

Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

R. Santos Santos Wind Engineering Technologies, Inc.

J. van Dam National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-5000-63679 July 2015

Contract No. DE-AC36-08GO28308

Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

R. Santos Santos Wind Engineering Technologies, Inc.

J. van Dam National Renewable Energy Laboratory

Prepared under Task No. WE15.1A02

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov Technical Report NREL/TP-5000-63679 July 2015

Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at SciTech Connect http://www.osti.gov/scitech

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI <u>http://www.osti.gov</u> Phone: 865.576.8401 Fax: 865.576.5728 Email: <u>reports@osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS <u>http://www.ntis.gov</u> Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: <u>orders@ntis.gov</u>

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795.

Mechanical Loads Test Report

for the

DOE 1.5-MW Wind Turbine

in

Golden, Colorado, USA

Conducted for

U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585

Conducted by

National Wind Technology Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

Rick Santos and Jeroen van Dam

September 2014

Notice

This report was prepared by the National Renewable Energy Laboratory (NREL), operated for the United States Department of Energy (DOE) by the Alliance for Sustainable Energy, LLC (Alliance), as an account of work sponsored by the United States government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

THIS REPORT IS PROVIDED "AS IS" AND NEITHER THE GOVERNMENT, ALLIANCE, NREL NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY SUCH INFORMATION DISCLOSED IN THE REPORT, OR OF ANY APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Neither Alliance nor the U.S. Government shall be liable for special, consequential or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof or Alliance.

NREL is a DOE Laboratory, and as an adjunct of the United States government, cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

NREL is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with the NREL's terms of accreditation unless stated otherwise in the report.

This report shall not be reproduced, except in full, without the written approval of Alliance or successor operator of NREL.

Approval By:

Rick Santos, Qualified Test Engineer

9/3/2014

Approval By:

Jeroen van Dam, NREL Test Engineer

4 Sept 2014

Date

4 Sept 2014

Review By:

rlinda Huskey, NREL Test Engineer

DOE 1.5 ML Test Report 140904.doc

Table of Contents

1	Back	‹ground	. 12
2	Test	Objective	. 14
3	Test	Summary	. 15
4	Test	Turbine Configuration	. 16
5	Test	Site Description	. 18
6	Test	Instrumentation	. 20
	6.1	Met Tower Signals	. 22
	6.2	Blade Signals	. 25
	6.3	Tower Signals	. 25
	6.4	Main Shaft Signals	. 27
	6.5	Other Signals	. 28
7	Calil	prations	. 30
	7.1	Blade Signals	. 30
	7.2	Tower Signals	31
	7.3	Main Shaft Signals	. 33
	7.4	Yaw Position	. 35
8	Data	Processing Procedure	. 37
	8.1	Data Filtering	. 37
	8.2	Calculated Channels	. 37
	8.3	Data Validation	. 37
	8.4	Post-Processing	38
9	Resu	ults	. 41
	9.1	Power Production	41
	9.2	Transients	42
	9.3	Parked/Idling	42
	9.4	Turbine Dynamic Analysis	43
10	Unce	ertainty	. 48
11	Exce	eptions	. 55
	11.1	Exceptions to the Test Plan	55
	11.2	Exceptions to the Standard	55
	11.3	Exceptions to NWTC Quality Assurance System	55
Ref	feren	Ces	. 56
Ар	pendi	x A. Result Plots and Tables	. 57
-	Turb	ulence Intensity	57
	Wine	d Speed Trend Detection	58
	Pow	er Production Data	61
	Tran	sient Events	250
	Park	ed or Idling (Online)	286
Ap	pendi	x B. Pictures of Test Site	304
Ap	, pendi	x C. Blade Slow Roll Results	308
Ар	pendi	x D. Main Shaft Slow Roll Results	323
Ар	pendi	x E. Yaw Sweeps	327
Ар	pendi	x F. Shunt Calibrations	336
Ар	pend	x G. Instrument Calibration Sheets	365
Ар	pendi	x H. Coordinate System	378
	Blad	e Coordinate System	378
	Roto	r Coordinate System	378
	Nace	elle Coordinate System	378
	Tow	er Coordinate System	378
	Yaw	Error	379
Ар	pendi	x I. Post-Test Calibration Sheets	380

List of Tables

Table 1. Test Turbine Configuration and Operational Data	16
Table 2. Neighboring Turbines and Obstacles	18
Table 3. Results of Site Assessment	19
Table 4. Summary of Instrumentation; Nonload Channels	20
Table 5. Summary of Instrumentation for Loads Channels	21
Table 6. Map Between Signals and DAQ Module	22
Table 7. Blade Overhang Moments Used for Calibration of Blade Bending	30
Table 8. Blade Sensitivity Matrices	31
Table 9. Blade Offset Values	31
Table 10. Tower Properties Used for Calculation of Tower Calibration Coefficients	31
Table 11. Nacelle Overhang Moment Use for Tower Bending Calibrations	32
Table 12. Tower Offset Values	32
Table 13. Comparison of Tower Calibrations	32
Table 14. Inputs Used for Analytical Shaft Calibration	33
Table 15. Calculation of Overhang Moment at Main Shaft Strain Gage Location	33
Table 16. Comparison of Main Shaft Calibrations	34
Table 17. Main Shaft Offset Values	35
Table 18. Verification of Slope and Offset for Yaw Position	35
Table 19. Analysis of 10-Minute Blocks	39
Table 20. Capture Matrix for Normal Transients	42
Table 21. Capture Matrix for Parked/Idling	42
Table 22. Turbine Structural Natural Frequencies	43
Table 23. Uncertainty Analysis for Blade 1 Flap Bending	48
Table 24. Uncertainty Analysis for Blade 2 Flap Bending	48
Table 25. Uncertainty Analysis for Blade 3 Flap Bending	49
Table 26. Uncertainty Analysis for Blade 1 Leadlag Bending	49
Table 27. Uncertainty Analysis for Blade 2 Leadlag Bending	50
Table 28. Uncertainty Analysis for Blade 3 Leadlag Bending	50
Table 29. Main Shaft Bending 0 Uncertainty	51
Table 30. Main Shaft Bending 90 Uncertainty	51
Table 31. Uncertainty Analysis for Main Shaft Torque	52
Table 32. Uncertainty Analysis for Tower-Top Torque	52
Table 33. Uncertainty Analysis for Tower-Top Bending 1	53
Table 34. Uncertainty Analysis for Tower-Top Bending 2	53
Table 35. Uncertainty Analysis for Tower-Base Bending 1	54
Table 36. Uncertainty Analysis for Tower-Base Bending 2	54
Table 37. Binned Data for Electric Power	63
Table 38. Binned Data for Rotor Speed	67
Table 39. Binned Data for Generator Speed	71
Table 40. Binned Data for Blade 1 Pitch Position	75
Table 41. Binned Data for Blade 2 Pitch Position	79
Table 42. Binned Data for Blade 3 Pitch Position	83
Table 43. Binned Data for Tower-Top Normal Acceleration	89
Table 44. Binned Data for Tower-Top Lateral Acceleration	94
Table 45. Binned Data for Blade 1 Flap Bending	99
Table 46. Binned Damage Equivalent Load (DEL) Data for Blade 1 Flap Bending	103
Table 47. Binned Data for Blade 1 Leadlag Bending	109
Table 48. Binned DEL Data for Blade 1 Leadlag Bending	113
Table 49. Binned Data for Blade 2 Flap Bending	119

Table 50. Binned DEL Data for Blade 2 Flap Bending	123
Table 51. Binned Data for Blade 2 Leadlag Bending	129
Table 52. Binned DEL Data for Blade 2 Leadlag Bending	133
Table 53. Binned Data for Blade 3 Flap Bending	139
Table 54. Binned DEL Data for Blade 3 Flap Bending	143
Table 55. Binned Data for Blade 3 Leadlag Bending	149
Table 56. Binned DEL Data for Blade 3 Leadlag Bending	153
Table 57. Binned Data for Main Shaft Bending 0	159
Table 58. Binned DEL Data for Main Shaft Bending 0	163
Table 59. Binned Data for Main Shaft Bending 90	169
Table 60. Binned DEL Data for Main Shaft Bending 90	173
Table 61. Binned Data for Main Shaft Torque	179
Table 62. Binned DEL Data for Main Shaft Torque	183
Table 63. Binned Data for Tower-Top Normal Bending	189
Table 64. Binned DEL Data for Tower-Top Normal Bending	193
Table 65. Binned Data for Tower-Top Lateral Bending	198
Table 66. Binned DEL Data for Tower-Top Lateral Bending	202
Table 67. Binned Data for Tower-Top Torque	207
Table 68. Binned DEL Data for Tower-Top Torque	211
Table 69. Binned Data for Tower-Base Normal Bending	216
Table 70. Binned DEL Data for Tower-Base Normal Bending	220
Table 71. Binned Data for Tower-Base Lateral Bending	225
Table 72. Binned DEL Data for Tower-Base Lateral Bending	229
Table 73. Binned Data for Hub-Height Wind Speed	234
Table 74. Binned Data for Wind Speed at 87 m	238
Table 75. Binned Data for Air Pressure	242
Table 76. Binned Data for Temperature	246
Table 77. Binned Data for Turbine Yaw Error	249
Table 78. Brief Statistical Description for Normal Start at 6.6 m/s	250
Table 79. Brief Statistical Description for Normal Start at 14.0 m/s	256
Table 80. Brief Statistical Description for Normal Start at 23.5 m/s	262
Table 81. Brief Statistical Description for Normal Stop at 7.0 m/s	268
Table 82. Brief Statistical Description for Normal Stop at 12.2 m/s	274
Table 83. Brief Statistical Description for Normal Stop at 16.1 m/s	280
Table 84. Brief Statistical Description for Parked at 4.2 m/s	286
Table 85. Brief Statistical Description for Parked at 13.5 m/s	292
Table 86. Brief Statistical Description for Parked at 27.6 m/s	298
Table 87. Blade 1 Flap Bending Shunt Calibration Results	337
Table 88. Blade 1 Leadlag Bending Shunt Calibration Results	339
Table 89. Blade 2 Flap Bending Shunt Calibration Results	341
Table 90. Blade 2 Leadlag Bending Shunt Calibration Results	343
Table 91. Blade 3 Flap Bending Shunt Calibration Results	345
Table 92. Blade 3 Leadlag Bending Shunt Calibration Results	347
Table 93. Main Shaft Bending 0 Shunt Calibration Results	349
Table 94. Main Shaft Bending 90 Shunt Calibration Results	351
Table 95. Main Shaft Torque Shunt Calibration Results	353
Table 96. Tower-Top 1 Bending Shunt Calibration Results	355
Table 97. Tower-Top 2 Bending Shunt Calibration Results	357
Table 98. Tower-Top Torque Bending Shunt Calibration Results	359
Table 99. Tower-Base 1 Bending Shunt Calibration Results	361
Table 100. Tower-Base 2 Bending Shunt Calibration Results	363
-	

