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ABSTRACT

Identification of transcription units (TUs) encoded
in a bacterial genome is essential to elucidation of
transcriptional regulation of the organism. To gain
a detailed understanding of the dynamically com-
posed TU structures, we have used four strand-
specific RNA-seq (ssRNA-seq) datasets collected un-
der two experimental conditions to derive the ge-
nomic TU organization of Clostridium thermocellum
using a machine-learning approach. Our method ac-
curately predicted the genomic boundaries of indi-
vidual TUs based on two sets of parameters mea-
suring the RNA-seq expression patterns across the
genome: expression-level continuity and variance. A
total of 2590 distinct TUs are predicted based on the
four RNA-seq datasets. Among the predicted TUs,
44% have multiple genes. We assessed our predic-
tion method on an independent set of RNA-seq data
with longer reads. The evaluation confirmed the high
quality of the predicted TUs. Functional enrichment
analyses on a selected subset of the predicted TUs
revealed interesting biology. To demonstrate the gen-
erality of the prediction method, we have also applied
the method to RNA-seq data collected on Escherichia
coli and achieved high prediction accuracies. The TU
prediction program named SeqTU is publicly avail-
able at https://code.google.com/p/seqtu/. We expect
that the predicted TUs can serve as the baseline
information for studying transcriptional and post-

transcriptional regulation in C. thermocellum and
other bacteria.

INTRODUCTION

Derivation of all transcription units (TUs) expressed under
designed conditions is essential to the elucidation of tran-
scription regulation in bacteria as they are the basic func-
tional units (1). A TU consists of a promoter, a transcrip-
tional start site, a coding region containing one or multi-
ple genes, and a transcription terminator (2). When a TU
is expressed, its gene(s) are transcribed into a single RNA
molecule (3,4). While the classical definition of operons is
the same as that of TUs (3), a common practice in the past
two decades, popularized by operon databases such as ODB
(5), DBTBS (6), OperonDB (7) and DOOR (8,9), has been
that operons do not overlap with each other and hence can
be derived in general based on genomic sequence informa-
tion alone. In contrast, a TU refers to a transcription unit
that is dynamically composed by a specific triggering con-
dition and different TUs may overlap with each other (10).

Because of their condition-dependent nature, hence diffi-
cult to predict computationally, there have not been many
large datasets of TUs in the public domain for any or-
ganism before the emergence of the quantitative transcrip-
tomic profiling technologies such as tiling arrays and RNA-
seq. Hence functional studies of bacterial cells have to rely
largely on operon predictions (11,12) or low throughput la-
borious experiments. Clearly, there is a fundamental differ-
ence between the predicted operons predicted based on se-
quence information only and the condition-dependent TUs,
which makes operon-centric functional analyses, which are
widely used in the literature, less informative for functional
studies. As of now, a number of sets of TUs in Escherichia
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coli have been derived based on tiling array and RNA-seq
data (1). A few large-scale RNA-seq datasets have also been
generated on other bacteria for functional studies (13–15) as
detailed in a recent review by Pinto et al. (16).

Some studies have been carried out to infer TUs through
characterizing whole genome expression-patterns (14,17–
18). For example, McClure et al. (17) and Fortino et al. (18)
used predicted co-transcribed genes to evaluate their TU
prediction. However, such studies suffer from without ob-
jective evaluation data against experimentally determined
TUs. Thus, building a reliable and unbiased TU predictor
remains an unsolved problem.

Clostridium thermocellum is a thermophilic bacterium
and has been extensively studied in the recent past because
of its potential as a consolidated bioprocessing organism
for lignocellulosic ethanol production. In this study, we
have analyzed four sets of ssRNA-seq data of C. thermo-
cellum and predicted TUs using a machine-learning based
method; and validated the prediction on a separate RNA-
seq set, which has longer reads. This study provides a gen-
eral method for accurate inference of TUs based on RNA-
seq data collected under multiple conditions and can be
used for TU prediction for other bacterial organisms when
RNA-seq data are available.

