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ABSTRACT  
Solar power ramp events (SPREs) significantly influence the 

integration of solar power on non-clear days and threaten the 
reliable and economic operation of power systems. Accurately 
extracting solar power ramps becomes more important with 
increasing levels of solar power penetrations in power systems. 
In this paper, we develop an optimized swinging door algorithm 
(OpSDA) to enhance the state of the art in SPRE detection. First, 
the swinging door algorithm (SDA) is utilized to segregate
measured solar power generation into consecutive segments in a 
piecewise linear fashion. Then we use a dynamic programming 
approach to combine adjacent segments into significant ramps 
when the decision thresholds are met. In addition, the expected 
SPREs occurring in clear-sky solar power conditions are
removed. Measured solar power data from Tucson Electric
Power is used to assess the performance of the proposed
methodology. OpSDA is compared to two other ramp detection 
methods: the SDA and the L1-Ramp Detect with Sliding Window 
(L1-SW) method. The statistical results show the validity and 
effectiveness of the proposed method. OpSDA can significantly 
improve the performance of the SDA, and it can perform as well 
as or better than L1-SW with substantially less computation time. 

Keywords: Dynamic programming, ramp forecasting, solar 
power ramp events, swinging door algorithm, Tucson Electric 
Power 

NOMENCLATURE 

objective function to be maximized 
S(i, j) score function of the time interval (i, j) 
R(i, j) rule sets of the time interval (i, j) 
RC(i, j) rule sets of the time interval (i, j) in clear-sky 

time interval set of SPREs and non-SPREs 
time interval set of SPREs 

 time interval set of non-SPREs 
time interval of one SPRE 

 time interval of one non-SPRE 
solar power generation at the time t 
start time of one SPRE 
end time of one SPRE 
start time of one non-SPRE 
end time of one non-SPRE 

m index of the mth SPRE 
L number of solar power data points 
M number of SPREs 

only tunable parameter in SDA 
penalty parameter in L1-SW 
second derivative threshold in L1-SW 

INTRODUCTION 
The increasing penetration of solar power in the United States 

has presented new challenges for the reliable and economic 
operations of the electric grid because of the high variability and 
uncertainty of solar power [1-3]. Solar power ramp events 
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(SPRE) are derived from large fluctuations in solar power, proposed an  OpSDA to improve wind power ramp detection 
especially in a very short time [4]. Some of these ramp events [5] performance. 
are caused by changes in short-term  microclimates, such as  Dynamic programming is a method for solving a complex  
passing clouds, which are not predictable as diurnal variability.  problem by breaking it down into a collection of simpler  
When a large SPRE occurs, it can  be challenging to maintain and subproblems. It is applicable to problems exhibiting the 
manage a power system’s balance.  During severe solar ramp  properties of overlapping  subproblems and optimal  substructures.  
events, power system operators have to take measures to  Sevilian and  Rajagoapal [22] defined a family of scoring 
compensate for the significant changes in solar power.  These  functions with  ramp  event definitions and used  a dynamic 
measures include modulating  the outputs of traditional generators programming recursion technique to detect all the ramp events. 
(especially the thermal and hydroelectric units), using grid  Boulaxis and Papadopoulos [23] utilized a dynamic 
ancillary services, and even  curtailing  or  restricting the output of programming  technique to solve the  optimal feeder routing  of  
solar generators without considering the economic consequences. distribution networks. Marano et al. [24] coupled a dynamic 
Accurately predicting and identifying SPREs reduces the programming  algorithm with a mathematical model to achieve 
influence of solar power ramps and thereby increases the the optimal  management of a compressed air energy  storage  
dispatchability of solar power.  plant.  

