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Abstract. Convergence of spectral deferred correction (SDC), where low-order time 
integration methods are used to construct higher-order methods through iterative re­
finement, can be accelerated in terms of computational effort by using mixed-precision 
methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some 
of the SDC correction sweeps can use function values computed in reduced precision with­
out adversely impacting the accuracy of the final solution. This is particularly beneficial 
for the performance of combustion solvers such as S3D [6] which require double precision 
accuracy but are performance limited by the cost of data motion. 

1 INTRODUCTION 

We are currently seeing a transformative increase in computing power where first-
principles and high-fidelity simulations of turbulent combustion can now realistically ad­
dress practical combustion problems. In contrast to the voltage and frequency scaling 
that gave rise to the increases in computational power ‘passively’ over the last decade, 
the current avenues for increasing computational power also present new challenges. Per­
formance gains are coming largely from increased parallelism—at the vector and core 
levels as well as the node level. Critically, the power density of new machines is rapidly 
becoming a design constraint. The cost to move data— either between memory and pro­
cessing units or across the network — is now of critical importance to both the energy 
cost and time to complete a given operation [1]. 

At the same time, many challenges remain to be solved in combustion science. Current 
topical trends towards lightweight vehicles motivate moving to downsized, boosted engines 
that operate in non-traditional modes, possibly with novel ignition methods such as cool 
plasma ignition to extend the lean limit of operation. The increasing diversity of ‘designer 
fuels’ made available by sophisticated engineering of bioenergy feedstocks may enable new 
engine designs operating where traditional design rules are no longer applicable. On the 
gas turbine side, natural gas is an increasingly important fuel due to the US oil shale 
boom. Hydrogen enriched fuels such as syngas arise from many carbon sequestration 
and storage processes and are of significant interests to reduce the harmful effects of coal 
combustion. As the fuel streams evolve, so to do the operating modes; high-dilution, 
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lean combustion reduces flame temperatures and associated NOx formation but pose new 
stability challenges. 

Combustion CFD is typically performance limited by memory bandwidth and can 
benefit significantly from reduced data movement and improved cache utilization, as well 
as improvements in floating-point performance, when calculations can be performed in 
single precision. However, especially for combustion problems, the accuracy of a double-
precision solution is essential. Iterative deferred correction methods such as spectral 
deferred correction (SDC) have an advantage in being able to treat terms in the balance 
equations (e.g., chemical reaction vs. advection) with an appropriate implicit/explicit 
treatment while controlling splitting error, but the drawback to SDC is an increase in the 
number of function evaluations necessary to execute a time-step. Other iterative methods 
have been reformulated to use mixed precision with greatly improved performance (e.g., 
[5]); a similar formulation for SDC would alleviate the performance penalty. 

In the next section, the SDC approach will be outlined in both standard and multi-level 
forms. Following the presentation of the current state of the art, a new formulation that 
uses single-precision evaluation of the function to be integrated will be proposed. This 
will be followed with a synthetic convergence test as well as a realistic combustion case. 

2 Spectral Deferred Correction 

SDC is an iterative method proposed by Dutt et al. [7] to iteratively improve a lower 
order approximation at spectral collocation points using an approximate update formu­
lae. The original method has been advanced significantly, notably by Minion at colleagues 
(e.g., [11]). Several attractive features of SDC have been developed, notably: high order, 
mixed implicit/explicit treatment [4], operator splitting for reacting flows [13], incorpora­
tion of algorithmic resilience [9], parallel in time [8] and multi-level forms [14, 3]. 

To setup the SDC system, the timestep is broken into nodes at spectral quadrature 
points; using Gauss-Lobatto points conveniently includes the boundaries [12]. The solu­
tion U at each of the nodes can be written as: 

U = ΔtQF(U) + U0, (1) 

where Q is the matrix of integration weights, F is the equation(s) begin integrated and 
U0 is the solution at the start of the timestep. The solution methodology is to determine 
an approximation to U, typically by a low order (Euler) method and then to use a fixed 
point iteration to improve the solution. Given an approximation ũ(t) to the initial value 
problem specified by: 

u'(t) = F (u(t), t) u(ta) = ua, (2) 

a measure of the error in the approximation is: � t 
E( ̃u(t), t) = ua + F ( ̃u(τ), τ )dτ − ũ(t). (3) 

ta 
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In comparison to the exact solution: 

u(t) = ua + 
t 

ta 

f(u(τ ), τ )dτ, (4) 

the correction δ(t) = u(t) − ũ(t) is, algebraically: 