List of Figures

Figure 1. Model validation capture matrix	. 15
Figure 2. The DOE 1.5 wind turbine at Site 4.0.	. 17
Figure 3. Map of the test site	. 19
Figure 4. Met tower schematic showing measurement heights	. 23
Figure 5. Met tower	. 24
Figure 6. Example of blade strain gage locations	. 25
Figure 7. Example of tower-base strain gages	. 26
Figure 8. Example of strain gage location at the tower top	. 27
Figure 9. Main shaft gaging.	. 28
Figure 10. Main shaft torque calibration	. 34
Figure 11. Regression of measured versus predicted yaw position	. 36
Figure 12. Tower normal natural frequency during shutdown	. 44
Figure 13. Tower lateral natural frequency during shutdown	. 44
Figure 14. Tower normal natural frequency during normal operation	. 45
Figure 15. Tower lateral natural frequency during normal operation	. 45
Figure 16. Drivetrain natural frequency after normal stop	. 46
Figure 17. Blade 1 flap natural frequency normal operation	. 46
Figure 18. Blade 1 leadlag natural frequency during normal operation	47
Figure 19. Turbulence intensity	. 57
Figure 20. Indication of presence of wind speed trending in data set	. 58
Figure 21. Scatterplot versus wind speed for air density	. 59
Figure 22. Global capture matrix with all loads channels operating	. 60
Figure 23. Capture matrix for electric power	. 61
Figure 24. Scatterplot for electric power	. 62
Figure 25. Time series for the first 60 seconds of electric power	. 64
Figure 26. Capture matrix for rotor speed	. 65
Figure 27. Scatterplot for rotor speed	. 66
Figure 28. Time series for first 60 seconds of rotor speed	. 68
Figure 29. Capture matrix for generator speed	. 69
Figure 30. Scatterplot for generator speed	. 70
Figure 31. Time series for the first 60 seconds of generator speed	. 72
Figure 32. Capture matrix for blade 1 pitch position	. 73
Figure 33. Scatterplot for blade 1 pitch position	. 74
Figure 34. Time series for the first 60 seconds of blade 1 pitch position	. 76
Figure 35. Capture matrix for blade 2 pitch position	. 77
Figure 36. Scatterplot for blade 2 pitch position	. 78
Figure 37. Time series for the first 60 seconds of blade 2 pitch position	. 80
Figure 38. Capture matrix for blade 3 pitch position	. 81
Figure 39. Scatterplot for blade 3 pitch position	. 82
Figure 40. Time series for the first 60 seconds of blade 3 pitch position	. 84
Figure 41. Capture matrix for nacelle yaw angle	. 85
Figure 42. Vector average for nacelle yaw angle	. 86
Figure 43. Capture matrix for tower-top normal acceleration	. 87
Figure 44. Scatterplot for tower-top normal acceleration	. 88
Figure 45. Time series for the first 60 seconds of tower-top normal acceleration	. 90
Figure 46. Power spectral density of tower-top normal acceleration	. 91
Figure 47. Capture matrix for tower-top lateral acceleration	. 92
Figure 48. Scatterplot for tower-top lateral acceleration	. 93
Figure 49. Time series for the first 60 seconds of tower-top lateral acceleration	. 95

Figure 50.	Power spectral density of tower-top lateral acceleration	. 96
Figure 51.	Capture matrix for blade 1 flap bending	. 97
Figure 52.	Scatterplot for blade 1 flap bending	. 98
Figure 53.	Time series for the first 60 seconds of blade 1 flap bending	100
Figure 54.	Damage equivalent load (DEL) (1 Hz, m=3, 6, 9, 10) for blade 1 flap bending	101
Figure 55.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 1 flap bending	102
Figure 56.	Twenty-year fatigue load spectrum for blade 1 flap bending	104
Figure 57.	Azimuth binning for blade 1 flap bending	105
Figure 58.	Power spectral density of blade 1 flap bending	106
Figure 59.	Capture matrix for blade 1 leadlag bending	107
Figure 60.	Scatterplot for blade 1 leadlag bending	108
Figure 61.	Time series for the first 60 seconds of blade 1 leadlag bending	110
Figure 62.	DEL (1 Hz, m=3, 6, 9, 10) for blade 1 leadlag bending	111
Figure 63.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 1 leadlag bending	112
Figure 64.	Twenty-year fatigue load spectrum for blade 1 leadlag bending	114
Figure 65.	Azimuth binning for blade 1 leadlag bending	115
Figure 66.	Power spectral density of blade 1 leadlag bending	116
Figure 67.	Capture matrix for blade 2 flap bending	117
Figure 68.	Scatterplot for blade 2 flap bending	118
Figure 69.	Time series for the first 60 seconds of blade 2 flap bending	120
Figure 70.	DEL (1 Hz, m=3, 6, 9, 10) for blade 2 flap bending	121
Figure 71.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 2 flap bending	122
Figure 72.	Twenty-year fatigue load spectrum for blade 2 flap bending	124
Figure 73.	Azimuth binning for blade 2 flap bending	125
Figure 74.	Power spectral density of blade 2 flap bending	126
Figure 75.	Capture matrix for blade 2 leadlag bending	127
Figure 76.	Scatterplot for blade 2 leadlag bending	128
Figure 77.	Time series for the first 60 seconds of blade 2 leadlag bending	130
Figure 78.	DEL (1 Hz, m=3, 6, 9, 10) for blade 2 leadlag bending	131
Figure 79.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 2 leadlag bending	132
Figure 80.	Twenty-year fatigue load spectrum for blade 2 leadlag bending	134
Figure 81.	Azimuth binning for blade 2 leadlag bending	135
Figure 82.	Power spectral density of blade 2 leadlag bending	136
Figure 83.	Capture matrix for blade 3 flap bending	137
Figure 84.	Scatterplot for blade 3 flap bending	138
Figure 85.	Time series for the first 60 seconds of blade 3 flap bending	140
Figure 86.	DEL (1 Hz, m=3, 6, 9, 10) for blade 3 flap bending	141
Figure 87.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 3 flap bending	142
Figure 88.	Twenty-year fatigue load spectrum for blade 3 flap bending	144
Figure 89.	Azimuth binning for blade 3 flap bending	145
Figure 90.	Power spectral density of blade 3 flap bending	146
Figure 91.	Capture matrix for blade 3 leadlag bending	147
Figure 92.	Scatterplot for blade 3 leadlag bending	148
Figure 93.	Time series for the first 60 seconds of blade 3 leadlag bending	150
Figure 94.	DEL (1 Hz, m=3, 6, 9, 10) for blade 3 leadlag bending	151
Figure 95.	Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 3 leadlag bending	152
Figure 96.	Twenty-year fatigue load spectrum for blade 3 leadlag bending	154
Figure 97.	Azimuth binning for blade 3 leadlag bending	155
Figure 98.	Power spectral density of blade 3 leadlag bending	156
Figure 99.	Capture matrix for main shaft bending 0	157
Figure 100). Scatterplot for main shaft bending 0	158