MATERIALS AND METHODS

RNA sample and sequencing library preparation

Clostridium thermocellum ATCC27405 was grown on MTC
medium in batch fermentation; and its transcriptomic lev-
els have been measured previously using a DNA expres-
sion microarray (19). In that study, the treatment fermen-
tations were exposed to 3.9 g/l (or 0.5% [v/v]) ethanol
shock at a mid-exponential growth phase (Optical Den-
sity 600nm ∼0.5) while the control fermentations were done
without ethanol treatment. To derive TUs encoded in C.
thermocellum ATCC27405, Illumina ssRNA-seq libraries
were prepared from the total RNA extracted from one 60-
min untreated control fermentation sample and one 60-min
ethanol-shock sample obtained from the above study (19).

Our ssRNA-seq libraries were prepared according to
an instruction manual provided by the manufacturer (Illu-
mina, CA, USA), except that the poly-A selection step was
omitted. Briefly, 300 ng of total RNA was fragmented for
the directional RNA-seq libraries following by purification
and addition of strand-specific adapters. Samples were then
reverse-transcribed, amplified and DNA fragments were
enriched by a final clean-up step according to the manu-
facturer instruction (Illumina). Libraries were normalized
with duplex specific nuclease (Evrogen, Moscow, Russia)
following the instruction in the DSN Normalization Ap-
plication Note (Illumina). Final libraries were checked for
quality control using an Agilent Bioanalyzer (Agilent, CA,
USA) and quantified with a Qubit (Invitrogen, CA, USA).
Libraries were then diluted and sequencing was done on
version-1.5 single-read flow cell with TruSeq chemistry on
an Illumina HiSeq 2000 instrument (20).

Four ssRNA-seq datasets were obtained from dilution
of a 25 pM control library extracted from the control
sample and dilutions of 25, 33 and 41 pM of the treat-
ment library extracted from the treatment sample. The

three concentrations of the same treatment library were de-
signed to investigate how the concentrations and sequenc-
ing depths would influence the TU identification. Four
datasets were obtained, named datasets 1–4 and used in our
TU prediction. All the generated sequences have been de-
posited in the National Center for Biotechnology Informa-
tion (NCBI) Sequence Read Archive (SRA) with accession
number SRP002548.

In addition to the ssRNA-seq data outlined above, non-
strand-specific RNA-seq datasets were also generated on
the above four samples at multiple time points using the
454 GS FLX instrument (Roche, CA, USA), which pro-
duced reads with longer lengths, namely 225 bps for the av-
erage length versus 50 bps by Illumina sequencers. The 454
cDNA libraries were generated from the total RNA follow-
ing the manufacturer’s instructions, except that the small
fragment removal step was not applied and the libraries
were then sequenced using the Titanium chemistry (21).
The 454 datasets were cleaned using SeqClean followed by
mapping using the GSMapper program (Roche). The 454
datasets collected on biological replicates were combined.

Quality check and characteristics of RNA-seq data

FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to assess the read quality of
the four ssRNA-seq datasets. All four datasets passed the
check on both per base quality and per sequence quality
(FastQC results were shown in Supplementary Figure
S1 in the Supplementary Material). The reads were then
mapped to the C. thermocellum ATCC 27405 genome
(NC 009012.1) using Burrows-Wheeler Aligner (BWA)
(22) with the default parameters. The mapping results
were used to derive the following characteristics: (i) the
average read depth, (ii) the antisense expression level and
(iii) the coverage of coding regions and intergenic regions,
respectively. Specifically, the average read depth is defined
as:

estimated depth(X) =
∑

i∈G RAPSN(i )
|T|

where G and T represent the whole genome and the cod-
ing regions of C. thermocellum, respectively; |T| is the total
length of sequence T; and RAPSN(i) denotes the read abun-
dance at location i in the genome. Note that the estimated
read depth does not consider intergenic regions.

