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ABSTRACT 
 A hydrodynamics computer module was developed to 
evaluate the linear and nonlinear loads on floating wind 
turbines using a new fluid-impulse formulation for coupling 
with the FAST program. The new formulation allows linear and 
nonlinear loads on floating bodies to be computed in the time 
domain. It also avoids the computationally intensive evaluation 
of temporal and spatial gradients of the velocity potential in the 
Bernoulli equation and the discretization of the nonlinear free 
surface. The new hydrodynamics module computes linear and 
nonlinear loads—including hydrostatic, Froude-Krylov, 
radiation and diffraction, as well as nonlinear effects known to 
cause ringing, springing, and slow-drift loads—directly in the 
time domain.  
 The time-domain Green function is used to solve the linear 
and nonlinear free-surface problems and efficient methods are 
derived for its computation. The body instantaneous wetted 
surface is approximated by a panel mesh and the discretization 
of the free surface is circumvented by using the Green function. 
The evaluation of the nonlinear loads is based on explicit 
expressions derived by the fluid-impulse theory, which can be 
computed efficiently.  
 Computations are presented of the linear and nonlinear 
loads on the MIT/NREL tension-leg platform. Comparisons 
were carried out with frequency-domain linear and second-
order methods. Emphasis was placed on modeling accuracy of 
the magnitude of nonlinear low- and high-frequency wave 
loads in a sea state. Although fluid-impulse theory is applied to 
floating wind turbines in this paper, the theory is applicable to 
other offshore platforms as well.  

KEYWORDS 
Wave-structure interactions, fluid-impulse theory 

INTRODUCTION 
 The offshore wind industry has the potential to grow 
rapidly for a number of reasons. Wind is an inexhaustible and 
clean energy source. The horizontal-axis wind turbine is a 
mature technology. Vast wind resources exist in the offshore 
environment with stronger and steadier wind speeds allowing 
for significantly higher capacity factors than those encountered 
over land. The logistics of the offshore environment favor large 
multimegawatt turbines in the 6- to 10-MW range. These 
turbines can be easily assembled, transported to, and installed at 
the offshore wind power plant site. The support structure of 
offshore wind turbines can be either a bottom-mounted 
structure in shallow waters or a floating platform if the water is 
deeper than about 50 m. The wave loads exerted on these 
foundations by ambient sea states over the life of an offshore 
wind power plant must be properly modeled and predicted so 
that safe and cost-effective support structure designs can be 
developed. 
 The evaluation of the wave loads on offshore platforms is 
typically carried out either by Morison’s equation or by 
frequency-domain panel methods with appropriate time-domain 
transforms for transient analysis. Morison’s equation is a strip-
theory-based time-domain method for slender structures. The 
method accounts for fluid inertia, added mass, and viscous 
effects by selecting appropriate added mass and drag 
coefficients. Morison’s equation also permits the treatment of 
strong nonlinearities in the vicinity of the waterline arising 
from steep ambient waves. Frequency-domain methods, on the 
other hand, are applicable to large-volume platforms and model 
linear and nonlinear potential-flow effects by solving first- and 
second-order free-surface problems. This leads to the 
computation of linear and quadratic transfer functions (QTFs). 
The time-domain fluid-impulse method presented in this paper 
bridges the gap between Morison’s equation and frequency-
domain methods. It can be used for both slender and large-