Solar power ramp forecasting is still a relatively new research The proposed OpSDA for identifying solar power ramps is 
topic. However, a significant  amount of work has been done in  summarized as follows:  
solar irradiance and power forecasting, which provides  useful 1)  The SDA is utilized to segregate solar power data into  
information for solar power ramp forecasting. Zhang et al. [6] piecewise segments, and then all these piecewise segments  
analyzed the sensitivity of a suite  of metrics to solar forecasts are merged and optimized through a dynamic programing 
with uniform improvement, ramp forecasting improvements, and process. To apply the dynamic programming process, the  
a ramp forecasting threshold. Bacher et al. [7] utilized statistical  solar power signal is divided into a number of overlapping  
smoothing techniques and adaptive linear time series models to  windows in  which a ramp score function is defined to  
perform online forecasting of short-term solar power. Bessa et al. perform the recursion of the dynamic programming algorithm  
[8] presented a spatial-temporal  model based on a vector  and remove ramps that also occur in clear-sky power 
autoregressive framework to forecast solar power. It took generation.  
advantage of a smart grid infrastructure with smart meters and 2)  Based on the OpSDA detection method, the only  
advanced control functions. Yang et al. [9] presented a weather- tunable parameter, , of the SDA can be ascertained as an  
based hybrid method for day-ahead hourly forecasting of solar optimal parameter for the online solar ramp detection. A suite  
power output. The method consisted of classification, training, of metrics are applied to evaluate the performance of ramp  
and forecasting stages. Yang et al. [10] proposed a multi- extraction with 10 different  values and determine the 
timescale data-driven forecast  model that involved the spatial and optimal value, . 
temporal correlations among neighboring solar sites to improve  The following topics are discussed in the remainder of the  
the accuracy of solar power forecasting. paper:  (i) the formulation of the OpSDA, which applies a 

Several studies of SPRE forecasting can be found in the dynamic programming approach to  the SDA; (ii) a case study of 
literature. Florita et al. [11] used the swinging door algorithm  Tucson Electric Power (TEP), which compares the OpSDA to the 
(SDA) to identify variable generation ramping events from  L1-Ramp Detect with Sliding Window (L1-SW) method; and (iii) 
historical solar power data. Hummon et al. [12] analyzed solar a further application of the OpSDA as a benchmark to tune the 
power ramping in the state of Gujarat in  India using high- optimal value, , in the SDA. 
resolution solar data and  found that the total magnitude  of solar 
power ramping goes up with increased solar capacity. Hodge  et OPTIMIZED SWINGING DOOR  ALGORITHM  
al. [13] analyzed solar ramp  distributions at different timescales 
and weather patterns. Sengupta and Keller [14] analyzed SPREs  Swinging Door Algorithm  (SDA) 
at individual locations and provided a comprehensive analysis of The SDA  [15, 25] has been  recently used in the literature to 
solar variability for a distributed generation scenario. extract ramp periods in a time series of a power signal. The SDA  

In this research, a novel optimized swinging  door algorithm  is based on the concept of a “swinging  door” with a “turning  
(OpSDA) is developed to detect SPREs. The proposed OpSDA  point” (i.e., at time 0 with  magnitude  5, as shown in  Fig. 1)  
enhances the performance of the SDA through the introduction  whenever the next point in the time series causes any 
of dynamic programming in the ramp detection process. The  intermediate point to fall outside the area partitioned  by the up  
SDA has been widely used in the literature for ramp forecasting.  and down segment bounds. The segment bounds are defined by 
The SDA was originally proposed  by Bristol [15] for data the door  width, , which is the only tunable parameter in the 
compression and has been recently used in the renewable energy  SDA. More detailed descriptions  of the SDA can  be  found in  [11, 
community. Zhang et al. [16] adopted the SDA to extract ramp  16, 17]. For instance, points A, B, and C are all inside the  
events from actual and forecasted wind power and evaluate the segment bounds determined by Point D within . After  
ramp forecasting performance of improved short-term wind 

segregating the power signal by the SDA, SPREs are extracted power forecasts. Makarov and Ma et al. [17-20] used the SDA to 
according to the user-specified definition of a significant ramp.  derive three parameters for each power interval: ramping 

capability, ramping rate, and ramping  duration. Cui et al. [21]  
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FIGURE 1. SDA FOR THE EXTRACTION OF RAMPS IN 
THE POWER SIGNAL [11] 

Fig. 2 shows one example of ramp detection results by the 
SDA. As shown, there are two down-ramps from Point 38 to 
Point 41 (points 38~40 and points 40~41); however, there should 
be only one significant ramp event from Point 38 to Point 41. 
Another case is from Point 44 to Point 47. Although there is 
actually one ramp event in the interval from points 44~47, the 
start time detected by the SDA is Point 45 rather than Point 44, 
which is the measured start time of this ramp event. Similar 
circumstances can be seen in the intervals from points 34~37 and 
41~43. Moreover, the significant ramp event in the interval from 
points 30~33 is not detected by the SDA, because each small 
segment within this interval does not comply with the ramp 
definition. However, if the three small segments within the 
interval from points 30~33 were combined together into one 
expanded segment, it could be a significant ramp event according 
to the ramp definition. Therefore, it is uniquely helpful to 
introduce optimization techniques into the SDA to achieve more 
accurate ramp detection. This motivates the development of the 
OpSDA, which is described in the next subsection. 