RNA-seq data of E. coli

Three E. coli RNA-seq datasets, generated with paired-
end and strand-specific Illumina reads, were retrieved from
the NCBI SRA database, with SRA accession numbers:
SRX315217, SRX315218 and SRX315219, and used to test
the generality of our TU prediction method. The three
RNA-seq data were collected on triplicates of wild-type E.
coli K12 MG1655 that grew anaerobically in glucose mini-
mal media (23). The generated RNA-seq data were mapped
to the genome as single-end and paired-end reads, respec-
tively, using BWA with the default parameters. The single-
end mapping results were used to estimate the read coverage
at the nucleotide level and the paired-end mapping results
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were used to determine the expressed intergenic regions and
to predict TUs, where expressed intergenic regions refer to
non-coding regions co-expressed with their flanking genes.
The average lengths of the mapped paired-end reads includ-
ing the genomic region between each paired-end, are 176,
160 and 174 bps for the three datasets.

Training data preparation for TU prediction

Our TU predictors predict whether a consecutive gene pair
on the same strand is co-transcribed into one single TU. An
ideal training data would be RNA-seq data for experimen-
tally verified TUs. However, currently there are no exper-
imental data sufficiently large for training the TU predic-
tors. Hence we took an alternative approach to prepare the
training data. Specifically, for the negative training data, we
have selected consecutive gene pairs deemed to be not in the
same TU based on the following criteria: (i) the gap per-
centage out of the intergenic region between the two genes
is >50%; and (ii) the ratio between the expression levels of
the two genes is >10-fold. For the positive training data,
we used 454 reads, which have longer reads than the ones
by Illumina sequencers, to annotate consecutive gene pairs
to be co-transcribed in the same TU based on the follow-
ing criteria: (i) the intergenic region between a gene pair is
fully covered by at least one 454 read; and (ii) the ratio be-
tween the expression levels of the two genes is less than and
equal to two-fold. Although 454 reads provided some pos-
itive training data, they had a limitation in covering TUs
whose intergenic regions are >225 bps. To have our positive
training data cover TUs with longer intergenic regions, we
added additional positive training data, as described in the
following section.

Generation of constructed TUs (cTUs)

We constructed a set of consecutive paired coding re-
gions whose expression patterns along with those of the
in-between regions resemble the expression patterns of true
TUs, to provide additional training data. Each such paired
coding region, along with the in-between intergenic region,
is termed a constructed TU (cTU). We assume here that
all defective RNA molecules due to the early release of
the RNA polymerases from the DNA or truncation will
be rapidly degraded by ribonucleases (24) and hence will
not contribute to the observed expression levels. Therefore,
an expressed TU should theoretically have a consistent ex-
pression level across a whole RNA molecule (10). However,
due to technical reasons, the obtained RNA-seq data may
not necessarily show such an expression-level consistency
across an entire TU, which gives rise to fluctuations in the
observed level across a TU.

To construct cTUs, we have used genes of C. thermocel-
lum, whose coding regions each naturally fall into three sec-
tions, and resemble those of true TUs as defined in the pre-
vious section. To accomplish this, we plotted the length dis-
tribution of the annotated intergenic regions of C. thermo-
cellum. Then, for each gene, we probabilistically selected a
length for each made-up intergenic region according to this
length distribution. Next, we assigned the made-up inter-
genic region within the gene spanning a region with the low-
est GC content, knowing that true intergenic regions tend

to have lower GC ratios (0.33) than protein-coding regions
(GC ratio = 0.4) in C. thermocellum genome. The process
of creating made-up intergenic regions is given as follows.

Denote the whole C. thermocellum genome
(NC 009012.1) as G, which is 3 268 038 bps long and
contains 1683 and 1680 genes on the forward and reverse
strands, represented as G+ and G−, respectively, where
G+ = {g+

1 , g+
2 , . . . g+

1,683} and G− = {g−
1 , g−

2 , . . . , g−
1,680};

and the corresponding intergenic regions are repre-
sented as I R+ = {ir+

1 , ir+
2 , . . . , ir+

1,682} and I R− =
{ir−

1 , ir−
2 , . . . , ir−

1,679}. We use the forward strand as
an example to explain how made-up intergenic regions are
created. The same procedure applies to the reverse strand.