†Email address for correspondence: gkychan@mit.edu 
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volume offshore structures and allows for the modeling of 
higher-order transient nonlinear effects in the vicinity of the 
waterline. 
 In this study, the fluid-impulse method is applied to the 
computation of the nonlinear surge diffraction force on the 
Massachusetts Institute of Technology (MIT)/National 
Renewable Energy Laboratory (NREL) tension-leg platform 
(TLP), which supports a 5-MW wind turbine. Previous studies 
have carried out simulations for floating wind turbines using 
Morison’s equation and frequency-domain methods.   
Investigators carried out computations of the loads and 
responses of TLP floating wind turbines and documented them 
in [1-3]. Simulations for the Hywind Spar floating wind turbine 
structure based on Morison’s equation were reported by [4]. For 
the International Energy Agency Offshore Code Comparison 
Collaboration (IEA OC3) Spar, simulations were reported by 
[5]. For the semisubmersible WindFloat structure, simulations 
were presented by [6]. In [7], simulations for the IEA OC3 
Continued (OC4) semisubmersible were documented. 
 The conclusions from the simulations reported in these and 
other studies are summarized here. There is good agreement 
between methods predicting the linear potential-flow loads 
from Morison’s equation or frequency-domain methods. The 
accuracy of Morison’s method deteriorates as the wavelength of 
the ambient wave decreases and becomes comparable to the 
diameter of a cylindrical floater. The agreement between 
various methods is less satisfactory for predicting the nonlinear 
low- and high-frequency loads and responses partly because the 
underlying modeling assumptions differ and partly because the 
accurate computation of the sum- and difference-frequency 
QTFs is a complex and time-consuming task. Because it is a 
time-domain method that may treat slender and large-volume 
structures, the fluid-impulse method developed by [8,9] 
addresses the gap between the long-wavelength approximations 
in the time-domain Morison-based method for slender members 
and frequency-domain approaches. In addition, the fluid-
impulse method allows the evaluation of second-order and 
higher-order nonlinear effects via compact force expressions 
that circumvent the discretization of the free surface by taking 
advantage of the analytical structure of the time-domain Green 
function. 
 Viscous effects are not addressed in this paper, but they 
may contribute a significant component to the sea-state loads 
on bottom-mounted and floating wind turbine substructures. 
They can be accounted for by including Morison-type viscous 
force terms in the fluid-impulse theory. The advent of powerful 
multicore computational clusters, the growing maturity of 
computational fluid dynamics, and the availability of promising 
high-Reynolds-number turbulence models for massively 
separated flows [10]; however, offer a promising avenue for the 
future treatment of viscous effects by overlaying the fluid-
impulse theory and the Navier-Stokes equations. 

FLUID-IMPULSE THEORY FORMULATION 
 Figure 1 illustrates a platform floating on a free surface 
interacting with a nonlinear ambient wave assumed to be 
irregular. The reference coordinate system (X,Y,Z) is fixed in 
space with its origin located on the calm water surface with the 
positive Z-axis pointing upward. The free-surface elevation 
resulting from the ambient wave is denoted by the solid line. 
The dashed line defines a horizontal plane intersecting the Z-

axis at the local elevation of the ambient wave profile. The 
acceleration of gravity is g and the water density is ρ. 

 
Figure 1. FREE-SURFACE INTERATION WITH FLOATING 

BODY 

 In Figure 1, the ambient wave velocity potential is denoted 
by ( , , , )I X Y Z tφ  and the disturbance radiation/diffraction 
potentials are denoted by ( , , , )X Y Z tφ . Both are subject to the 
Laplace equation in the fluid domain as  

 
2 2 2

2 2 2
0.

X Y Z
φ φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1) 

On the instantaneous position of the body boundary ( )BS t , the 
normal velocity of the radiation potential is equal to the normal 
velocity of the body boundary nU because of its oscillatory 
motions 

 , ( ).n BU on S t
n
φ∂
=

∂
 (2) 

In the diffraction problem, the diffraction potential offsets the 
ambient wave normal velocity on ( )BS t  

 , ( )I
Bon S t

n n
φφ ∂∂

= −
∂ ∂

 (3) 

For notational simplicity, the radiation and diffraction (RD) 
potentials are hereafter denoted by the same symbol, with the 
body boundary conditions from Eqs. (2) and (3) applying for 
each potential, respectively. 
 The fluid-impulse theory (FIT) derived by [8] linearizes 
the disturbance RD potential φ  about the ambient wave 
surface ( )IS t  exterior to the body waterline as 
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 (4) 

 The conventional definition of the force and moment 
acting on the body follows from the integration of the 
hydrodynamic pressure obtained from Bernoulli’s equation 
over the instantaneous body wetted surface 
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  (5) 
The evaluation of the nonlinear hydrodynamic force and 
moment given by Eq. (5) requires the computation of the partial 
time and space derivatives of the disturbance potential over the 
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instantaneous wetted surface of the body. This computational 
task requires fine panel meshes that lead to slow convergence in 
the evaluation of nonlinear forces.  
 The FIT formulation circumvents the computation of 
gradients of the disturbance potential by deriving new 
expressions for the hydrostatic and hydrodynamic forces 
summarized in the following sections. The total force in Eq. (5) 
is decomposed into a number of components 
 ( ) ( ) ( ) .H F K B FSF t F t F t F F−= + + +

r r r r r
 (6) 

Only these forces are discussed in the remainder of this section. 
The definition of the moments can be found in the original FIT 
article [8]. 