FIGURE 2. DETECTED SPRES BY THE SDA AND ITS 
CORRESPONDING SEGMENTS WITH =0.9% AND 15­
MINUTE RESOLUTION 

OpSDA Based on a Dynamic Programming Approach 
The objective of the optimization is to minimize the number 

of individual ramps by combining adjacent small ramps. 

Therefore, adjacent segments that have the same ramping 
direction (e.g., up-ramps or down-ramps) can be  merged  into one  
segment. Toward this end, a dynamic programming algorithm is  
applied to the original segments (from the SDA). In this study, an  
increasing length score function,  S, was designed based on the  
length of the interval segregated b y the SDA. The optimization  
seeks to maximize the length score function, which corresponds 
to a ramp event. 

Given a solar power interval, , of all discrete time points 
and an objective function, , of the dynamic programming 
algorithm, a SPRE is detected by maximizing the objective 
function: 

 (1)

s.t. 
(2) 

 (3) 

where  is the maximum score in the interval, , which 
can be computed as the maximum over (i−j) subproblems. J(i, j) 
is constrained by the inequality constraint in Eq. (2) and the 
equality constraint in Eq. (3). Eq. (2) is a super-additivity  
property to  which the positive score value, , must conform.  
Eq. (3) is  improved based on [22] wi th  the use of a new variable, 

. Except for the equality constraint  with  in  Eq. 
(3), OpSDA and L1-SW share the same variables and constraints. 

 and  are the definition of a ramp within the 
interval, , in measured data days and clear-sky days, 
respectively. Similar definitions  of  and  in Eq. (3) 
have  been used in the literature [26,  27] for wind power ramp  
detection. Generally, significant changes of solar power 
magnitude, direction, and duration can  result in a SPRE. In this 
paper, we use three classic definitions  of significant ramp events  
that were originally defined for significant wind  power ramp  
events [16]:  

 (i) Significant Ramp Definition  1: The change in solar 
power output  that is greater than  10% of the installed solar 
capacity. 

(ii) Significant Ramp Definition  2: The change in solar power 
output that is greater than 10% of the installed solar capacity  
within a time span of 1  hour or less. 

(iii) Significant Ramp Definition 3: A significant up-ramp  is 
defined as the change in solar power output that is greater than 
10% of  solar capacity within a time  span of 1 hour or less; and a 
significant down-ramp is defined as the change in solar power  
output that is greater than 8% of solar power capacity within a 
time  span of 1 hour or less.  

First, if  and  separately conform to the 
threshold of ramp definitions in measured data days and clear-
sky days, and  are assigned to  be 1;  otherwise, 

and  are assigned to be 0. Second, a comparison 
process is made based on Eq. (3) to  remove the SPREs likewise 
occurring in the clear-sky days (i.e., SPREs caused by the solar 
diurnal variation), in which   should  be assigned to be  0.  
This comparison process is implemented based on the algorithm  
developed in [2 2], which is given in A lgorithm 1 w ith p seudo­
code. The main contribution of this research in Algorithm 1  
(compared to [22]) is the introduction of a modified score  
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function, S, to remove insignificant ramps occurring both in the 
measured and clear-sky solar power generations. The OpSDA 
has the same initialization code as L1-SW in [22]. The main 
difference between them is how to compute maximum scores for 
combined segments in Algorithm 1. A flowchart is provided in 
Fig. 3 to illustrate the ramp detection process of the OpSDA. 

FIGURE 3. THE OVERALL  PROCESS  OF THE OPSDA 


Algorithm 1  Dynamic Programming Pseudo-Code  

//Length of  ramp segments by the SDA [22]. 
L   length(p) 

// Initialize score of zero length segments [22]. 
for  i = 1  L  do
  
 J[i, i] 
 0 
end for  

// Compute  maximum scores  for combined segments.  
for  n = 2  L  do
  

for  i = 1 
  L-n+1 do
  
 j 
  i+n-1 

 for  k = i 
  j-1 do 


  // Remove clear-sky power ramps. 