Step 1: Define D(IR+) as the density function of the
|ir+

i |
|ir+

i |+|g+
i |+|g+

i+1|
values and similarly define D(GD+) as the

density function of the
||g+

i |−|g+
i+1||

|ir+
i |+|g+

i |+|g+
i+1|

values, for all consec-

utive gene pairs (25) in G+ without genes on the opposite
strand in between.

Step 2: For each gene g+
i ∈ G+, do the following to create

a cTU through partitioning g+
i into three regions, namely

two coding regions and a made-up intergenic region (cIR):
Step 2.1: select probabilistically pi and qi from D(IR+)

and D(GD+), respectively, according to their density distri-
butions. Set cIR in g+

i to pi × |g+
i |.

Step 2.2 : determine the start position of the cIR in g+
i so

that it satisfies,

arg min
j∈[X,Y]

{g+
i [ j, j + pi × |g+

i | − 1]GC},

where X = m − pi ×|g+
i |

2 − qi ×|g+
i |

2 and Y = m − pi ×|g+
i |

2 −
qi ×|g+

i |
2 are the left and the right boundaries for the possi-

ble start position of the cIR in g+
i ; m denotes the median

position of g+
i ; and g+

i [a, b]GC represents the GC level of
the sub-region [a, b] of g+

i .
We then exclude those predicted cTU that violate the con-

tinuity and variance requirements of a TU, which are con-
tinuity and variance. For each predicted cTU, we remove it
from further consideration if (i) the gap percentage of the
intergenic region between the two genes is >50%; (ii) the
ratio between the expression levels of the two genes is >10-
folds; and (iii) plus the length of each predicted intergenic
region being at least 225 bp long.

Feature selection for TU predictors

We used two features extracted from gene-expression pat-
terns, namely expression level ‘continuity’ and ‘variance’,
originally proposed by Güell et al. (26) and Toledo-Arana
et al. (27), both of which used a similar variance feature
to detect TUs from RNA expression data generated us-
ing tiling arrays and predicted 139 and 517 polycistronic
operons in Mycoplasma pneumoniae and Listeria monocyto-
genes, respectively. In addition, Oliver et al. also used con-
tinuous expressions over intergenic regions to detect 355
operons in L. monocytogenes based on non-strand-specific
RNA-seq data (14).

For the ‘continuity’ feature, we used the following statis-
tics to assess the expression gap in an intergenic region in a
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candidate cTU: a count of nucleotides with RAPSN = 0 in
the region and the percentage out of the length of the region.
For the variance feature, we used the following statistics to
describe the variance of expression patterns across the two
consecutive made-up coding regions in each candidate cTU:
(i) fold change in expression levels between the consecutive
genes and the intergenic region in between and (ii) the vari-
ance of the expression levels across the entire candidate cTU
region. The cutoffs for these features are determined to give
the best cross-validation results.

RESULTS

Characteristics of ssRNA-seq data

We examined the quality of ssRNA-seq data in terms of
strand-specificity. The total expression levels on the incor-
rect (unexpected) strand were 0.55, 0.44, 0.44 and 0.44%
of the total expression levels on the expected strand in the
four ssRNA-seq datasets, respectively, where an unexpected
strand was defined as an expressed DNA that appears on
the opposite strand of an annotated gene.

Using the definition of whole-genome RAPSN (see ‘Ma-
terials and Methods’ section), we checked the read coverage
by the ssRNA-seq data. Over 90% of all coding sequences
(protein coding regions) were covered by at least one read.
The sequence coverage of the intergenic regions varies from
22.06 to 30.72% across the four ssRNA-seq datasets. The
estimated depths are listed in Table 1.

