter θ parameterizes g.

The measuring system transforms the unobservable x into the
observable y .
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Sources of Uncertainty I

Example (Affine Measuring System):

y = g(x ;θ = (a0,a1)
T) + ε =

offset︷︸︸︷
a0 +

gain︷︸︸︷
a1 x + ε, ε ∼ N

(
0, σ2

ε

)
.

If the measuring system can be “zeroed” (e.g., a mass scale),
then we have a Linear Measuring System with a0 = 0.

Major sources of uncertainty in x from observation y :
1 Noise ε in the indication.
2 Calibration uncertainty in the parameter θ, potentially

including instrument drift.
3 Inadequacy of the model for ε, e.g., distribution type,

independence, heteroscedasticity, uncertainty in σ2
ε .

4 Inadequacy of the model g, or model error/discrepancy.
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Sources of Uncertainty II
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Zero a scale, then determine gain using two reference weights.
Reference uncertainty in x combined with indication noise in y .
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Bayesian Inference vs. “Forward” Unc. Propagation I

Example (Linear Measuring System):

y = g(x ;a1) + ε = a1 x + ε, ε ∼ N
(

0, σ2
ε

)
, σ2

ε is known.

Bayesian Measurement Inference: Via Bayes’ theorem, the
likelihood function L transforms a prior state-of-knowledge
distribution (SoKD) for X and A1 into a posterior SoKD for X
and A1. (Finite indication resolution assumed negligible.)

Y |X = x ,A1 = a1 ∼ N
(g(x ; a1)︷︸︸︷

a1 x , σ2
ε

)
, (observation distribution)

whose probability density function (PDF) defines L:

fY |X ,A1
(y |X = x ,A1 = a1) =

e
− (y−a1 x)2

2σ2
ε

√
2π σε

=: L(x ,a1; y).
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Bayesian Inference vs. “Forward” Unc. Propagation II

Bayes’ theorem for (joint) inference of X and A1:

f post
X ,A1|Y

(x ,a1|Y = y) =
L(x ,a1; y)

independent priors︷ ︸︸ ︷
f prior
X (x) f prior

A1
(a1)

∞∫
−∞

∞∫
−∞

L(ξ, α1; y)f
prior
X (ξ)f prior

A1
(α1)dξ dα1︸ ︷︷ ︸

evidence for g is usually hard to compute

Typically, X ’s prior is “diffuse”, and A1’s prior is “sharp”, and
much more information is gained about X than A1.

Integrate out A1 to get the marginal posterior for X .

µX and σX summarize the measurement, according to the
Guide to the Expression of Uncertainty in Measurement (GUM).
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Bayesian Inference vs. “Forward” Unc. Propagation III

Psuedo-inversion: In practice, the Measurement Problem is
often “inverted” in a somewhat ad hoc manner.

The noise ε is used to derive first a SoKD for Y (GUM Type A),
and then g is inverted to give a measurement function to
propagate uncertainty, giving X ’s SoKD:

X = C Y , (e.g., “forward” MC sampling computes X )

where the prior for A1 is replaced by a SoKD for C (Type B).

Roughly speaking, C ≈ 1/A1.

Among other issues, g may be impossible/impractical to invert.
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The Calibration Problem I

Example (Linear Measuring System):

y = g(x ;a1) + ε = a1 x + ε, ε ∼ N
(

0, σ2
ε

)
, σ2

ε is known.

Recall: The “sharp” prior for the calibration parameter A1
enabled strong inference about a “diffuse” X prior.

Calibration reverses these roles.

A “sharp” prior for X enables strong inference about a “diffuse”
A1 prior.

“Sharp” priors for X are provided by measurement standards
(a.k.a. references) with the SoKD summarized in a calibration
certificate.
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The Calibration Problem II

Bayesian Calibration Inference:

f post
X ,A1|Y

(x ,a1|Y = y) =
L(x ,a1; y)f

prior
X (x) f prior

A1
(a1)

∞∫
−∞

∞∫
−∞

L(ξ, α1; y)f
prior
X (ξ)f prior

A1
(α1)dξ dα1

Typically, A1’s prior is “diffuse”, and X ’s prior is “sharp”, and
much more information is gained about A1 than X .

Integrate out X to get the marginal posterior for A1.

Calibration may involve multiple references, X1, . . . ,XN , which
may not be independent.
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Certain References, Known Noise in Indications

Sometimes, references have negligible uncertainty, and ≥ 1
indications are taken for each reference x1, . . . , xM , giving a
vector y of N ≥ M indications.