S(i, k) 
 (k-i)2×R(i, k)×[1-R (i, k)]  C

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 
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  q   S(i, k)+J(k, j) 
if  q > J[i, j] then  
 J[i, j]  q  

K[k, j]  k 
end if 

end for  
end for  

end for  

Based on Eqs. (1)-(3), this  optimized process can proceed  
inductively as follows. Assuming  that the number of SPREs is M 
and m: 1≤m<M, the SPRE interval set ={Em, …, EM} is the 
set of intervals Em=(sm, em) and the non-SPRE interval set 
={ , …, } is the set of intervals =( , ). If 

and i, j: , then: 

 
 (4) 
 

If  and i, j: , the objective 
function  is expressed as:  

 

(5)
 

 

Thus, considering Eq. (2),  is: =S(sm, 
em). Noted that there are  only two possible cases (SPRE (E1) or  
non-SPRE ( )) for the initial event. Thus, an optimal event  
sequence of  SPREs and non-SPREs can be  presented as ={Em, 

, Em+1, , …, EM, } or { , Em+1, , …, EM, } 
for a given  L solar power series. If a solar power series  , …, 

 with the event sequence ={Em, , Em+1, , …, EM, 
} has a solution to Eq. (1) being , the solution is 

expressed in Eq. (6) and Eq. (8); if a solar power series , …, 
 with the event sequence ={ , Em+1, , …, EM, } 

has a solution to Eq. (1) being , the solution is 
expressed in Eq. (7) and Eq. (9):  

 

 

 
(6) 
 

 

 

 
(7) 
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Thus, considering Eq. (2),  in Eq. (6) can be  
transformed to: 

 (8) 

Likewise, considering Eq. (4),   in Eq. (7) is: 

 
(9) 

 

If a solar power series is , …,  , the solution  is: 

 (10) 

If a solar power series is , …,  , the solution  is: 

 (11) 

Fig.  3 shows M sliding windows with the start point ( ) 
and the end  point ( ). A set of  significant ramps will  
be detected in  each window in which  with the start 
( ) and end ( ). The  number of significant ramps in each  
window may be different (e.g., the first  window  with  and 
the last window with  ).  

In brief, all the segments (represented  by the square points  
in Fig. 2) are first extracted by the SDA with a predefined  
parameter . Then all extracted segments are input into the 
optimization procedure (the red block shown in Fig. 3). The  
extracted segments are merged  to yield a set of optimized  
significant ramp events . During this 
procedure, a   comparison process (the  blue block shown  in Fig.  
3) is  deployed to  remove the SPREs occurring in  both the 
measured and clear-sky solar power  generations. A case study  
of the OpSDA is shown in the next section.  0.8 

Time[min] 
FIGURE 4. SAMPLE INTERVAL OF SOLAR POWER TIME 
SERIES IN TEP DATA  

 
EXPERIMENTAL RESULTS 

Data Description  
In this section, we present various statistics to analyze the 

proposed solar ramp detection method. The solar power data  
collected from TEP is used for solar power ramp detection. The 
rated capacity of the TEP solar is 25 MW. The data includes 
both the measured  power generation and the corresponding  
clear-sky power generation sampled every 15 minutes. The  
time  interval of the TEP data  spans from  June 1, 2013, to  
October 30, 2013, including 14,564 samples. An example of the  
solar data time series is shown in Fig.  4.  

OpSDA Ramp Event Detection Results 
OpSDA  was compared to a ramp detection method proposed  

by Sevlian and Rajagopal  [22,  28], referred to as the L1-SW.  
The L1-SW  method was  developed for wind power ramp  event  
detection, which can characterize the ramp start times,  
durations, and rates as well as other key features needed in the  
operation of a power system. In this study, the L1-SW was 
modified to extract SPREs. The segregation process of the L1­
SW method uses L1 trend fitting with a penalty parameter  
and the second  derivative with a threshold ; whereas the 
OpSDA uses the SDA for segregation. The L1-SW method is  
capable of smoothing the noise with preprocessing  in solar 
power and subsequently segregating the solar power into  
piecewise data. In this subsection, a significant ramp is defined 
as the change  in solar power that is  greater than 10%  of the  
installed solar capacity. Note that this threshold  (10%) is set 
relatively smaller to extract sufficient ramps to compare the L1­
SW to the OpSDA. 