Figure 101. Time series for the first 60 seconds of main shaft bending 0	160
Figure 102. DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 0	161
Figure 103. Binned DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 0	162
Figure 104. Twenty-year fatigue load spectrum for main shaft bending 0	164
Figure 105. Azimuth binning for main shaft bending 0	165
Figure 106. Power spectral density of main shaft bending 0	166
Figure 107. Capture matrix for main shaft bending 90	167
Figure 108. Scatterplot for main shaft bending 90	168
Figure 109. Time series for the first 60 seconds of main shaft bending 90	170
Figure 110, DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 90.	
Figure 111. Binned DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 90	172
Figure 112. Twenty-year fatigue load spectrum for main shaft bending 90	174
Figure 113. Azimuth binning for main shaft bending 90	
Figure 114 Power spectral density of main shaft bending 90	176
Figure 115 Capture matrix for main shaft torque	177
Figure 116 Scatterplot for main shaft torque	178
Figure 117 Time series for first 60 seconds of main shaft torque	180
Figure 118 DEL (1 Hz m=3 6 9 10) for main shaft torque	181
Figure 119 Binned DEL (1 Hz m=3 6 9 10) for main shaft torque	182
Figure 120 Twenty-year fatigue load spectrum for main shaft torque	184
Figure 121. A zimuth hinning for main shaft torque	185
Figure 122 Power spectral density of main shaft torque	186
Figure 122. 1 ower spectral density of main shart torque	187
Figure 124 Scatterplot for tower-top normal bending	188
Figure 125. Time series for the first 60 seconds of tower-top normal bending	190
Figure 126 DEL (1 Hz m=3.6.9.10) for tower-top normal bending	190
Figure 127 Binned DEL (1 Hz m=3.6.9.10) for tower-top normal bending	107
Figure 127. Diffice DEL (1112, III-5, 0, 9, 10) for tower top normal bending	192
Figure 120. Power spectral density of tower top normal bending	105
Figure 130 Canture matrix for tower ton lateral bending	106
Figure 131. Scatterplot for tower top lateral bending	190
Figure 131. Scatterplot for tower-top lateral bending.	100
Figure 132. The series for the first of seconds of lower-top fateral bending $\frac{132}{100}$ DEL (1 Hz m=2.6.0.10) for tower top lateral bending	200
Figure 135. DEL (1 Hz, $m=3, 0, 9, 10$) for tower-top lateral bending.	200
Figure 134. Diffied DEL (1112, III-5, 0, 9, 10) for tower-top lateral bending	201
Figure 155. I wenty-year langue load spectrum for lower-top lateral bending	203
Figure 130. Power spectral density of tower-top fateral bending	204
Figure 137. Capture matrix for tower-top torque	203
Figure 138. Scatterplot for the first (0 accords of towns to stars)	200
Figure 139. Time series for the first 60 seconds of lower-top forque	208
Figure 140. DEL (1 Hz, $m=3$, 6, 9, 10) for lower-top torque	209
Figure 141. Binned DEL (1 HZ, III-5, 0, 9, 10) for tower-top torque	210
Figure 142. Twenty-year fatigue load spectrum for lower-top forque	212
Figure 143. Power spectral density of tower-top torque	213
Figure 144. Capture matrix for tower-base normal bending	214
Figure 145. Scatterplot for two-forse normal bending.	213
Figure 140. Time series for the first ou seconds of tower-base normal bending	21/
Figure 147. DEL (1 HZ, m=5, 0, 9, 10) for tower-base normal bending	218
Figure 148. Binned DEL (1 HZ, m=5, 6, 9, 10) for tower-base normal bending	219
rigure 149. I wenty-year latigue load spectrum for tower-base normal bending	221
Figure 150. Power spectral density of tower-base normal bending	222
Figure 151. Capture matrix for tower-base lateral bending	223

Figure 152. Scatterplot for tower-base lateral bending	. 224
Figure 153. Time series for the first 60 seconds of tower-base lateral bending	. 226
Figure 154. DEL (1 Hz, m=3, 6, 9, 10) for tower-base lateral bending	. 227
Figure 155. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-base lateral bending	. 228
Figure 156. Twenty-year fatigue load spectrum for tower-base lateral bending	. 230
Figure 157. Power spectral density of tower-base lateral bending	. 231
Figure 158. Capture matrix for hub-height wind speed	. 232
Figure 159. Scatterplot for hub-height wind speed	233
Figure 160. Time series for the first 60 seconds of hub-height wind speed	. 235
Figure 161. Capture matrix for wind speed at 87 m	236
Figure 162. Scatterplot for wind speed at 87 m	. 237
Figure 163. Time series for the first 60 seconds of wind speed at 87 m.	. 239
Figure 164. Capture matrix for air pressure	240
Figure 165. Scatterplot for air pressure	241
Figure 166. Time series for the first 60 seconds of air pressure	. 243
Figure 167. Capture matrix for temperature	244
Figure 168 Scatterplot for temperature	245
Figure 169 Time series for the first 60 seconds of temperature	247
Figure 170 Scatterplot versus time for turbine vaw error	248
Figure 171 Normal start at 6.6 m/s—met quantities	251
Figure 172 Normal start at 6.6 m/s—wind turbine operational quantities	252
Figure 173 Normal start at 6.6 m/s—blade loads	253
Figure 174 Normal start at 6.6 m/s—shaft and tower-ton loads	254
Figure 175 Normal start at 6.6 m/s—tower-base loads	255
Figure 176 Normal start at 14.0 m/s_met quantities	257
Figure 177. Normal start at 14.0 m/s—wind turbine operational quantities	258
Figure 178 Normal start at 14.0 m/s—blade loads	259
Figure 179 Normal start at 14.0 m/s—shaft and tower-ton loads	260
Figure 180 Normal start at 14.0 m/s—tower-base loads	261
Figure 181 Normal start at 23.5 m/s—met quantities	263
Figure 182 Normal start at 23.5 m/s—wind turbine operational quantities	265
Figure 183. Normal start at 23.5 m/s—blade loads	265
Figure 184 Normal start at 23.5 m/s—shaft and tower-ton loads	265
Figure 185 Normal start at 23.5 m/s—tower-base loads	267
Figure 186. Normal ston at 7.0 m/s_met quantities	269
Figure 187 Normal stop at 7.0 m/s - met quantities	20)
Figure 188 Normal stop at 7.0 m/s — blade loads	270
Figure 180. Normal stop at 7.0 m/s—blade loads	271
Figure 190. Normal stop at 7.0 m/s—shart and tower-top toads	272
Figure 191 Normal stop at 12.2 m/s_met quantities	275
Figure 197. Normal stop at 12.2 m/s—mict quantities and another and another figure 197.	275
Figure 193. Normal stop at 12.2 m/s—while turbine operational quantities	270
Figure 194 Normal stop at 12.2 m/s—blade loads	278
Figure 195. Normal stop at 12.2 m/s—shart and tower-top todds	270
Figure 196 Normal stop at 16.1 m/s_met quantities	281
Figure 197 Normal stop at 16.1 m/s—wind turbine operational quantities	281
Figure 197. Normal stop at 16.1 m/s—while turbine operational quantities	202
Figure 199 Normal stop at 16.1 m/s—shaft and tower_top loads	205 281
Figure 200 Normal stop at 16.1 m/s_tower_base loads	204
Figure 200. Inormal stop at 10.1 III/s—tower-base loads	205 787
Figure 202 Parked at 4.2 m/s — met qualities	201 288
1 igure 202. 1 arked at 4.2 m/s—wind turonic operational quantities	<i></i> 00

Figure 203. Parked at 4.2 m/s—blade loads	
Figure 204. Parked at 4.2 m/s—shaft and tower-top loads	
Figure 205. Parked at 4.2 m/s-tower-base loads	
Figure 206. Parked at 13.5 m/s-met quantities	
Figure 207. Parked at 13.5 m/s-wind turbine operational quantities	
Figure 208. Parked at 13.5 m/s-blade loads	
Figure 209. Parked at 13.5 m/s-shaft and tower-top loads	
Figure 210. Parked at 13.5 m/s-tower-base loads	
Figure 211. Parked at 27.6 m/s-met quantities	
Figure 212. Parked at 27.6 m/s—wind turbine operational quantities	
Figure 213. Parked at 27.6 m/s—blade loads	
Figure 214. Parked at 27.6 m/s-shaft and tower-top loads	
Figure 215. Parked at 27.6 m/s-tower-base loads	
Figure 216. View towards the west. Photo by Ismael Mendoza, NREL	
Figure 217. View towards the northwest. Photo by Ismael Mendoza, NREL	
Figure 218. View towards the north. Photo by Ismael Mendoza, NREL	
Figure 219. View towards the northeast. Photo by Ismael Mendoza, NREL	
Figure 220. View towards the east. Photo by Ismael Mendoza, NREL	
Figure 221. View towards the southeast. Photo by Ismael Mendoza, NREL	
Figure 222. View towards the south. Photo by Ismael Mendoza, NREL	
Figure 223. View towards the southwest. Photo by Ismael Mendoza, NREL	
Figure 224. Blade 1 leadlag slow roll calibration	
Figure 225. Blade 1 flap slow roll calibration	
Figure 226. Blade 1 leadlag crosstalk correction	
Figure 227. Blade 1 flap crosstalk correction	
Figure 228. Blade 2 leadlag slow roll calibration	
Figure 229. Blade 2 flap slow roll calibration	
Figure 230. Blade 2 leadlag crosstalk correction	
Figure 231. Blade 2 flapwise crosstalk correction	
Figure 232. Blade 3 leadlag slow roll calibration	
Figure 233. Blade 3 flapwise slow roll calibration	
Figure 234. Blade 3 leadlag crosstalk correction	
Figure 235. Blade 3 flapwise crosstalk correction	
Figure 236. Blade 1 flap pitch sweep calibration results	
Figure 237. Blade 1 leadlag pitch sweep calibration results	
Figure 238. Blade 2 leadlag pitch sweep calibration results	
Figure 239. Blade 2 flap pitch sweep calibration results	
Figure 240. Blade 3 leadlag pitch sweep calibration results	
Figure 241. Blade 3 flap pitch sweep calibration results	
Figure 242. Main shaft bending 0 slow roll calibration	
Figure 243. Main shaft bending 0 crosstalk correction	
Figure 244. Main shaft bending 90 slow roll calibration	
Figure 245. Main shaft bending 90 crosstalk correction	
Figure 246. Tower-top nacelle 360 sweep calibration	
Figure 247. Tower-top 1 crosstalk calibration	
Figure 248. Tower-top 1 nonlinear gain correction	
Figure 249. Tower-top 2 crosstalk calibration	
Figure 250. Tower-top 2 nonlinear gain correction	
Figure 251. Tower-top nacelle validation original	
Figure 252. Tower-base nacelle validation nonlinear correction	
Figure 253. Tower-base nacelle yaw sweep calibration	