For the Linear Measuring System with an improper, uniform
prior on A1, this gives Bayesian linear regression for A1, where

A1 ∼ N
(
µA1 , σ

2
A1

)
, with

µA1 = (X TX )−1X Ty and σ2
A1

= (X TX )−1σ2
ε ,

and where X := (x1, . . . , xM)T︸ ︷︷ ︸
length N

is the design matrix.

Evidence for different g choices can be readily computed!
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1st Approach: Bayesian Inference

In general, references (X1, . . . ,XM) =: X have non-negligible
uncertainty. Their priors are updated along with the calibration
parameter A1.

One independent indication from each of two independent
references gives

f post
X ,A1|Y

(x ,a1|Y = y) ∝ L(x ,a1;y)f
prior
X (x) f prior

A1
(a1)

= fY1(a1 x1) fY2(a1 x2) fX1(x1) fX2(x2).

where
Y1 ∼ N

(
y1, σ

2
ε

)
and Y2 ∼ N

(
y2, σ

2
ε

)
.

Marginalizing out the references gives

fA1(a) ∝
∞∫

−∞

∞∫
−∞

fY1(a1 x1) fY2(a1 x2) fX1(x1) fX2(x2) dx1dx2.
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Example: Bayesian Inference I
True values:

x true
1 = 0.997 y ind

1 = 1.037 atrue
1 = 1.05

x true
2 = 1.998 y ind

2 = 2.108 σε = 0.01

Prior Knowledge:

X prior
1 ∼ U(0.99, 1.01) ,

σXprior
1

|µXprior
1
| = 0.577%, f prior

A1
(a1) ∝ 1,

X prior
2 ∼ U(1.99, 2.01) ,

σXprior
2

|µXprior
2
| = 0.289%,

Posterior Knowledge Summary:

µXpost
1

= 0.997
σXpost

1

|µXpost
1
| = 0.381% µApost

1
= 1.048

µXpost
2

= 2.008
σXpost

2

|µXpost
2
| = 0.050%

σApost
1

|µApost
1
| = 0.441%
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Example: Bayesian Inference II
Priors:
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Example: Bayesian Inference III
Priors:
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Posteriors (MCMC using MATLAB’s mhsample):
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2nd Approach: Compartmentalized Inference

For some measurement processes it may be that
parameter inference occurs separately from data
collection, and/or
an indication Y may be given as a SoKD without any
associated noise model (e.g., from instrument spec’s).

In addition, how might one motivate Bayesian calibration to an
engineer/technician by using, say, a more intuitive idea of
“forward” propagation of distributions?

We will handle such compartmentalized inference in
Bayesian-compatible way, and create a SoKD for A1.
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Compartmentalized Inference: Derivation I

Motivation:
Start with the CDF for Y using the Heaviside function:

FY (y) =

∞∫
−∞

H(y − a1 x) fA1,X (a1, x) da1 dx

Differentiate w.r.t. y using the δ function to give the PDF:

fY (y) =

∞∫
−∞

∞∫
−∞

δ(y − a1 x) fA1,X (a1, x) da1 dx

Can sample from Y ′s distribution using forward MC:

E(Y ) =

∫ ∞
−∞

y fY (y) dy =

∞∫
−∞

∞∫
−∞

a1 x fA1,X (a1, x) da1 dx
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Compartmentalized Inference: Derivation II

Change perspective to A1 from Y (rigorous δ “sifting”?!?):

fA1(a)
!!!∝

∞∫∫∫∫
−∞

δ(y1 − a1 x1) δ(y2 − a1 x2)

fX1(x1) fY1(y1) fX2(x2) fY2(y2) dx1dy1dx2dy2

=

∞∫
−∞

∞∫
−∞

fX1(x1) fY1(a1 x1) fX2(x2) fY2(a2 x2) dx1dx2

=

∞∫
−∞

∞∫
−∞

fY1(a1 x1) fY2(a2 x2) fX1(x1) fX2(x2) dx1dx2

This is the same as the marginal posterior PDF for A1 from the
Bayesian analysis, up to normalization!
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Summary and Areas to Explore

A Bayesian approach unifies the Measurement Problem
with the Calibration Problem, without ad hoc inversion.
The Compartmentalized approach ended up being
equivalent to a particular Bayesian inference.

When are the two approaches equivalent?
(For example, add unknown variance in indications.)
Can/should model selection be based upon minimal
posterior uncertainty instead of evidence?
Standard methods and automated computational tools?
(As easy as Excel’s linear fit with an R2 metric?!?)
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Questions?
mark.campanelli@nrel.gov

This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory (NREL).
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