Nonlinear Buoyancy Force 
 The hydrostatic force acting on the body takes the 
following form 
 ( ) ( ) .H WF t g t kρ= ∀

ρρ
 (7) 

In Eq. (7), k


 is the unit vector pointing in the positive Z-
direction and ( )W t∀  is the volume enclosed by the body 
wetted surface ( )BS t  and the nonlinear ambient wave surface 
interior to the body ( )WS t , defined in Fig. 1. The nonlinear 
hydrostatic force given by Eq. (7), then, always points upward. 
In the classical definition of the nonlinear body force obtained 
by integrating the hydrodynamic pressure from Bernoulli’s 
equation in Eq. (5), the nonlinear hydrostatic force depends on 
the shape of the body wetted surface and does not necessarily 
point upward. Equation (7) extends the classical Archimedean 
buoyancy force in calm water to the unsteady case of nonlinear 
wave body interactions via the introduction of a time-dependent 
displacement bounded by the body wetted surface and a 
dynamic water plane area defined by the ambient wave. 

Froude-Krylov Impulse Force 
 This force takes the following form 

 
( ) ( ) ( )

( ) .F K I I
S t S t tB W W

d dF t n ds dv
dt dt

ρ φ ρ φ−
+ ∀

   
   = − = ∇
   
   

∫ ∫∫
ρ ρ  

  (8) 
The surface integrations in Eq. (8) are carried out over the 
instantaneous intersection of the body boundary and the 
ambient wave profile, which is assumed to be known with the 
unit normal vector pointing inside the body. An additional 
integration is carried out over the ambient wave free surface 
interior to the body. An application of Gauss’s theorem 
provides an alternative definition of the Froude-Krylov impulse 
as the integral of the ambient wave velocity vector over the 
volume internal to the body wetted surface and its dynamic 
water plane area. The evaluation of the new Froude-Krylov 
force and moment requires knowledge of only the velocity 
potential of the ambient wave over the body boundary and not 
its partial time derivative or its spatial gradients. 

Radiation and Diffraction Body Impulse 
 This force takes the following form 

 
( )

.B
S tB

dF n ds
dt

ρ φ
 
 = −
 
 
∫

ρ ρ
 (9) 

The integration in Eq. (9) is carried out over the instantaneous 
body wetted surface defined by its intersection with the ambient 
wave profile. Again the evaluation of the forces and moments 
requires only the RD velocity potentials over the body 
boundary and not their partial time derivative or spatial 
gradients. 

Radiation and Diffraction Free-Surface Impulse Force 
 This force takes the following form 

( ) ( )

2

2
( )

1 1( ) ( ) ...
2
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∂
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  (10) 
The unit normal vector to the ambient wave free surface may be 
expressed in terms of the gradients of the free-surface 
elevation. Denoting by δ  the order of magnitude of the 
ambient wave slope obtains the following, with errors quadratic 
in the wave slope 
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Substituting Eq. (11) in Eq. (10), invoking the linearized free-
surface condition, and considering the force in the X-direction 
obtains the following 
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∫
 

  (12) 
 In summary, the nonlinear hydrodynamic force acting on a 
body floating in an ambient irregular wave of large amplitude 
has been derived as the sum of a nonlinear buoyancy force 
pointing upward and the time derivative of a sequence of 
impulses. The Froude-Krylov nonlinear impulse involves an 
integral of the ambient wave velocity potential over the 
instantaneous body wetted surface and the interior water plane 
area defined by the ambient wave elevation. The body RD 
nonlinear impulse involves an integral of the RD velocity 
potentials over the body wetted surface. The free-surface RD 
nonlinear impulse involves integrals of the RD disturbances 
over the infinite ambient wave free surface exterior to the body 
waterline. 
 The forces discussed in this section are based on the 
assumption that the RD velocity potentials satisfy the linear 
free-surface condition over the ambient wave free-surface 
profile. Higher-order nonlinear effects can be accounted for by 
invoking the fully nonlinear free-surface condition and 
introducing quadratic and cubic nonlinearities as forcing terms 
in the right-hand side of the linear free-surface condition in Eq. 
(4) via perturbation theory. Details on the treatment of these 
nonlinear effects are presented in [9]. 
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INTEGRAL EQUATION FOR THE DISTURBANCE 
POTENTIAL 
 The disturbance potential φ  satisfies the linearized free-
surface condition in Eq. (4) on the ambient wave surface ( )IS t  
illustrated in Fig. 1. The horizontal dashed planar surface 
illustrated in the figure intersects the Z-axis at the ordinate