Figure 254. Tower-base nacelle validation	335
Figure 255. Blade 1 flap bending shunt calibration	338
Figure 256. Blade 1 leadlag bending shunt calibration	340
Figure 257. Blade 2 flap bending shunt calibration	342
Figure 258. Blade 2 leadlag bending shunt calibration	344
Figure 259. Blade 3 flap bending shunt calibration	346
Figure 260. Blade 3 leadlag bending shunt calibration	348
Figure 261. Main shaft bending 0 shunt calibration	350
Figure 262. Main shaft bending 90 shunt calibration	352
Figure 263. Main shaft torque shunt calibration	354
Figure 264. Tower-top 1 bending shunt calibration	356
Figure 265. Tower-top 2 bending shunt calibration	358
Figure 266. Tower-top torque shunt calibration	360
Figure 267. Tower-base 1 bending shunt calibration	362
Figure 268. Tower-base 2 bending shunt calibration	364
Figure 269. Calibration sheet for reference anemometer	365
Figure 270. Calibration sheet for primary anemometer	366
Figure 271. Calibration sheet of wind vane K16689	367
Figure 272. Calibration sheet for pressure transducer	368
Figure 273. Calibration sheet for temperature sensor	369
Figure 274. Calibration sheet for signal conditioning module 158B4F4	370
Figure 275. Calibration sheet for signal conditioning module 158B478	371
Figure 276. Calibration sheet for signal conditioning module 12BD192	372
Figure 277. Calibration sheet for signal conditioning module 12E9CD3	373
Figure 278. Calibration sheet for signal conditioning module 1342666	374
Figure 279. Calibration sheet for signal conditioning module 1357162	375
Figure 280. Calibration sheet for signal conditioning module 1357177	376
Figure 281. Calibration sheet for signal conditioning module 136D7A2	377
Figure 282. Blade coordinate system [1]	378
Figure 283. Rotor, nacelle, and tower coordinate systems [1]	379
Figure 284. Yaw error [1]	379
Figure 285. Post-test calibration sheet for signal conditioning module 136D7A2	380
Figure 286. Post-test calibration sheet for signal conditioning module 1357177	381
Figure 287. Post-test calibration sheet for signal conditioning module 1357162	382
Figure 288. Post-test calibration sheet for signal conditioning module 1342666	383

1 Background

The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons.

To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

The large-scale field measurement campaigns are expected to use the DOE 1.5 as it is of sufficient enough size to represent current technology, and turbines of this size are widely deployed in U.S. wind plants.

Expected future use of the DOE 1.5 at the NWTC may include the following (leading up to the large files measurement campaigns at operating plants):

- Deployment and validation of high-fidelity instrumentation prior to large-scale deployment at a wind plant
- Deployment of advanced controls algorithms
- Characterization of inflow, aerodynamics, turbine loads, and wake propagation on an unwaked turbine.

A series of tests were conducted to characterize the baseline properties and performance of the DOE 1.5 to enable research model development and quantify the effects of future turbine research modifications.

The tests included:

- Power performance per International Electrotechnical Commission (IEC) 61400-12-1
- Power quality per IEC 61400-21
- Acoustic noise per IEC 61400-11
- Mechanical loads per IEC 61400-13
- Modal testing.

The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines.

This report describes the test setup and results of the mechanical loads test.

2 Test Objective

The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 *Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06* [1].

The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL's quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

3 Test Summary

This test commenced on March 3 and ended on March 25, 2011. According to the Standard [1], enough data was collected to meet the capture matrix requirements for model validation (Figure 1); however, this is not the case if only files are counted with all load channels being valid simultaneously.

Figure 1. Model validation capture matrix

NREL kept a logbook, a copy of which is available on request. No special maintenance activities that could impact the test results were observed by or reported to NREL.

4 Test Turbine Configuration

The DOE 1.5 is based on a GE 1.5 SLE wind turbine. The test turbine was a horizontal axis, three-bladed upwind wind turbine with full span pitch control. Table 1 provides the key descriptive information on the test turbine. Figure 2 shows the test turbine. As the wind turbine manufacturer was not actively engaged in the test campaign, values for several critical turbine parameters had to be estimated based on either the measurement of dimensions, parameters from prior field tests, or dimensions of a dynamometer test article.

Turbine Manufacturer and Address	GE Energy 300 Garlington Rd., P.O. Box 648 Greenville, SC 29602-0648
Model	GE 1.5 SLE
Serial Number	Nacelle head # W79227A
Rated Power (kW)	1500
Number of Blades	3
Blade Tip Pitch Angle (deg)	Variable
Blade Make, Type, Serial Number	GE37c, S00028,S00029,S00030
Variable or Constant Speed	Variable
Hub Height	80
Nominal Rotor Diameter	77
Rated Wind Speed (rpm)	14
Rated Rotor Speed (rpm)	18.3
Rotor Speed Range (rpm)	10-25
Rated Generator Speed (rpm)	1436
Gearbox Ratio	1:78.472
Cut-In Wind Speed (m/s)	3.5
Cut-Out Wind Speed (m/s)	25
Control Philosophy	Full span pitch control
Description of Control System (Device)	ESS
Design Lifetime (Years)	20
Type Class	IEC IIa

Table 1. Test Turbine Configuration and Operational Data

Figure 2. The DOE 1.5 wind turbine at Site 4.0. Photo by Jeroen van Dam, NREL

5 Test Site Description

The turbine is located at Test Site 4.0 of the NWTC, approximately 8 miles south of Boulder, Colorado. Figure 3 shows the turbine and meteorological (met) tower locations. This figure also shows nearby obstructions and topographical features of the site. To minimize the influence of obstructions and terrain during this test (Table 2), NREL has established a measurement sector from 243° to 310°. Only data from inside the measurement sector is used for this report.

NREL also completed a site assessment per Annex A of the IEC 61400-12-1 standard for power performance [3]. The results are given in Table 3. The terrain does not meet all the requirements due to a small gulley south of the turbine and would thus require a site calibration for the purpose of power performance testing. It was decided not to perform a site calibration.

Obstacle or Turbine	Relative to:	Distance	Bearing	Equiv. Dia.	Obstructed Sector	
					Start	End
		(m)	(deg T)	(m)	(deg T)	(deg T)
Controls Advanced Research Turbine (CART)-2	Test Turbine	557	211	40	194	227
CART-3	Test Turbine	422	214	43	195	233
Siemens	Test Turbine	718	199.5	101	177	222
Alstom	Test Turbine	219	203	101	164	242
Test Turbine	Met Tower	153.4	96	77	46	146
CART-2	Met Tower	513	195	40	177	212
CART-3	Met Tower	376	193	43	172	213
Siemens	Met Tower	699	187	101	165	210
Alstom	Met Tower	228	163	101	124	201

Table 2. Neighboring Turbines and Obstacles

Figure 3. Map of the test site Table 3. Results of Site Assessment

<u> </u>	Site: 4.0					
	Preliminary Measurement Sector:	243	to	310	_deg True	
	Criteria for Test Site without Site Calibrati	on Testir	g			
Criterion	Description	Distance	Sector (deg)	allowable	Test Site Condition	Pass/Fail
1	Maximum slope of best fit plane < 3%	<2L	360	3%	2.4%	Pass
2	Maximum variation from best fit plane < 0.04 (H + D)	<2L	360	+/-5.9m	15.7	Fail
3	Maximum slope of best fit plane < 5%	2-4L	In	5%	1.5%	Pass
4	Maximum variation from best fit plane < 0.08 (H + D)	2-4L	In	+/-11.8m	2.6	Pass
5	Steepest slope maximum < 10%	2-4L	Out	10%	1.7%	Pass
6	Maximum slope of best fit plane < 10%	4-8L	In	10%	2.1%	Pass
7	Maximum variation from best fit plane < 0.13 (H + D)	4-8L	In	+/-19.2m	19.2	Pass
8	No neighboring and operating turbines	<2D _n	360	0	0	Pass
9	No obstacles	<2D _e	360	0	0	Pass
	Site Calibration Required?					yes
				absolute	e value used for site	e condition
	In = Inside Preliminary Measurement Secto				Sector	

6 Test Instrumentation

The data acquisition (DAQ) system used for this test is based on the National Instruments EtherCAT hardware. DAQ modules were distributed over the turbine as indicated in Table 6. Synchronization occurs through the use of EtherCAT protocol, which is a deterministic Ethernet protocol. The data is stored in 100-Hz 10-minute long files.