t 

δ(t) = [F ( ̃u(τ) + δ(τ), τ ) − F ( ̃u(τ), τ )] dτ + E( ̃u(t), t). (5) 
ta 

R. Speck et al. [14] reworked the SDC correction based on non-linear multigrid ideas so 
that some of the corrections can be replaced by coarse evaluations, coupling the levels to­
gether with an full approximation scheme (FAS) approach. The resulting SDC correction 
is unchanged from the conventional update given except for the addition of a FAS cor­
rection term τ that accounts for the non-commutative nature of the multigrid restriction 
(coarsening) operator. Approximating the integral in Eq. 5 with an explicit Euler method 
and using the error metric from Eq. 3, the resulting update formulae for the m + 1st node 
in the kth the multi-level SDC correction is:   

k+1 k+1 k+1 k + Im+1 u = u + Δtm F (u , tm) − F (u , tm) (u k) + τm. (6)m+1 m m m m 

where:
 
p tm+1P 

Im+1 l 
m (u k) ≡ qmF (u k(tl), tl) ≈ F (u k(τ), τ )dτ. (7) 

tml=1 

The multi-level approach adopted by Speck et al. is reproduced in Algorithm 1. Whereas 
Speck et al. considered coarsening in terms of reducing the spatial resolution, reducing 
the order of the spatial discritization and reducing the accuracy of implicit solves on the 
coarse levels, here we are interested in coarsening in terms of reduced precision. 

Considering the coarsening in the MLSDC approach in terms of reduced-precision inter­
mediate storage and evaluation leads to construction of a mixed precision SDC (MPSDC) 
algorithm. Although it is possible to construct an entire hierarchy of ‘grids’ using mixed 
precision (e.g., double, single, half. . . ), this effort is limited to two levels: double (8 byte) 
and single (4 byte) precision. The update algorithm is shown in Algorithm 2 for a 4th 

order formulation. 
In Algorithm 2, five single precision function evaluations (1 of which can be reused from 

previous timesteps) and four double precision function evaluations per time step replace 
nine double precision function evaluations per time step for a conventional 4th order SDC 
integration. 

3 Synthetic convergence test of MPSDC algorithm 

A synthetic test case used by Ascher and Petzold [2] is used to test the MPSDC 
convergence properties. The test equation is: 

df 5 1 
= −5tx2 + − , y(1) = 1, (8)

dt t t2 
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Algorithm 1: MLSDC Iteration for L levels from R. Speck et al.
 

Data: Initial Uk , function evaluations F k from the last iterate on the fine level 1,0 1 

Result: Solution Ul 
k+1 and function evaluations Fl 

k+1 on all levels 
Uk+1, F k+1 ← SDCSweep(Uk, F k) # Perform fine sweep 1 l l 

if fine level has converged return # Check convergence criteria 
# Cycle from fine to coarse 
for l=1. . . L-1 do 

# Restrict, re-evaluate and save restriction 
for m=0. . . M do 

Uk ← Restrict(Uk+1)l+1,m l,m 

F k ← FEval(Uk+1 )l+1,m l+1,m 

Ũk ← Uk 
l+1,m l+1,m 

end 
Compute FAS correction and sweep 
τl+1 ← FAS(F k+1, F k , τl+1)l l+1 

Uk+1, F k+1 ← SDCSweep(Uk , F k , τl+1)l+1 l+1 l+1 l+1 

end 
# Cycle from coarse to fine 
for l=L-1. . . 2 do 

# Interpolate coarse correction and re-evaluate for m=0. . . M do
 
Uk+1 ← Uk+1 + Interpolate(Uk+1 − Ũk )l,m l,m l+1,m l+1,m 

F k+1 ← FEval(Uk+1)l,m l,m 

end 
Uk+1, F k+1 ← SDCSweep(Uk+1, F k+1, τl)l l l l 

end 
Return to finest level before next iteration 
for m=0. . . M do 

Uk+1 ← Uk+1 + Interpolate(Uk+1 − Ũk )l,m 1,m 2,m 2,m 

F k+1 ← FEval(Uk+1)1,m 1,m 

end
 

which has the analytic solution y(t) = 1 
t . The integration is performed over the time 

interval [1, 25]. 
From Fig. 1, several features of the algorithms involving single-precision are of evident. 