(0, 0, ) ( )I It tζ ζ≡ . To take advantage of the analytical 
properties of the time-domain Green function, the free-surface 
condition (Eq. 4) is hereafter assumed to be valid on the planar 
surface ( )IZ tζ= . This assumption is justified by the small 
slope of steep waves in a sea state. Introduce the new 
coordinate system centered on the dashed planar surface as 
follows 

 
( ) ( ).I

x X
y Y
z t Z tz

=
=
= −

 (13) 

The Laplace equation maintains its original form relative to the 
new coordinate system. The free-surface condition, satisfied by 
the disturbance potential relative to the new coordinates

( , , ( ), ) ( , , , )Ix X y Y z Z t t X Y Z tϕ z φ= = = = − = , follows 
from these identities 

 2 2 2 2
2

2 2 2
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2 ( ) ( ) ( ) .
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I I I

z t
t t z t t z

t t t
z t zt t z
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∂ ∂ ∂ ∂ ∂∂
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∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂∂ ∂ ∂



  
 (14) 

Introducing Eq. (14) in Eq. (4), the free-surface condition 
relative to the new coordinate system becomes 
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z z tt z

ϕ ϕ ϕ ϕzzz  ∂ ∂ ∂ ∂ + − − + = =  ∂ ∂ ∂∂ ∂
    

  (15) 
 For ambient waves of small steepness, terms involving the 
time derivatives of the incident wave elevation are of the order 
of KAδ =  relative to the leading order terms, where A is the 
characteristic amplitude of the ambient wave and K is the 
characteristic wave number. Consequently, the free-surface 
condition relative to the new coordinate system, with relative 
errors of ( )O δ , becomes the following: 

 
2

2
0, 0.g z

zt
ϕ ϕ∂ ∂
+ = =

∂∂
 (16) 

The body boundary conditions in Eqs. (2) and (3) maintain their 
form because they involve only spatial derivatives. They are 
enforced on the instantaneous wetted surface of the body 
defined relative to the new coordinate system. 
 From the preceding analysis, it follows that the free-
surface condition in Eq. (16) is enforced on the planar z=0 
surface at each time step. Relative to this plane the body wetted 
surface is more submerged below z=0 when ( ) 0I tζ >  and less 
submerged when ( ) 0I tζ < . The vertical coordinate of a point 
of the body wetted surface is given by ( )Iz Z tz= − , where Z is 
the vertical coordinate relative to the earth-fixed frame.  
 The boundary value problem for the disturbance potential 
becomes a body nonlinear time-domain free-surface problem 
subject to the linear free-surface condition. Invoking the time-
domain Green function, a time-convolution integral equation 

can be derived for the disturbance potential along the lines of 
[11,12]. The disturbance velocity potential is represented by a 
distribution of sources over the instantaneous wetted surface of 
the body, as follows 
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The unknown source strength distribution ( , )tσξ


for t>0 is 
determined from the solution of the integral equation obtained 
by enforcing the body boundary condition as follows 
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  (18) 
The left-hand side of Eq. (18) is a known normal velocity on 
the body wetted surface for the RD problems via Eq. (2) and 
Eq. (3), respectively. 
 Invoking the following notation, 

 2 2 2 1/2

2 2 2 1/2

( , , )

( , , )

[( ) ( ) ( ) ]
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x x y z
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=
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the time-domain Green function is defined as follows 
(0)
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0

0
1/22 2

1 1 1( , )
4 '

1( , , ) sin ( )
2

( ) ( ) .