The data channels that were collected by the DAQ system are listed in Table 4 and Table 5. Table 6 maps the signals to the DAQ signal conditioning modules. Instrumentation details for tower-top acceleration and rotor azimuth were not documented.

For all sensors, end-to-end checks were performed to verify proper installation.

Signal	Sensor Make/Model	Serial Number	Cal Due Date
Primary Wind Speed	Thies Clima First Class	0909219	December 20, 2011
Wind Speed 87 m	MetOne SS 201	K16689	January 19, 2012
Wind Direction	MetOne SD 201	K16689	December 10, 2011
Air Pressure	Vaisala, PTB101B	B2130018	December 22, 2011
Air Temperature	MetOne T200	0673552	December 22, 2011
Availability	Supervisory control and data acquisition (SCADA)	NA	NA
Pitch Angle Blade 1	SCADA	NA	NA
Pitch Angle Blade 2	SCADA	NA	NA
Pitch Angle Blade 3	SCADA	NA	NA
Generator Speed	SCADA	NA	NA
Generator Torque	SCADA	NA	NA
Yaw Position	SCADA	NA	NA
Operational Status	SCADA	NA	NA
State Fault	SCADA	NA	NA
Turbine Power	SCADA	NA	NA
Nacelle Wind Speed	SCADA	NA	NA
Tower-Top Lateral Acceleration	NA	NA	NA
Tower-Top Acceleration Normal	NA	NA	NA
Rotor Azimuth	NA	NA	NA

Table 4. Summary of Instrumentation; Nonload Channels

Signal	Sensor Make/Model	Gage Factor	Calibration Method
Tower-Base Bending 1	Vishay LWK-06-W250D-350	2.02	Yaw Sweep/ Theoretical
Tower-Base Bending 2	Vishay LWK-06-W250D-350	2.02	Yaw Sweep/ Theoretical
Tower-Top Torque	Vishay CEA-06-125UW-350	2.02	Theoretical/Shunt
Tower-Top Bending 1	Vishay LWK-06-W250D-350	2.02	Yaw Sweep/ Theoretical
Tower-Top Bending 2	Vishay LWK-06-W250D-350	2.02	Yaw Sweep/ Theoretical
Blade 1 Flap Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Blade 2 Leadlag Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Blade 1 Flap Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Blade 2 Leadlag Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Blade 3 Flap Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Blade 3 Leadlag Bending	Vishay WK-09-250MQ-10C/w	2.05	Slow Roll/Pitch Sweep
Main Shaft Bending 0	Vishay LWK-06-250D-350	2.02	Theoretical/Slow Roll
Main Shaft Bending 90	Vishay LWK-06-250D-350	2.0	Theoretical/Slow Roll
Main Shaft Torque	Vishay LEA-06-W125F-350/3R	2.03	Theoretical/Shunt

Table 5. Summary of Instrumentation for Loads Channels

Oirmel Name	Module				Obaccia/Lacation
Signal Name	Туре	SN	Slot	Cal Due Date	Chassis/Location
Primary Wind Speed					
Reference Wind Speed	0205	4050000		August 21, 2011	
Wind Direction	9205	12E9CD3			Network Split
Air Pressure					
Air Temperature	9217	12BD192		August 21, 2011	
Tower_base_bending_1					
Tower_base_bending_2	9237	1342666	1	February 19, 2010	Chassis 0 - Tower Base
Tower_base_torque					
Tower_top_bending_1					
Tower_top_bending_2	9237	1357162	1	March 26, 2009	Chassis 1 - Tower Top
Tower_top_torque					
Tower_top_accel_x	0230	239 158B4F4	2	January 10, 2012	
Tower_top_accel_y	9239				
Main_shaft_azimuth					
Main_shaft_bending_0	0220	1500470	78 1	January 10, 2012	Chassis 2 - Nacelle
Main_shaft_bending_90	9239	1000470			
Main_shaft_torque					
Blade 1 Flap Bending					
Blade 1 Leadlag Bending	0227	1257177	1	March 26, 2000	
Blade 2 Flap Bending	9237	1337177		March 20, 2009	Chassis 2 Hub
Blade 2 Leadlag Bending					
Blade 3 Flap Bending	0227	1260742	2	May 14, 2000	
Blade 3 Leadlag Bending	9231	37 136D7A2	2	iviay 14, 2009	

Table 6. Map Between Signals and DAQ Module

Note that in some of the plots in the appendices, leadlag bending is sometimes referred to as edge bending.

6.1 Met Tower Signals

The met tower was located 153 m from the turbine at a bearing of 276° relative to true north. Figure 4 shows the met tower configuration; the wind vane and MetOne reference anemometer are mounted off the same boom, side by side (Figure 5). All booms are pointing in the 278° direction. Air temperature was measured in a radiation shield mounted off the met tower. The air pressure sensor was mounted in an enclosure on the tower and connected to the outside air through a perforated pipe to measure static pressure.

An *in-situ* comparison was performed on the anemometers which showed that the primary anemometer maintained its calibration over the test period.

Figure 4. Met tower schematic showing measurement heights. *Illustration by Ismael Mendoza, NREL*

Figure 5. Met tower. Photo by Jeroen van Dam, NREL

6.2 Blade Signals

All blade-bending moments were measured using nontemperature-compensated, full bridges with matching strain gages for each leg. Flap and leadlag bending gages were mounted on the inside of the root. The leadlag gages were mounted at a distance of 500 mm from the blade flange to the gage center, along the chord line. The flap gages were mounted at a distance of 500 mm from the blade flange to the gage center, 90 degrees from the chord line. The chord line is defined by the indicator glued to the inside surface of the blade root for each blade. An example of a blade strain gage is given in Figure 6.

Figure 6. Example of blade strain gage locations. Photo by Garth Johnson, NREL

6.3 Tower Signals

The tower was instrumented at two levels. These are referred to as: base and top.

6.3.1 Tower Base

All tower-base moments were temperature-compensated, full bridges ("T" configuration) with matching strain gages on each leg. Tower-base gages were mounted 4.95 m above the top of the tower-base flange (Figure 7). The bridges were placed at 276° – 96° N and 6° – 186° N.

Figure 7. Example of tower-base strain gages. Photo by Mark Murphy, NREL

6.3.2 Tower Top

All tower-top bending moments were measured using temperature-compensated, full bridges ("T" configuration) with matching strain gages on each leg. Tower-top gages were mounted 457 mm above the upper work platform (Figure 8). The bridges were placed at $276^{\circ}-96^{\circ}N$ and $6^{\circ}-186^{\circ}N$. Tower-top torque was measured using a full torque bridge with elements under a 45-degree angle from vertical.

Figure 8. Example of strain gage location at the tower top. Photo by Mark Murphy, NREL

6.4 Main Shaft Signals

The main shaft was instrumented with two bending signals and a full torque bridge. All mainshaft loads were measured using nontemperature-compensated, full bridges with matching strain gages for each leg. Gages were installed 0.80 m downwind of the main shaft upwind bearing. The 0° bending gages were installed in line with Blade 2, whereas the second bridge was placed at 90°. Main shaft torque gages were placed at 45° from the 0° bending gages at the same shaft cross section (Figure 9).

Figure 9. Main shaft gaging. Photo by Jerry Hur, NREL

6.5 Other Signals

6.5.1 Controller Signals

Several GE controller signals were used for this test and were provided digitally to the NREL DAQ system using the NI Publish-Subscribe Protocol (PSP). The following signals were used:

- Availability
- Pitch Angle Blade 1
- Pitch Angle Blade 2
- Pitch Angle Blade 3
- Generator Speed
- Gen Torque
- Yaw Position
- Operational Status
- State Fault

- Turbine Power
- Nacelle Wind Speed.

6.5.2 Rotor Azimuth

The rotor azimuth was measured using four targets per revolution on the high-speed shaft connected to a quadrature encoder and a once-per-revolution reset on the main shaft. Blade azimuth is zero when blade 1 is pointing up.

7 Calibrations

For the load channels, the calibration method is indicated in Table 5 and described in this section. Calibration sheets for the DAQ system and the sensors can be found in Appendix G and Appendix I.

Several turbine signals were provided through the GE supervisory control and data acquisition (SCADA) system. For these signals, NREL does not have traceable calibration sheets. End-toend calibrations were performed from the point of interconnection.

7.1 Blade Signals

Shunt calibrations were performed to check the DAQ functionality by putting a 174.65 kOhm resistor in parallel with Signal+ and Excitation+, and Signal- and Excitation+, respectively. The results of the shunt calibration are shown in Figure 255 through Figure 260 and Table 87 through Table 92 in Appendix F. The measured results of the shunt calibrations correlated well with the predictions.

The blade signals were calibrated by using the overhang moments provided in Table 7. The provided overhang moments were not corrected for the blade mass inboard of the strain gages.