Training TU prediction model using only Illumina RNA-seq
data

We first trained TU predictors using only cTU as the pos-
itive training data and non-TU gene pairs as the nega-
tive training data. Two groups of features were used in our
training of the TU predictors: (i) expression-level continuity
and (ii) expression-level variance. A support vector machine
(SVM) toolkit, named libSVM (28), was used to train our
binary classification models, with each predictor trained us-
ing a radial-basis function as the kernel function provided
in libSVM. A five-fold cross-validation with the default pa-
rameters: ‘cost’, ‘gamma’ and ‘weight’, was employed. The
four TU predictors achieved the accuracy levels at 0.93,
0.93, 0.92 and 0.93 for dataset 1–4 through the five-fold
cross-validation, respectively; and the prediction sensitivi-
ties on the 792 and 663 TUs derived from the control and
treatment sets of 454 data, respectively, at 0.9, 0.94, 0.94 and
0.92. The detailed receiver operating characteristic (ROC)
curves are given in Supplementary Figure S7.

Training TU prediction model using Illumina and 454 RNA-
seq data

We used non-TU gene pairs as the negative training data
and verified TUs based on 454 RNA-seq data plus the pre-
dicted cTUs as the positive training data for each ssRNA-
seq dataset. The same features and training processes as the
Illumina-only model were used to train this model. Overall,
the four trained TU predictors achieved the accuracy levels
at 0.94, 0.95, 0.95 and 0.95 on the four training sets, respec-
tively. The ROC curves for the predictions are presented in
Supplementary Figure S8.

TU prediction in C. thermocellum by trained predictors

A total of 2590 distinct TUs were predicted, with 1402,
1398, 1545 and 1604 TUs in datasets 1 through 4, respec-
tively. The detailed TUs were shown in Supplementary file
1. Figure 1 shows the percentages of TUs having different
numbers of genes. On average, 56% of TUs each contain
one gene and 44% of TUs each have multiple genes, one-
fourth of which have five or more genes. Dataset 2 has the
lowest percentage of single-gene TUs and the highest per-
centage of multiple-gene TUs with five or more genes. The
datasets 2 through 4 were sequenced using the same library,
which together consist of 2238 distinct TUs. Among these
TUs, 874 (39%) TUs were identical. The longest TU has 37
869 bps predicted in dataset 2, consisting of three consecu-
tive and non-overlapping genes (Cthe 0041, Cthe0044 and
Cthe0057). The TU containing the most number of genes, a
total of 38, was 3477 bp long in dataset 2. Of the 38 genes,
19 encode flagellar related proteins (Cthe 0462-Cthe0485).

We observed that TUs on the leading-strand have more
genes than TUs on the lagging-strand. This is consistent
with a previous publication, which found that the leading
strands tend to have more multiple-gene TUs than the lag-
ging strands in ∼200 bacterial genomes (29). We examined
the distributions of the predicted TUs on the leading ver-
sus the lagging strands. Using a published method (30), we
noted that C. thermocellum has 2552 genes on the leading
strand and 637 on the lagging strand. In addition, multi-
gene TUs account for 81% of all TUs on the leading strand
while 19% on the lagging strand. The average gene count
per TU is 2.6 on the leading strand and 1.5 on the lagging
strand. The detailed results are shown in Supplementary
Figure S2.

Evaluation of the predicted TUs

We have assessed the accuracy level of the predicted TUs,
based on the confirmed TUs by the 454 RNA-seq datasets,
where a TU is considered to be confirmed if it is entirely cov-
ered by at least one 454 read. Specifically, the prediction sen-
sitivities of the four TU predictors are at 0.90, 0.94, 0.94 and
0.93, respectively, when 396 and 331 confirmed TUs in the
control and the treatment datasets are compared against the
predicted TUs in the corresponding datasets. We showed a
discordant case in Supplementary Figure S3 to explain why
our predictions cannot identify TUs suggested by 454 data.