Firstly, they all exhibit the expected 4th-order convergence when the absolute error is 
sufficiently large to be represented in single precision. However, when step size is re­
duced eventually the error from the reduced precision representation dominates and the 
solution error plateaus even as the step size is reduced further. In the ‘SDC-mp-simple’ 
formulation, the first two correction passes are performed in single precision and the latter 
two are performed in double precision. Although this uses the same number of single­
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Algorithm 2: MPSDC for 4th order 

UF 1 , FF 1 ← Predict coarse(Uf,0) # Construct initial predictionc c 
FF 1 
f ← FEval fine(FU1 

c ) # Perform fine sweep 
FU2 
f , FF 2 

f ← SDCSweep(FU1 
c , FF 1 

f ) 
if correction is less than SP significance continue with DP 
Uc 

2 ← Restrict(Uf 
2) # Restrict, re-evaluate and save restriction 

Fc 
2 ← FEval coarse(Uc 

2) 

τ ← FAS(FFf 
2 , FFc 

2) # Compute FAS correction and sweep 

UF 3 ← SDCSweep coarse(U2 , F 2 , τ)c c c 

U3 ← U2 + (U3 − U2) # Correct finef f c c 

Ff 
3 ← FEval fine(Uf 

3)
 
U4 ← SDCSweep(U3 , F 3) # Final sweep on fine
f c f 

precision/double precision function evaluations (and hence same computational cost) as 
the MPSDC algorithm and is an improvement over using only single precision, the con­
vergence rate is negatively impacted relative to the MPSDC and straight double-precision 
algorithms. 

4 S3D and Combustion Test Case 

A canonical combustion test case is set up in the combustion direct numerical sim­
ulation (DNS) code S3D as a practical demonstration. S3D [6] uses a method of lines 
approach to integrate the compressible reacting Navier-Stokes and species transport equa­
tions using a 4th order, 6-stage explicit algorithm that requires 6 function evaluations per 
time step from the family developed by Kennedy et al. [10]. Previous exploration has 
shown that, as typical in combustion problems, double precision accuracy is necessary for 
sufficient accuracy, however, truncation of work arrays to single precision is often accept­
able. For the chemistry evaluation a large number of scratch variables typically results 
in a working set size that spills out of nearby cache/registers so reductions in working 
set size can be expected to have an outsize performance benefit. For the comparison de­
scribed below, a single precision version of the ‘right hand side’ evaluator was constructed 
that, as closely as possible, duplicated the operations in the original RHS function that 
includes the physical processes (advection, diffusion, reaction) that form the time deriva­
tive of the conserved variables (momentum, energy, density, species mass fractions, etc.). 
Some optimization transformations applied to the chemical rate evaluation routine that 
are effective with double precision were not possible with the single precision version due 
to overflow, notably applying some operations on log-transformed quantities. In these 
cases analytically equivalent but non-overflowing expressions were used. 

The test case is a one-dimensional ignition problem where a Gaussian temperature 
‘hot spot’ is placed within a homogenous mixture of stochiometric C2H4 and air. The 
quantity of interest is the ignition delay time: the time that passes before the temperature 
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Figure 1: Convergence rates of MPSDC compared to several other algorithms: explicit Euler, second, 
third, and fourth order Runge-Kutta methods (RK2, RK33321, RK64, respectively) from Kennedy et al. 
[10], a conventional 4th order explicit SDC method (SDC4), a 4th order explicitly SDC method using 
single-precision function evaluation (SDC-sp), the MPSDC method (SDC-mp-MLSDC), and an alternate 
mixed precision form omitting the FAS correction (SDC-mp-simple). 

exceeds the initial peak temperature. A feature of this problem is the slow accumulation 
of chemical intermediates before rapid temperature rise. Significant non-linearity in the 
coupling between chemical reaction and diffusion gives rise to a complicated relationship 
between the global error in the quantity of interest and the local error in the conserved 
quantities. Generally, as long as the local error is small enough, the global error is insensi­
tive to the local error; however, if the local error grows too large the global error increases 
disproportionally. The result is the behavior observed in Figure 2, where the baseline 
double precision solution is shown alongside the (indistinguishable) MPSDC solution and 
a single-precision solution. 