Serial Number	Blade Overhang Moment [kgm]
S00028	69,128
S00029	69,041
S00030	69,027

 Table 7. Blade Overhang Moments Used for Calibration of Blade Bending

Slow rolls were performed with -1° and 85° pitch angles to obtain the slope of the flap and leadlag bending. A slow roll with a pitch angle at 65° was performed to verify crosstalk.

Additionally, pitch sweeps were performed with the blade at 3 o'clock and 9 o'clock (blade horizontal on both sides of the nacelle), with each blade being pitched from 0 to 90 degrees in 5-degree increments.

The blade zero calibrations were performed throughout the testing period. In low winds (below 3 m/s), the data files were searched for startup sequences where the pitch settles at 65 degrees for several rotor revolutions and the turbine torque converter is not yet engaged. The zero calibrations used for the test campaign are given in Table 9.

	Blade 1		Blade 2	Blade 2		
	Nm/V/V Flap	Nm/V/V Leadlag	Nm/V/V Flap	Nm/V/V Leadlag	Nm/V/V Flap	Nm/V/V Leadlag
Flap Moment	2.7956E+6	-20.3611	2.5039E+6	-1.444E+3	2.5433E+E6	-521.161
Leadlag Moment	-2.07771E+3	-2.4677E+6	10.4622	-2.2337E+E6	1.1223E+E3	-2.4078E+E6

 Table 8. Blade Sensitivity Matrices

Table 9. Blade Offset Values

Comparison	Mean Gage Offset (V)	Stdev of Gage Offsets (V/V)	Number of Zeroes	Type-B Uncertainty (kNm)
Blade 1 Leadlag Bending	8.5053E-4	2.0623E-5	219	3.77
Blade 2 Leadlag Bending	-4.1341E-6	6.4426E-6	126	1.41
Blade 3 Leadlag Bending	-4.7054E-4	4.6535E-6	102	1.24
Blade 1 Flap Bending	-1.5273E-5	5.7485E-6	219	3.90
Blade 2 Flap Bending	-5.7944E-4	5.2036E-6	126	1.43
Blade 3 Flap Bending	-2.0409E-4	6.8447E-6	102	1.14

7.2 Tower Signals

For the tower signals, the signal sensitivities were calculated using a yaw sweep and the nacelle overhang moment in Table 10. For the tower torque and validation of the calibration of the bending moments the tower properties given in Table 11 were used. Shunt calibrations were performed on all tower gages (Table 96 through Table 100 and Figure 264 through Figure 268).

Table 10. Tower Properties Used for Calculation of Tower Calibration Coefficients

Level	Inner Diameter	Outer Diameter	E Modulus	Poisson's Ratio
	[mm]	[mm]	[N/mm ²]	[-]
Base	4255	4297	2.1E+5	0.3
Тор	2540	2564	2.1E+5	0.3

Component	Mass (kg)	CG Location From Yaw Axis (m)	Mass Moment (kg-m)	Overhang Moment (kNm)
Nacelle and Rotor	87,000	-1.107	-9.63E+04	-943.83

Table 11. Nacelle Overhang Moment Use for Tower Bending Calibrations

The tower-top gages appeared to be placed too high in the tower and may have picked up some nonlinear strain from yaw-bearing deflection. Figure 246 shows the nacelle 360 rotation and the relative placement of the tower-top strain gages. As the rotor-side of the nacelle passes over the gage locations, the stress starts out higher than expected and then drops as the nacelle front sits over the gage. As the nacelle continues to yaw, the strain increases again and exceeds the expected value. This is an unfortunate situation and although the tower-top calibration can be corrected by using a gain multiplier that is a function of yaw position, the resulting calibration is highly uncertain.

The tower-top and tower-base offset values were taken whenever the turbine was idle or parked while facing the wind in winds less than 3 m/s. The used values are given in Table 12.

Comparison	Mean Gage Offset (V)	Stdev of Gage Offsets (V/V)	Number of Zeroes	Type-B Uncertainty (kNm)
Tower-Top 1 Bending	5.7452E-5	1.9776E-5	207	11.36
Tower-Top 2 Bending	9.8383E-5	9.2502E-6	207	7.39
Tower-Top Torque	3.1135E-5	7.7567E-6	207	5.25
Tower-Base 1 Bending	3.2487E-5	3.8648E-6	207	13.26
Tower-Base 2 Bending	3.0446E-4	3.5900E-6	207	12.99

Table 12. Tower Offset Values

Table 13. Comparison of Tower Calibrations

Comparison	Nacelle 360	Analytical	% Diff	Comments
	(kNm/V/V)	(kNm/V/V)		
Tower-Top 1 Bending	8.27E+06	9.77E+06	15.4%	Nacelle 360 used because of a lack of tower mechanical properties.
Tower-Top 2 Bending	1.15E+07	9.77E+06	18.1%	Nacelle 360 used because of a lack of tower mechanical properties.
Tower-Top Torque	-	9.77E+06	-	Only one method of calibration used.
Tower-Base 1 Bending	5.08E+07	4.80E+07	5.8%	Nacelle 360 used because of a lack of tower mechanical properties.
Tower-Base 2 Bending	5.27E+07	4.80E+07	9.7%	Nacelle 360 used because of a lack of tower mechanical properties.

*Values in green are used for conversions.

7.3 Main Shaft Signals

Analytical calibrations of the shaft signals were carried out using the main shaft properties listed in Table 14. Those properties were compared to the values obtained from the estimated overhang moments (Table 15) during slow rolls. Shunt calibrations were performed to verify the overall DAQ functionality (Figure 261 through Figure 263 and Table 93 through Table 95).

Main shaft torque was calibrated by using a time series of normal power production near rated power. The main shaft theoretical torque is calculated by dividing the rotor power (electric power divided by the drivetrain efficiency) by the main shaft rotational speed. To remove noise from the signal, a low-pass filter is applied to both rotor power and the main shaft torque gage. The result is given in Figure 10.

Table 16 and Table 17 show the calibration slopes and offsets that were used.

Shaf	Shaft Dimensions at Measurement Plane					
D	0.581	[m]	Outer Diameter			
d	0.040	[m]	Inner Diameter			
k	2.02	[-]	Gage Factor			
Е	2.1E+11	[N/m ²]	Young's Modulus			
nhu	0.3	[-]	Poisson's Ratio			
G	8.08.E+10	[N/m ²]	Shear Modulus			

Table 14. Inputs Used for Analytical Shaft Calibration

Rotor Overhang Calculation		
Distance from Y-axis to Hub Center of Gravity (CG)	-3.96	m
Distance from Y-axis to Hub Flange	-2.57	m
Distance from Hub CG to Hub Flange	-1.39	m
Distance from Hub Flange to Bearing	-0.51	m
Distance from CG to Upwind (UW) Bearing	-1.90	m
Overhang Moment from Hub to UW Bearing	-622.32	kNm
Gage Location		
Distance from UW Bearing to Gage	0.84	m
	0.01	111
Distance from Center of Bear to Mark	0.21	m
Distance from Center of Bear to Mark Distance from Center of Bearing to Gage	0.21 1.04	m m
Distance from Center of Bear to Mark Distance from Center of Bearing to Gage Distance from Mark to Gearbox	0.21 1.04 1.53	m m m
Distance from Center of Bear to Mark Distance from Center of Bearing to Gage Distance from Mark to Gearbox Moment at Gage	0.21 1.04 1.53	m m m

Figure 10. Main shaft torque calibration

Comparison	External Calibration	Analytical Calibration	% Diff	Comments
	(kNm/V)	(kNm/V)		
Main Shaft Bending 0	6.66E+02	667.88	-0.3%	Analytical calibration values used because of uncertain boundary conditions on slow rolls.
Main Shaft Bending 90	6.68E+02	667.88	0.0%	Analytical calibration values used because of uncertain boundary conditions on slow rolls.
Main Shaft Torque	1.31E+03	1022.45	27.8%	External calibration used because of large error in analytical calibration.

Table 16. Comparison of Main Shaft Calibrations

*Values in green are used for conversions.

Comparison	Mean Gage Offset (V)	Stdev of Gage Offsets (V)	Number of Zeroes	Type-B Uncertainty (kNm)
Main Shaft Bending 0	1.1866	0.0124	213	0.56
Main Shaft Bending 90	1.6184	0.0148	214	0.67
Main Shaft Torque	1.4900	0.0154	226	1.34

Table 17. Main Shaft Offset Values

7.4 Yaw Position

Yaw position was calibrated by pointing the nacelle at two distant landmarks and the met tower. A slope and offset were then calculated and applied. The nacelle was then pointed at the three landmarks again for verification. Figure 11 and Table 18 show the results of the verification. The yaw position signal had a 1-degree resolution.

Target	Bearing	Measured Bearing	Residual
	[°T]	[°T]	[°]
Coal Creek Peak	248	247	1
Shirttail Peak	293	292	1
Met Tower	281	281	0

 Table 18. Verification of Slope and Offset for Yaw Position

Figure 11. Regression of measured versus predicted yaw position

8 Data Processing Procedure

Test data was collected continuously. For all data files, the following steps were followed in the processing procedure:

- 1. Filtering
- 2. Adding calculated channels
- 3. Validation (including spike detection)
- 4. Post-process data to results.

