

VÉEE 1547 Revision Will You Be Ready?

Small Wind Conference

Stevens Point, Wisconsin

Robert Preus

June 15, 2015

Introduction

- What is the IEEE 1547 standard?
- Why is IEEE 1547 being revised?
- What will the new requirements look like?
- Why will there be multiple categories with different requirements?
- What is the impact on DW?

IEEE 1547 Interconnection Standard

- IEEE 1547 is the standard for the interconnection of distributed energy resources (DER) to the utility grid
- Original version was completed in 2003
 - DER was insignificant to grid stability
 - Only allowed DER response to grid event was tripping
- DER penetration on the grid is now high in some places
 - DER support of grid stability is becoming essential

Is the future here now?

- California and Hawaii have already enacted their own enhanced interconnection standards
- New York is working on a new interconnection standard
- IEEE has fast tracked 1547 revision to head off a profusion of interconnection standards
 - Imagine the burden of certifying your inverters and other devices to many state standards

Experience with Hawaii and Enphase

- Enphase provided detailed data on grid operating conditions to Hawaiian Electric Company (HECO)
- HECO and Enphase agreed on inverter programing changes
- Enphase inverters were all reprogramed in 48 hours (140 MW of capacity)
- Hawaii lifted the penetration limits from 120% to 240% of minimum daytime load

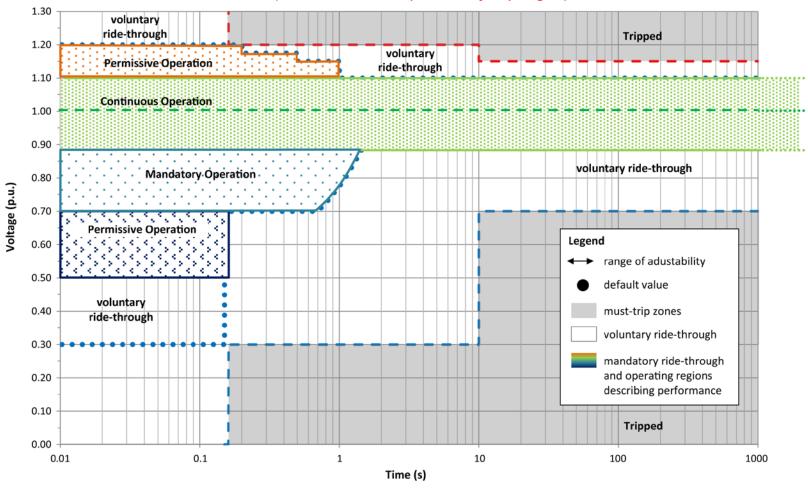
Enhanced Levels of Ride-Through

- Specifications for categories that provide an enhanced level of grid support are being developed
- IEEE 1547 will not specify the category required
 - Selection of allowed category is for the grid operator to determine
 - Allowed categories may vary by feeder or even location on feeder
- IEEE 1547 will provide guidance on application of the standard
 - It does not have authority to control how the standard is used

The Shape of Things to Come (draft)

This is all under development and subject to change.

- Three categories of distributed energy resources (DER)
 - Guided by technology capabilities not technology specific
 - Guided by grid support needs in high penetration
- Requirements can be met at the DER, at the point of common coupling, or in between


Operating Regions

- Current standard has only trip limits and times
- New standard will have regions of continuous operation, mandatory operation, permissive operation, voluntary operation, and trip limits
 - Permissive operation requires that DER stay on line but can cease to energize
 - Voluntary operation allows DER to stay on line or trip

One Category of Voltage Ride Through

Category [X]

(based on German requirements for sync. gen.)

Basic Description of Categories

- One category covers the level of grid support needed by the bulk grid with high penetration,
- One category provides less support and may only be allowed when it provided another value (similar to German MV code for synchronous DER)
- One level provides more support that will improve grid feeder stability and allow higher penetration (similar to California Title 21 smart inverter requirements)

Synchronous Generators Have Limits

- Synchronous generators are very common and have physical limits for ride-through in undervoltage events and kilovar support
- Category with minimum requirements has to accommodate these limits
- Photovoltaic systems with inverters can provide much more grid support
- For high penetration systems, all DER at minimum level may not be sufficient for grid stability

Reactive Power Modes

- Four reactive power modes have been proposed
 - Two have power factor that varies with voltage
 - One has power factor constant at required point that can be changed when requested
 - One has power factor change with power generation (this one would be optional)

Impact on Distributed Wind

- Inverter designs will need to be updated to provide the functions required by the new IEEE 1547
- A separate subgroup will develop testing requirements for the new standard
- Induction generator based systems could have a problem
 - Especially stall-regulated systems
 - How can stall-regulated induction generator systems stay excited and in phase?

Conclusions

- IEEE 1547 revision is the foundation of a future grid with high penetration of DER
- All DER will be required to provide grid support functions
- The standard will provide flexibility for different technologies
- Impact on DW will likely be small for inverter based systems but could be large for induction generators

Thank You

NREL's contributions to this presentation were funded by the Wind and Water Power Program, Office of Energy Efficiency and Renewable Energy, the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The authors are solely responsible for any omissions or errors contained herein.

Robert Preus
Robert.preus@nrel.gov