When the time step is reduced to Δt = 5ns, a similar behavior to that shown in Fig­
ure 2 is obeserved: the single precision solution has significant global error accumulation 
whereas the mixed precision solution has an error sufficiently controlled so that the global 
error is of the same order as the local error. However, for a timestep of Δt = 5ns, the 
change in the solution for each timestep is small relative to the error intrinsic in the single 
precision solution. For this situation, the ‘coarse’ correction does not make a useful con­
tribution. This suggests that when the correction is larger than single-precision tolerance, 
it is effective to do iterates in single-precision to accelerate solution, however, it is pru­
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Figure 2: Combustion test problem - 1D ignition, Δt = 20ns 

dent to do at least one double-precision correction pass to check the correction magnitude 
and abandon the MPSDC approach if the error is too small to be represented in single-
precision. Further, while the single-precision iterations are computationally cheaper than 
double-precision corrections, including them does impact the convergence rate of subse­
quent double precision iterations. This is evident in Figure 3, where the local error for 
each correction pass is shown for the conventional and MPSDC algorithms. Whereas the 
local error decreases with each iterate in the conventional formulation, with the MPSDC 
formulation when the error approaches the level of single-precision representation apply­
ing a single precision correction appears to negatively impact the solution improvement 
resulting from the following double-precision iteration. 
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Figure 3: Local errors computed relative to DP SDC solution for each timestep 

5 CONCLUSIONS 

By reducing precision to coarsen the solution representation, the established multi-level 
spectral deferred correction can be used to formulate a mixed precision time advance al­
gorithm. For a ‘drop-in replacement’ for the 4th order integrator in the S3D combustion 
code, this allows half of the eight double precision evaluations of the time derivative to 
be replaced by single precision evaluations. This suggest a 25% reduction in memory 
traffic and 25% in increase FLOPS purely from data size considerations with larger ben­
efits possible due to more efficient cache utilization. A complication is that the mixed 
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precision formulation introduces a potential inconsistency between the coarse problem 
and the fine solution. This limits the most significant benefit to situations where the 
size of the correction exceeds single precision accuracy yet the target local error is in 
the double-precision range. This would be expected where the stability limits exceed 
accuracy dictated Δt. Fortunately, the solution is easily monitored and the algorithm 
transparent when there is no benefit. For the combustion test case considered here, the 
mixed precision algorithm retains sufficient global error control whereas straight single 
precision does not with same Δt. This leads to effective use of mixed precision and sig­
nificant computational savings.While the final solution accuracy does not depend directly 
on the intermediate reduced precision solution, in future work it would be beneficial to 
develop reduced precision formulations that improve consistency with the ultimate double 
precision solution to improve convergence rates. 

REFERENCES 

[1]	 The opportunities and challenges of exascale computing. Technical report, Summary Report of the 
ASCAC Subcommittee, 2010. 

[2]	 Uri M. Ascher and Linda R. Petzold. Computer methods for ordinary differential equations and 
differential-algebraic equations. SIAM, 1998. 

[3]	 W. Auzinger. Defect correction for nonlinear elliptic difference equations. Numer. Math., 51:199–208, 
1987. 

[4]	 A. Bourlioux, A. T. Layton, and M. L. Minion. Higher-order multi-implicit spectral deferred cor­
rection methods for problems of reacting flow. J. Comput. Phys., 189:351–376, 2003. 

[5]	 Alfredo Buttari et al. Exploiting mixed precision floating point hardware in scientific computations. 
In High Performance Computing Workshop, pages 19–36, 2006. 

[6]	 J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. 
Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct 
numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc., 2:015001, 2009. 

[7]	 A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordinary differential 
equations. BIT, 40(2):241–266, 2000. 

[8]	 M. Emmett and M. L. Minion. Towards an efficient parallel in time method for partial differential 
equations. Commun. Appl. Math. Comp. Sci., 7(1):105–132, 2012. 

[9]	 RW Grout, H Kolla, ML Minion, and JB Bell. Achieving algorithmic resilience for temporal inte­
gration through spectral deferred corrections. arXiv preprint arXiv:1504.01329, 2015. 

[10]	 C. A. Kennedy, M. H. Carpenter, and R. M. Lewis. Low-storage, explicit Runge-Kutta schemes for 
the compressible Navier-Stokes equations. Appl. Numer. Math., 35:177–219, 2000. 

[11]	 A. T. Layton and M. L. Minion. Conservative multi-implicit spectral deferred correction methods 
for reacting gas dynamics. J. Comput. Phys., 194(2):697–715, 2004. 

[12]	 M. L. Minion. Semi-implicit spectral deferred correction methods for ordinary differential equations. 
Commun. Math. Sci., 1(3):471–500, 09 2003. 

[13]	 A. Nonaka et al. A deferred correction coupling strategy for low Mach number flow with complex 
chemistry. Combust. Theory & Model., pages 1–36, 2012. 

[14]	 Robert Speck, Daniel Ruprecht, Matthew Emmett, Michael Minion, Matthias Bolten, and Rolf 
Krause. A multi-level spectral deferred correction method. BIT Numerical Mathematics, pages 
1–25, 2014. 

8
 