8.1 Data Filtering

Data was removed for:

- 1. Any obvious problems with the DAQ (dropouts, flat lined)
- 2. Wind direction outside the measurement sector
- 3. Observations of icing on the blades or anemometer impacted by icing.

8.2 Calculated Channels

In addition to the signal coming from the DAQ, additional measurement quantities were calculated for:

- Air density
- Tower-top lateral bending moment
- Tower-top normal bending moment
- Tower-base lateral bending moment
- Tower-base normal bending moment.

The coordinate system used in this report is given in Appendix H.

8.3 Data Validation

All of the measured signals were checked for validity. An automated system was used to give a first-pass evaluation as to whether the data was valid or not. These automated checks were as follows:

- 1. Maximum of measured signal must be below acceptable predetermined maximum for that channel.
- 2. Minimum of measured signal must be above acceptable predetermined minimum for that channel.
- 3. The standard deviation for measured signal must be above threshold for that channel (detects frozen signal).
- 4. The running standard deviation of 10-second width, must be above a predetermined threshold (detects frozen signal for only part of the measured time series).

- 5. Signals were investigated for spikes.
- 6. Mean blade in-plane loads were compared to the main shaft torque.
- 7. Main shaft torque was compared to electrical power divided by shaft speed.
- 8. Main shaft torque was compared to tower lateral bending.
- 9. Tower normal bending was compared to summation of the out-of-plane blade bending.
- 10. Power spectral densities of blade loads were used to check for crosstalk.
- 11. Data collected when the turbine was idling data at low wind speeds was used to quantify gage drift.

8.4 Post-Processing

The following post-processing was performed.

	Scatterplots	Bin, All TI	Azimuth Binning	PSD	Rainflow Counting	Damage Equivalent Load
Electrical Power	✓	✓				
Rotor Speed	✓	✓				
Generator Speed	✓	✓				
Blade 1 Flap Bending	✓	✓	✓	~	✓	✓
Blade 1 Leadlag Bending	✓	✓	✓	~	✓	✓
Blade 2 Flap Bending	✓	✓	✓	~	✓	✓
Blade 2 Leadlag Bending	✓	✓	✓	~	✓	✓
Blade 3 Flap Bending	✓	✓	✓	~	✓	✓
Blade 3 Leadlag Bending	✓	✓	✓	~	✓	✓
Main Shaft Torque	✓	✓	✓	~	✓	✓
Main Shaft Bending 0	✓	✓	✓	~	✓	✓
Main Shaft Bending 90	✓	✓	✓	~	✓	✓
Tower-Top Normal Bending	✓	✓		~	✓	✓
Tower-Top Lateral Bending	✓	✓		~	✓	✓
Tower-Top Torque	✓	✓		~	✓	✓
Tower-Base Normal Bending	✓	✓		~	✓	✓
Tower-Base Lateral Bending	✓	✓		~	✓	✓
Blade Pitch Angle #1	✓	✓				
Blade Pitch Angle #2	✓	✓				
Blade Pitch Angle #3	✓	✓				
Wind Speed at 87m	✓	✓				
Hub-Height Wind Speed	\checkmark	✓				
Air Pressure	\checkmark	✓				
Air Temperature	\checkmark	\checkmark				

Table 19. Analysis of 10-Minute Blocks

8.4.1 Ten-Minute Record Statistics

For each 10-minute data file the mean, minimum, maximum, and standard deviation of all channels were calculated.

8.4.2 Azimuth Averaging Analysis

A process similar to the bin averaging was used to compute the azimuth averaging. Thirty-six separate bins were used for the analysis.

8.4.3 Power Spectral Density Analysis

The power spectral density (PSD) was estimated via Welch's method that returns the PSD estimate, Pxx, of a discrete-time signal vector X using Welch's averaged, modified periodogram method. By default, X was divided into eight sections with 50% overlap; each section was windowed with a Hamming window and eight modified periodograms were computed and averaged.

If the length of X was such that it could not be divided exactly into eight sections with 50% overlap, then X was truncated accordingly. Pxx is the distribution of power per-unit frequency. For real signals, such as those measured during this test, the one-sided PSD was returned. Note that a one-sided PSD contains the total power of the input signal.

8.4.4 Cycle Counting Analysis

Load data cycles were counted using a version of ASTM E 1049-85 [2] rainflow count algorithm. The results of the cycle counting analysis are displayed on semi-logarithmic plots for all of the load channels. The following settings were used:

- 128 rainflow cycle bins
- Half-cycles count as 0.5; full-cycles count as 1.0.

8.4.5 Damage Equivalent Loads

Damage equivalent loads (DELs) were calculated for all load channels for each 10-minute data file. The DELs were calculated in accordance with the IEC 61400-13 for slopes with values of 3, 6, 9, and 10.

The 10-minute rainflow counts were left as raw cycles for the computation.

8.4.6 Lifetime Fatigue Spectra

The lifetime fatigue spectra for the loads channels were computed as follows:

- 1. All valid data sets were binned by wind speed only.
- 2. For each wind speed bin, all files were rainflow counted as described above.
- 3. For each wind speed bin, the rainflow cycles were summed and scaled to 20 years for IEC Class II and Class III wind speed distributions.

The scaled cycles for each wind speed were then added to achieve the lifetime fatigue spectra.

9 Results

Graphical and tabular results are given in Appendix A. The results are divided in three sections:

- 1. Normal power production
- 2. Transients
- 3. Parked/idling.

9.1 Power Production

For normal power production, the 10-minute data files were filtered to meet the following criteria:

- 1. Mean wind direction within the measurement sector
- 2. Minimum rotor speed >10.5
- 3. Maximum of blade pitch angle 1 <50
- 4. Mean of power >0.

For power production, the capture matrix is provided in Figure 22 and Figure 1.

For each signal, the following information is provided:

- Scatterplot of 10-minute statistics as a function of hub-height wind speed
- Table with binned data versus wind speed
- Example time series at a four different wind speeds.

In addition to the information listed above for the loads channels, the following things are added:

- Plots of DELs as a function of wind speeds for several m values
- Plots of binned DELs as a function of wind speed for several m values
- Table with binned DELs versus wind speed
- Plot of 20-year fatigue load spectra for IEC Class II and III
- Plots of azimuth binned loads for four different wind speeds
- PSDs at four different wind speeds.

The four wind speed files used for time series, azimuth averaging, and PSDs are as follows:

- 7.4 m/s: FastWaveforms 2011_03_08 19_30_38 100Hz
- 14.0 m/s: FastWaveforms 2011_03_09 12_46_23 100Hz
- 18.3 m/s: FastWaveforms 2011_03_09 14_56_33 100Hz
- 19.8 m/s: FastWaveforms 2011_03_11 08_37_17 100Hz.

9.2 Transients

The capture matrices for the transient events are provided below in Table 20.

Transients are identified by applying the following filters to the data:

- 1. Wind direction inside measurement sector
- 2. Turbine goes from producing power to not generating power (stop) or vice versa (start).

Plots and tables with results of example transients are provided in Figure 171 through Figure 200 and Table 78 through Table 83.

Event	Wind Speed Range	Duration	Required	Obtained
Normal Startup	3–12 m/s	Transient	3	57
	12–16 m/s	Transient	3	4
	>16 m/s	Transient	2	3
Normal	3–12 m/s	Transient	3	72
Shutdown	12–16 m/s	Transient	3	5
	>16 m/s	Transient	2	2

 Table 20. Capture Matrix for Normal Transients

9.3 Parked/Idling

The capture matrix for parked/idling is provided in Table 21.

For parked/idling, 10-minute data files were used that met the following criteria:

- 1. Wind direction inside measurement sector
- 2. Maximum of power <0.

Table 21. Capture Matrix for Parked/Idling

Event	Wind-Speed Range	Duration	Required [2-min files]	Obtained [10-min files]
Parked/Idling	3–12 m/s	2 min	10	7
	12–16 m/s	2 min	10	3
	>16 m/s	2 min	10	39

Plots and tables with results of example transients are provided in Table 84 through Table 86 and Figure 201 through Figure 215.

9.4 Turbine Dynamic Analysis

As per the Standard, a simple analysis of the turbine natural frequencies was performed. The results for major structural components are presented in Table 22 and Figure 12 through Figure 16 below. For each component, a particular test case was identified that would allow the best opportunity to isolate that component's natural frequency.

Mode	Frequency (Hz)	Test Condition	Notes	File
First Tower Normal	0.35	Normal Stop at 10.4 m/s	Taken from ringing of tower-base normal bending after normal stop	2011_03_11_14_27_45
First Tower Lateral	0.36	Normal Stop at 12.5 m/s	Taken from ringing of tower-base lateral bending after normal stop	2011_03_03_16_28_03
First Tower Normal	0.36	Normal Operation at 18.3 m/s	Taken from tower-base normal bending signal during normal operation above rated	2011_03_09 14_56_33
First Tower Lateral	0.35	Normal Operation at 18.3 m/s	Taken from tower-base lateral bending signal during normal operation above rated	2011_03_09 14_56_33
First Drivetrain	2.15	Normal Stop at 14.0 m/s	Taken from ringing of shaft torque after normal-stop, condition is considered free-free	2011_03_09_12_46_23
First Blade Flap	0.61	Normal Operation at 14.0 m/s	Taken from blade 1 flap-bending signal during normal operation above rated	2011_03_09_12_46_23
First Blade Leadlag	1.22	Normal Operation at 14.0 m/s	Taken from blade 1 leadlag bending signal during operation above rated	2011_03_09_12_46_23

Table 22. Turbine Structural Natural Frequencies

Tower Base Lateral Bending - Natural Frequency During Shutdown

Figure 13. Tower lateral natural frequency during shutdown

Tower Base Normal Bending - Natural Frequency During Operation

Tower Lateral Bending - Natural Frequency During Operation

Figure 15. Tower lateral natural frequency during normal operation

Blade Flapwise Natural Frequency During Operation

Figure 17. Blade 1 flap natural frequency normal operation

Figure 18. Blade 1 leadlag natural frequency during normal operation

10Uncertainty

The uncertainty for the loads channels has been estimated based on the calibration uncertainties and variations found in the offset values. For each loads channel the inputs and assumptions are given in Table 23 through Table 36. It should be noted that these uncertainties do not include all uncertainties associated with estimating some of the turbine properties.