FIGURE  5. COMPARISON RESULTS OF SEGMENTS AND 
SIGNIFICANT  RAMPS OF THE L1-SW WITH  =0.5, 
=1×10-4  TO THE OPSDA WITH =9×10-3  

Figs. 5 and 6 compare the segments approximated by the  
L1-SW and OpSDA methods to different parameter values. The 
parameter  in the OpSDA  is set to be  9×10-3  in both Figs. 5  
and 6; the parameter  in L1-SW is set to b e  0.5 and 0.02 in 
Figs. 5 and 6, respectively;  the parameter  in  L1-SW is set to  
be 1×10-4 and 5×10-6, respectively. Significant ramps extracted  
by the two methods are also shown in Figs. 5 and 6. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 
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Fig. 5 indicates that segments o f the OpSDA are more  
accurate  than those of the L1-SW with larger  and . For  
example, as shown in the intervals of the 10,600th to 10,850th  
minute and the 10,850th to  10,950th minute, the L1-SW method 
deviates from  the measured solar power signal with larger  
and . Thus, the OpSDA has a better ramp detection 
performance than the L1-SW in Fig. 5. By reducing the values  
of  and , the L1-SW method in Fig. 6 can match the 
measured solar power signal more precisely. However, this 
comes with increased computational burden. 

FIGURE  6. COMPARISON RESULTS OF SEGMENTS AND 
SIGNIFICANT RAMPS OF THE L1-SW  WITH =0.02,  
=5×10-6  TO THE OPSDA WITH =9×10-3  

FIGURE 7.  RUNTIME COMPARISON OF THE L1-SW 

WITH THE  PARAMETER [0.01, 0.49], =[1×10-4, 1×10-5 ,
5×10-6] TO THE OPSDA  WITH THE TUNABLE
PARAMETER  [0.01, 0.05]  

Fig. 7 compares the runtime of the two methods:  the 
OpSDA  on the left y-axis and the L1-SW  on the right y-axis.  
Although the  accuracy  of the L1-SW  was  improved in Fig. 6 
with smaller  and , the runtime of the L1-SW is
approximatively 40 minutes. The runtime of the OpSDA  with  

=9×10-3 is  only 2.5 minutes. Overall, both the ramp detection  
performance and the runtime of the L1-SW are sensitive to the 
penalty parameter  and the threshold  . The detection 
performance and runtime of the OpSDA are less sensitive to the 
parameter . Table 1 lists the number of significant up- and  
down-ramps in the TEP solar power data according to the three 
ramp extraction methods and three definitions. 

TABLE 1.  NUMBER OF OBSERVED RAMPS 
 

 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 Methods Up-Ramps Down-Ramps

Definition 1 
SDA 169 174

L1-SW 328 327
OpSDA 270 296

SDA 195 201
Definition 2 L1-SW 327 326

OpSDA 314 296
SDA 195 222

Definition 3 L1-SW 327 388
OpSDA 314 322

Table 1 shows that in all three definitions, the SDA method  
detects the least quantity of SPREs. Basically, there are no  
combinations of adjacent segments in the SDA, which makes 
only separate ramps conforming to specific definitions  
extracted. As for the L1-SW, the most quantity of SPREs is 
detected  with  smaller parameters. Consequently, this process 
needs the most computation. Therefore, the OpSDA detects  
more quantity than the SDA  but with less computation than the 
L1-SW.  

Distribution of Ramp Features  
A numerical  statistical  distribution of the three key  ramp  

features (ramp duration, rate, and magnitude) based on the TEP  
solar power  data is shown in  Figs. 8-10. As  for ramp durations, 
it is observed that the most possible ramp durations detected by  
all three methods  (SDA, OpSDA, and L1-SW) are distributed  
around 30 minutes with Definition 1; whereas the ramp  
durations are mostly distributed from 30 minutes to  60 minutes  
in  both  Definition 2 and Definition 3. Meanwhile, as for ramp  
rates, it is observed that the most possible ramp rates are 
distributed between 6 p .u./min and 13 p.u./min using all three 
significant ramp definitions. Moreover, this is because solar 
power fluctuates sharply within a short time (30 minutes or 60  
minutes), as shown in Figs. 8-10.  