We also assessed the reliability of the predicted TUs using
a few general genomic features along with transcriptomic
data as follows since there are no other large-scale exper-
imentally verified TUs in C. thermocellum: (i) enrichment
of cis-regulatory motifs in the immediate upstream regions
of the predicted TUs (31,32); (ii) occurrences of the (pre-
dicted) transcription terminators in the immediate down-
stream regions of the predicted TUs; and (iii) the domi-
nant expression level of inside-TU intergenic regions com-
pared to outside-TU intergenic regions. We observed that
(i) the promoters of the predicted TUs are statistically en-
riched with cis-regulatory motifs measured using nine doc-
umented motifs in C. thermocellum collected from Reg-
TransBase (33), whose details can be found in Supplemen-
tary Method S1 (34,35) and Supplementary Figure S4; (ii)
the immediate downstream regions of the predicted TUs
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Table 1. Characteristics of C. thermocellum ssRNA-seq data

Estimated depth (X) Percentage of region covered by sequencing reads

Coding region Intergenic region

dataset 1 480 91.77% 22.06%
dataset 2 935 95.85% 30.72%
dataset 3 576 94.35% 27.21%
dataset 4 305 91.83% 22.91%

Figure 1. TUs predicted in Clostridium thermocellum stratified by the number of genes. The x-axis denotes the categories of TUs containing different
numbers of genes and the y-axis denotes the percentage of TUs in each category.

are enriched with transcriptional terminators, as shown in
Supplementary Method S2 (36) and Supplementary Figure
S5; and (iii) inside-TU intergenic regions have significantly
higher expression levels than outside-TU intergenic regions
(Supplementary Method S3 and Figure S6). All these data
suggest that the overall reliability of our prediction is high.

Relationships among sequencing depth, predicted numbers of
TUs and TU prediction accuracy

The relationship between sequencing depth and the num-
ber of predicted TUs is shown in Figure 2. A regression
line exhibits that the number of predicted TUs decreases
as the sequencing depth increases. Dataset 2 had the high-
est sequencing depth (935X), the least number of predicted
TUs and the most number of multiple-gene TUs, suggest-
ing that higher sequencing depth may help to detect lowly-
expressed genes and intergenic regions and hence provide
information for connecting lowly-expressed genes and inter-
genic regions into TUs and result in lower numbers of TUs
and larger numbers of multiple-gene TUs. We did note that
TUs consisting of lowly expressed genes tend to have lower
TU-prediction performance (results shown in Supplemen-
tary Table S1 in the Supplementary Materials).

To further assess the stability of our method when ap-
plied to RNA-seq data with different sequencing depths,
we have examined the relationship between the sequenc-
ing depth and the performance of TU prediction. We used
dataset 4 as an example and performed reads resampling
(without replacement) to simulate datasets with 40 differ-
ent levels of sequencing depths ranging from 0.1X to 291X,
with an increment of 7.46X. To avoid resampling bias, we
performed 25 resampling experiments for each depth. The
TU prediction results of resampling experiments were eval-
uated by the 454 dataset using the same process mentioned
in the last section. Figure 3 shows that the prediction sen-
sitivities are at 0.9 with sequencing depth at least 60X and
decrease dramatically to 0.57 when the sequencing depth is
0.1X.

Functional enrichment of the differentially composed TUs

To elucidate the dynamic nature of TUs under different con-
ditions of ethanol treatment, we performed functional en-
richment analysis of differently composed TUs extracted
from 1402 and 1604 TUs in dataset 1 (control condi-
tion) and dataset 4 (treatment condition), respectively. They
share 1007 TUs and dataset 4 consists of 597 differently,
where 341 shared the same 5′ genes and 341 shared the
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Figure 2. Relationship between sequencing depth and the number of predicted TUs.

Figure 3. Relationship between sequencing depth and the TU prediction accuracy.

same 3′ genes with those in the control set. Among the 597
TUs, 88 have their genes differentially expressed in dataset
4 compared to dataset 1 (with fold change cutoff as 4),
which consist of 265 genes; and such genes are considered to
be relevant to cellular responses to ethanol treatment. The
longest TU among the 88 contains 14 genes (Cthe 2470–
2482), which are partially related DNA adenine methylase.