k z
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r r
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z
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x
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∞
+
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 

 = −  

 = − + − 

∫




 (20) 

The integral equation in Eqs. (17) through (20) is solved by 
discretizing the instantaneous body wetted surface with planar 
panels and advancing the time-convolution integral ahead in 
time starting at t=0.  
 The panel mesh typically extends up to the deck above the 
free surface and its coordinates are defined relative to a body-
fixed coordinate system. As a result, no re-meshing of the body 
wetted surface is necessary at each time step for large 
amplitude motions. A translation and rotation of the original 
panel mesh and the identification of the portion of the panel 
mesh that is wet at each time step are necessary. An essential 
attribute of the efficiency of the computational scheme is the 
fast computation of the memory component of the Green 
function defined by the second term in Eq. (20).  
 The velocity potential of the incident wave ( , )I x tϕ 

 is 
based on the standard representation of an irregular wave train 
in a sea state and in Eq. (22). The solution of the integral 
equation in Eq. (18) provides the disturbance velocity potential 

( , ), 0x t tϕ >  over the instantaneous position of the wetted 
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surface via Eq. (17). The substitution of the incident and 
disturbance potentials in Eqs. (8) and (9) allows the evaluation 
of the fluid-impulse Froude-Krylov and body forces. This is 
carried out by first integrating the velocity potentials over the 
body wetted surface and then taking the time derivative of the 
resulting time-dependent integral. The evaluation of the partial 
time derivative and spatial gradients of the ambient and 
disturbance potentials is circumvented. The free-surface 
impulse force in Eqs. (10) through (12) is evaluated in the next 
section. 

FREE-SURFACE IMPULSE FORCE 
 The fluid-impulse force in Eq. (12) in the X-direction 
involves quadratic and cubic products of the incident and 
disturbance potentials. This force component, then, accounts for 
higher-order effects. Keeping the leading order quadratic 
effects in Eq. (12) for the free-surface fluid-impulse force in the 
X-direction obtains the following 
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dF ds
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=
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∫

∫

 (21) 

In Eq. (21), the free-surface impulse force is decomposed into 
two terms. The ID term involves cross-products of the incident 
and disturbance potentials, whereas the DD term involves a 
quadratic product of the disturbance potential. In addition, the 
integration is carried out over the shifted z=0 plane exterior to 
the instantaneous body waterline. The force defined by Eq. (21) 
is of second order in the incident and disturbance potentials 
with the latter satisfying the linear free-surface condition in Eq. 
(4). This force is of higher order if the disturbance potential 
satisfies the nonlinear inhomogeneous free-surface condition 
discussed in the next section. 
 The incident wave potential of an irregular wave train is 
represented by the linear superposition of plane-progressive 
waves with amplitudes obtained from the sea state spectrum 
and independent phases drawn from the uniform distribution. 
The velocity potential in deep water of a unidirectional 
irregular wave propagating at an angle β  relative to the 
positive X-axis is given by 
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Second-order effects may be included in the definition of the 
ambient waves in deep or finite water depth by invoking the 
analytical solutions available in [13].  
 The evaluation of the infinite free-surface integral in the ID 
component of the free-surface impulse force can be carried out 
explicitly in terms of the source strength over the body wetted 
surface and the disturbance potential over the water plane area 
internal to the body surface. This was carried out by [9] and the 
result follows 
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The evaluation of the source Kochin function K and the  
integral over the internal water plane area involving the 
incident and disturbance potentials can be carried out easily 
using the solution of the integral equation in Eq. (18) for the 
source strength and the representation in Eq. (17) for the 
disturbance potential. 
 The infinite integral of the DD component of the free-
surface impulse can also be reduced explicitly into a form that 
involves integrals of the memory component of the disturbance 
potential over the body wetted surface and the internal water 
plane area as described by [9]. The result follows 
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  (24) 
 The force components in Eqs. (8) and (9) involve the 
ambient and disturbance velocity potentials linearly, yet they 
account for nonlinear effects via the time dependence of the 
body wetted surface defined by its intersection with the ambient 
wave profile. The force components in Eqs. (23) and (24) 
involve quadratic products of the incident and disturbance 
potentials. In Eqs. (8), (9), (23), and (24), higher-order effects 
can be accounted for by including second-order effects in the 
definition of the ambient wave velocity potential. The 
computation of the forces in Eqs. (8), (9), (23), and (24) is 
described in the numerical results section. 