However, as for ramp magnitudes, even though most ramp  
magnitudes by the three methods are distributed around 0.2  
p.u., the empirical distributions  derived from the L1-SW  and  
the OpSDA are very close to each other and far  from the 
distributions by the SDA. A  sharp peak occurs when using the  
SDA, which indicates that there are many small solar power 
ramps. However, the magnitude distributions  with the L1-SW  
and OpSDA  present fat tails, which means that the magnitudes 
of the ramps are increased and  optimized  by the dynamic 
programming approach.  
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FIGURE 8.  RAMP DEFINITION 1:  RAMP  MAGNITUDE ONLY 

FIGURE 9. RAMP  DEFINITION 2 : RAMP MAGNITUDE AND RAMP DURATION 

FIGURE 10. RAMP  DEFINITION 3 : RAMP DIRECTION, RAMP MAGNITUDE,  AND RAMP DURATION 

APPLICATION OF THE OPSDA FOR TUNING THE  
PARAMETER   

The SDA has the advantage of computational and structural  
simplicity, which is favorable considering its robustness even 
with noisy data [17]. Sometimes in online applications, an  SDA 
without any optimization is more preferable because of  its 
inexpensive computation. Currently, this tunable parameter 
  
is normally determined through computational experiments. It  
would be uniquely helpful to develop an op timal strategy for 
adaptively selecting the best  values at different time periods. 
Toward this end, we  propose  using the OpSDA as a baseline to  
determine the optimal parameter value, . The solving 
procedure is to find the  that enables the ramps detected by 
the SDA close to that detected by the OpSDA. 

Generally, a smaller  value corresponds to smaller fitting  
errors between the SDA approximation and the measured solar 
power. However, an   value that is too small may segregate a 
 
single significant ramp into multiple small ramps that do  not 
 
satisfy the SPRE ramp definitions. 


To  determine the optimal parameter, 
 , based  on the 

OpSDA, a suite of SPRE detection metrics were used to  
evaluate the performance of ramp extraction with different  
values. The adopted metrics include the probability of detection 
(POD), the critical success index (CSI), the frequency bias  
score (FBIAS), and the success ratio. These metrics are  
calculated based on a contingency table in  Table 2 that provides 
a measure of skill for the SDA to approach the OpSDA. True  
positive (TP) represents the number of ramps detected  by the 
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SDA that are accurately detected by the OpSDA;  false positive  
(FP) is the number of ramps detected by the SDA that are not  
detected by the OpSDA; false negative (FN) represents the  
number of ramps detected  by the OpSDA that are not extracted 
by the SDA; true  negative (TN) is the number of nonoccurring 
events for both the SDA and the OpSDA; and N is the  total 
number of SP REs.  

TABLE 2. CONTINGENCY  TABLE FOR THE SDA  AND
  
OPSDA 


Categorical statistics provide  measures of accuracy and skill 
for forecasting in many applications, such as ramps in power, 
temperature, or rainfall. Based  on the contingency table, a suite 
of metrics can be derived for optimal  performance 

evaluation. The equations of POD, CSI, FBIAS, and FAR can  
be  found in [ 16] and [29]. 

After calculating all of the metrics (POD, CSI, FBIAS, and  
FAR), the optimal  value is determined by the largest POD, 
which can be  visualized  on the performance diagram shown in  
Fig. 11.  A performance diagram is used to understand the  
evolution of the SDA wi th different   values. For the 
performance diagram shown in  Fig. 11, (i) the left axis  
represents the value of POD;  (ii) the bottom axis represents the 
success ratio; (iii) the diagonal dashed lines represent FBIAS;  
and (iv) the dashed curves  show CSI.  Fig. 11 shows a 
performance space of 10  values by utilizing each ramp  
definition. These 10  parameters are derived from 0.006 to  0.096  
uniformly. To find the optimal parameter, , the points in Fig.  
11 move toward the top right corner of the performance 
diagram. Fig. 11 shows the optimal parameters for four months  
(June, J uly, August, and September 2013) using 15-minute 
resolution data based on three significant solar power ramp  
definitions.  

 

 

 

FIGURE 11. RAMP DETECTION PERFORMANCE WITH THE OPTIMAL  PARAMETERS. THE SUBFIGURES (A), (B), (C), 
AND ( D) SHOW OPTIMAL PARAMETERS DEFINED BY THREE RAMP DEFINITIONS IN JUNE, JULY, AUGUST,  AND  
SEPTEMBER 2013, RESPECTIVELY 
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