The corresponding TU under the control condition consists
of the first ten genes and the other four fall into a separate
TU.

Our function-enrichment analysis of these genes using
DAVID (37) revealed that electron transport is the most
enriched biological functions by the 88 TUs covering 265
genes (see detailed list in Supplementary file 2). The analy-
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ses revealed that 18 of the 265 genes enriched the electron
transport. This function was confirmed by a previous study
where genes related to it were differentially regulated un-
der the ethanol stress condition, to overcome energy short-
age caused by inhibition of glycolysis (19). The other most
enriched pathways/functional categories include glutamate
synthase and cell envelop. Our detailed enrichment data
are given in Supplementary file 2. Further investigation of
these differentially arranged TUs could potentially reveal
more insights into gene function and regulation relevant to
ethanol stress and responses.

Application of the TU predictors to E. coli RNA-seq data

We used three sets of RNA-seq data of E. coli K12 MG1655
to check the generality of our TU predictors. Specifically,
we have built TU predictors based on E. coli data (single-
end reads) as done on C. thermocellum data in Illumina-only
model. The three trained TU predictors achieved the train-
ing accuracy at 0.95, 0.94 and 0.93 on datasets SRX315217,
SRX315218 and SRX315219, respectively, with the ROC
curves given in Supplementary Figure S9. 1003, 1340 and
1095 annotated TUs based on corresponding paired-end
are used to assess the prediction sensitivities on the three
datasets, which achieve a sensitivity level at 0.8, 0.9 and 0.92,
respectively.

DISCUSSION

In this study, we developed a computational method to pre-
dict bacterial TUs using RNA-seq data and two features of
expression patterns across two consecutive genes and their
intergenic region. A total of 2509 distinct TUs were pre-
dicted in C. thermocellum and evaluated using a few gen-
eral genomic features along with a reliable transcriptomic
dataset. We observed an association between sequencing
depth and the number of predicted TUs, which reveals that
a good level of TU prediction requires at least 60X sequenc-
ing depth. In addition, the read resampling experiments
have shown that TU prediction performance is stable with
sequencing depths beyond 60X, while it goes down dramat-
ically when the sequencing depth is below 7.6X. The result
suggests 7.6X as the minimum sequencing depth for reliable
TU prediction using our method.

Lack of large-scale, experimentally verified TUs as train-
ing data is a bottleneck in developing computational mod-
els for TU identification and evaluation of the prediction
results. Some TU prediction studies used mostly predicted
operons to evaluate their TU annotations, which is clearly
not appropriate knowing the fundamental difference be-
tween operons and TUs. Some studies also found new, alter-
native, extended operons (or expressed transcription units)
not identified by operon predictions (38,39). Our TU pre-
diction model was designed to identify TUs according to
available RNA-seq data to infer the condition-dependent
TU structures. To examine the level of difference between
our TU prediction and currently available operons, we have
defined a similarity score between a pair of TU sets in terms
of the level of agreement between consecutive gene pairs be-
longing to the same TUs in the two sets (see Supplemen-
tary Method S4) and calculated the similarity scores on pre-
dicted TUs and operons in DOOR datasets. The similarity

scores range from 0.53 to 0.54, as shown in Supplementary
Table S2. As a comparison, the average similarity scores
among the four TU sets are over 0.76 (from 0.71 to 0.82);
furthermore the scores among datasets 2–4, with the same
treatment but different concentrations, have an average level
at 0.8.

We fully expect that more transcriptomic data will lead
to improved prediction of TUs. For example, 5′ enriched
sequencing data should help to improve the prediction
of transcription start sites. In addition, more informative
RNA-seq libraries such as paired-end reads with longer in-
between regions may reveal better continuity information
of a transcript. Another area for improvement, with more
challenging issues, is to predict overlapping TUs expressed
under the same conditions, which we plan to do in the near
future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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