HYDRODYNAMIC PRESSURE 
 The local hydrodynamic pressure is of interest for 
structural analysis. The force expressions derived from the FIT 
theory rely only on the knowledge of the velocity potentials 
over the body boundary. The direct evaluation of the 
hydrodynamic pressure is circumvented, which leads to an 
efficient computational scheme with a coarse panel mesh. The 
evaluation of the local pressure is still possible, however. It 
involves a few simple steps as discussed in this section. 
 Using the methods described previously, the total velocity 
potential Iφ φΦ = +  is evaluated on the panels. Denote the 
velocity potential at the centroid of the ith panel at time t by 

( )tΦ  and the velocity of that centroid as a point fixed on the 
body (and translating with its local velocity because of its rigid 
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body motions) by ( )iV t


. The convective time derivative of the 
total velocity potential along the path of the centroid of the ith 
panel over a time step t∆  is defined by 
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Solving for the partial time derivative of the total potential 
yields the following 

 ( )( ) ( ) ( )
( ).i i i

i i
t t t t

V t
t t

∂Φ Φ + ∆ −Φ
− ⋅∇ Φ

∂ ∆


�  (26) 

 Therefore, the partial time derivative of the total potential 
at the centroid of the ith panel at time t can be evaluated in 
terms of the value of the velocity potential at the centroid of the 
same panel at time t t+ ∆ , the velocity of the panel centroid at 
time t, and the gradient of the total potential at the centroid of 
the ith panel at time t. The value and gradient of the incident 
wave component of the total potential are easy to evaluate 
analytically. The gradient of the disturbance potential is 
available from its definition in Eq. (17) as a distribution of 
sources over the body wetted surface. 

 
Figure 2. BODY MESH 

 The hydrodynamic pressure at the centroid of the ith panel 
follows from Bernoulli’s equation 
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The velocity vector ( )iV t


 follows from the solution of the 
equations of motion of the platform.  

ADDITIONAL NONLINEAR COMPONENTS 
 The second-order potential resulting from the nonlinear 
free-surface condition was not included in this study. The 
significance of the second-order potential will be evaluated and 
computed in future studies and the full nonlinear numerical 
results will be compared with experimental data. 

NUMERICAL RESULTS 
 The fluid-impulse theory was implemented for the 
computation of the linear and nonlinear surge diffraction force 
on a truncated vertical cylinder in a new FAST module called 
FIT. The results were analyzed and compared with the 
potential-flow method of FAST’s HydroDyn module [14], 
based on frequency-domain solutions from WAMIT and 
converted to the time domain through frequency-to-time-
domain transforms [15]. The cylindrical MIT/NREL TLP buoy 
with a radius of 9 m and a draft of 47.89 m was treated in a 
random severe sea state with a 6-m significant wave height and 
a 12-s peak-spectral wave period. A body mesh of 2,400 panels, 
with 48 azimuthal, 41 vertical, and 9 bottom panels was 
selected and a comparison was made between the solutions of 
FIT and WAMIT (Fig. 2). The panels were taken to be flat and 
the source strengths were assumed to be constant on each panel 
(the low-order method in WAMIT). An additional simulation 
with a higher panel density for each body was also performed 
with FIT and WAMIT to test the convergence of the nonlinear 
loads. The time step of the time-domain simulations in FIT was 
0.1 s with a memory interval in the solution of the linear time 
convolution equation of 15 s. The HydroDyn solution uses a 
time step of 0.1 s for the frequency-to-time-domain transforms 
of the WAMIT solution. The WAMIT solution, in turn, is based 
on the pressure-integration method considering the first-order 
and full quadratic interaction of first-order terms, including the 
full difference- and sum-frequency QTFs but not including the 
second-order potential, based on a frequency discretization of 
0.05 rad/s. 

 
Figure 3. COMPARISON OF LINEAR LOADS BETWEEN FIT AND HYDRODYN 

x (m) 
y (m) 

z (m) 
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The sea state was discretized using a constant frequency step of 
0.01256637 rad/s up to a first-order cut-off frequency of 2 
rad/s. To aid in the comparisons, the same amplitudes and 
phases for each frequency step were used in both FIT and 
HydroDyn. 

Linear Solution 
 The linear solution for the diffraction problem was first 
obtained by FIT and HydroDyn. As Fig. 3 shows, the two 
solutions were found to be in very good agreement. This 
agreement verified the accuracy of the linear solution of the FIT 
module, which is necessary for the computation of the 
nonlinear solution in the following sections. 

Nonlinear Solution 
 Next, the nonlinear solution for the diffraction problem in 
the surge direction was derived using the results from the linear 
solution. The sum of all nonlinear loads from FIT including the 
Froude-Krylov impulse, the disturbance-body impulse, and the 
free-surface impulse was compared with the nonlinear solution 
obtained from HydroDyn (Fig. 4). The two solutions are in 
agreement, with the solution for FIT displaying a higher 
amplitude relative to the solution from HydroDyn. The rate of 
convergence is different between the two methods. The FIT 
formulation is a momentum method requiring only the 
computation of the source strengths, which are linear 
components, allowing the method to achieve convergence with 
a comparatively coarse mesh. The numerical results produced 
by HydroDyn in this study used a pressure integration method 
involving the computation of the gradient of potentials, which 
requires a denser mesh for convergence. 
 To further understand the effects of the density of the body 
mesh to the nonlinear solution for solving the diffraction 
problem using FIT, a mesh with fewer panels was also used and 
the solutions between a 720-panel mesh and a 2,400-panel 
mesh is shown in Fig. 5. The difference between the two 
solutions is negligible, suggesting that the solution provided by 
the 2,400-panel mesh is close to convergence. 
 A similar study on the density of the body mesh was 
performed for the nonlinear solution from WAMIT and the 
results are shown in Fig. 6. Because the solution for WAMIT is 
based on the pressure integration method using low-order 
panels, it requires many panels for convergence. As a result, a 
mesh with much higher density was selected for this study. A 
32,400-panel mesh was chosen and the results are compared 
with the solution computed using 2,400 panels. The difference 
was found to be about 5% in amplitude, suggesting that further 
discretization may be needed for a converged solution. A 
similar finding (not shown here) resulted from comparing the 
diagonal (mean-drift) entries of the difference-frequency QTF 
using two different methods in WAMIT—the pressure 
integration method and the momentum conservation method. 
Even though the momentum conversation method converges 
faster than the pressure integration method in WAMIT, the 
momentum conservation method can only be used to compute 
the diagonal entries of the difference-frequency QTF, not the 
full difference- and sum-frequency QTFs applied here. With the 
pressure integration method in WAMIT, using a finer mesh near 
the free surface and coarser mesh elsewhere would likely lead 
to a converged solution faster than using a uniform fine-
resolution mesh as was done here. 

 
Figure 5. MESH CONVERGENCE OF FIT NONLINEAR 

SOLUTION 
 

 
Figure 6. COMPARISON BETWEEN NONLINEAR FORCES 

FOR DIFFERENT MESHES IN WAMIT AND HYDRODYN 

DISCUSSION AND CONCLUSION 
 A new method has been presented for evaluating the 
nonlinear sea-state loads on the floater of the MIT/NREL TLP 
wind turbine. It is based on a FIT of the loads exerted by steep 
ambient waves on floating bodies, which expresses the forces 
as the time derivatives of impulses. Explicit expressions were 
presented for the quadratic wave loads in terms of integrals of 
the velocity potentials and the source strength distribution over 
the body wetted surface and the internal water plane area 
circumventing the discretization of the infinite exterior free 
surface. 
 A comparison was carried out between the linear and 
second-order surge diffraction force on the MIT/NREL TLP 
floater between FAST’s HydroDyn module (based on WAMIT 
output) and FIT. Agreement was found and the differences 
remaining are still being assessed. The convergence properties 
of the quadratic loads computed by FIT with increasing panel 
density were also studied and found to be excellent. 
 The FIT method can be used for the computation of the 
nonlinear loads, including slow-drift, springing, and ringing 
excitation and responses of floating wind turbines. It can also 
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be used for the evaluation of the corresponding loads and 
responses of ships and oil and gas platforms. 
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