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800.0	50	kg	Rectangular	1.03E+02	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	В	inf	1.73	3.3
tilt angle	5.0	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	90.0	0.2	deg	Rectangular	3.68E-11	В	inf	1.73	0.0
Zero Calibration	-1.53E-05	1.39E-06	V/V	Normal	6.00E+05	А	30	1.00	0.8
	Effec	ctive Degrees o	f Freedom	2.00E+05					
	Coverage factor (95% Confidence) 1.98								
Combined Standard Uncertainty 8 kNm									
		Expanded L	Incertainty	15	kNm				

Table 23. Uncertainty Analysis	s for Blade 1 Flap Bending
--------------------------------	----------------------------

Table 24. Uncertainty Analysis for Blade 2 Flap Bending

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/Divis or	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800	50	kg	Rectangular	1.03E+02	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	в	inf	1.73	3.3
tilt angle	5	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	90	0.2	deg	Rectangular	3.68E-11	В	inf	1.73	0.0
Zero Calibration	-5.79E-04	5.72E-07	V/V	Normal	6.00E+05	A	29	1.00	0.3
	Effec	ctive Degrees o	of Freedom	6.66E+07					
	1.98								
	Combir	ned Standard L	Incertainty	8	kNm				
		Expanded L	Incertainty	15	kNm				

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/Divis or	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800	50	kg	Rectangular	1.03E+02	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	В	inf	1.73	3.3
tilt angle	5	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	90	0.2	deg	Rectangular	3.68E-11	В	inf	1.73	0.0
Zero Calibration	-5.79E-04	5.72E-07	V/V	Normal	6.00E+05	А	29	1.00	0.3
	Effec	ctive Degrees o	f Freedom	6.66E+07					
Coverage factor (95% Confidence) 1.98									
Combined Standard Uncertainty				8	kNm				
		Expanded L	Incertainty	15	kNm				

Table 25. Uncertainty Analysis for Blade 3 Flap Bending

Table 26. Uncertainty Analysis for Blade 1 Leadlag Bending

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800.0	50	kg	Rectangular	1.03E+02	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	В	inf	1.73	3.3
tilt angle	5.0	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	0.0	0.2	deg	Rectangular	0.00E+00	В	inf	1.73	0.0
Zero Calibration	8.51E-04	1.39E-06	V/V	Normal	6.00E+05	А	28	1.00	0.8
	Effec	ctive Degrees o	f Freedom	1.88E+05					
	Coverage factor (95% Confidence) 1.98								
Combined Standard Uncertainty 8 kNm									
		Expanded L	Incertainty	15	kNm				

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800.0	50	kg	Rectangular	1.03E+02	в	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	в	inf	1.73	3.3
tilt angle	5.0	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	0.0	0.2	deg	Rectangular	0.00E+00	В	inf	1.73	0.0
Zero Calibration	-4.13E-06	5.73E-07	V/V	Normal	6.00E+05	А	27	1.00	0.3
	Effec	ctive Degrees c	of Freedom	6.15E+06					
	Coverage	factor (95% C	onfidence)	1.98					
		Expanded L	Incertainty	15	kNm				

Table 27. Uncertainty Analysis for Blade 2 Leadlag Bending

Table 28. Uncertainty Analysis for Blade 3 Leadlag Bending

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800.0	50	kg	Rectangular	1.03E+02	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	5.66E+04	В	inf	1.73	3.3
tilt angle	5.0	0.2	deg	Rectangular	5.25E+04	В	inf	1.73	6.1
pitch angle	0.0	0.2	deg	Rectangular	0.00E+00	В	inf	1.73	0.0
Zero Calibration	-4.71E-04	4.58E-07	V/V	Normal	6.00E+05	А	29	1.00	0.3
	Effec	ctive Degrees o	f Freedom	1.62E+07					
Coverage factor (95% Confidence) 1.98									
	kNm								

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Mass of blade	5800	50	kg	Rectangular	103.48	В	inf	1.73	3.0
CG location of blade	10.6	0.1	m	Rectangular	56621.55	В	inf	1.73	3.3
tilt angle	5	0.2	deg	Rectangular	52509.68	В	inf	1.73	6.1
pitch angle	0.5	0.2	deg	Rectangular	5237.7651	В	inf	1.73	0.6
Zero Calibration	8.51E-04	2.06E-05	V/V	Normal	600188.44	А	219	1.00	12.4
						•			
	Effe	ctive Degrees o	of Freedom	411			Mean Load a	t Rated (kNm)	298
Coverage factor (95% Confidence) 1.98 Standard Uncertainty at Rated 5								5%	
	Combi	ned Standard L	Incertainty	14.5	kNm	Expa	anded Uncert	ainty at Rated	10%
Expanded Uncertainty 28.7 kNm									

Table 29. Main Shaft Bending 0 Uncertainty

Table 30. Main Shaft Bending 90 Uncertainty

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Modulus of Elasticty	2.1E+11	2.10E+10	Ра	Rectangular	4.78E-06	В	inf	1.73	58.0
Outer Diameter	0.581	0.001	m	Rectangular	5.19E+06	В	inf	1.73	3.0
Inner Diameter	0.04	0.001	m	Rectangular	2.26E+03	В	inf	1.73	0.0
Gage Factor	2.02	0.01	-	Rectangular	1.00E+06	В	inf	1.73	5.8
Gage Resistance	350	3.5	Ohms	Rectangular	2.86E+03	В	inf	1.73	5.8
Shunt Resistance	1.74E+05	1.74E+02	Ohms	Rectangular	5.76E+00	В	inf	1.73	0.6
Zero Calibration	1.62E+00	0.0148	V/V	Normal	6.68E+02	А	214	1.00	9.9
	Effe	ctive Degrees o	f Freedom	443			Mean Load a	t Rated (kNm)	152
Coverage factor (95% Confidence) 1.98							ndard Uncert	ainty at Rated	8%
Combined Standard Uncertainty 11.9 kNm							anded Uncert	ainty at Rated	15%
Expanded Uncertainty 23.5 kNm									

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Modulus of Elasticty	2.1E+11	5.91E+09	Ра	Rectangular	7.30E-06	в	inf	1.73	24.9
Poisson Ratio	0.3	5.77E-03	m	Rectangular	6.85E+05	В	inf	1.73	2.3
Outer Diameter	0.581	0.001	m	Rectangular	7.91E+06	в	inf	1.73	4.6
Inner Diameter	0.04	0.001	m	Rectangular	2.24E+03	в	inf	1.73	0.0
Gage Factor	2.03	0.01	-	Rectangular	4.38E+03	в	inf	1.73	0.0
Gage Resistance	350	1	Ohms	Rectangular	4.37E+03	в	inf	1.73	2.5
Shunt Resistance	1.75E+05	1.75E+02	Ohms	Rectangular	3.50E+01	в	inf	1.73	3.5
Zero Calibration	1.49E+00	1.54E-02	v/v	Normal	1.31E+03	А	75	1.00	20.2
	Effec	ctive Degrees o	f Freedom	5.08E+03					
	Coverage	factor (95% C	onfidence)	2.01					
	Combir	ned Standard U	Incertainty	33	kNm				
		Expanded U	Incertainty	65	kNm				

Table 31. Uncertaint	y Analysis	for Main	Shaft Torg	ue
----------------------	------------	----------	------------	----

Table 32. Uncertainty Analysis for Tower-Top Torque

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/Divisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Modulus of Elasticty	2.1E+11	5.91E+09	Ра	Rectangular	2.86E-05	В	inf	1.73	97.5
Poisson Ratio	0.3	5.77E-03	m	Rectangular	2.64E+07	В	inf	1.73	87.9
Outer Diameter	2.858	1.00E-03	m	Rectangular	2.52E+08	В	inf	1.73	145.7
Inner Diameter	2.810	1.00E-03	m	Rectangular	1.58E+08	В	inf	1.73	91.5
Gage Factor	2.02	0.000202	-	Rectangular	3.43E+04	В	inf	1.73	0.0
Gage Resistance	350	1.4	Ohms	Rectangular	3.42E+04	В	inf	1.73	27.7
Shunt Resistance	1.75E+05	1.75E+01	Ohms	Rectangular	2.74E+02	В	69	1.73	2.8
Zero Calibration	4.36E-06	7.96E-06	v/v	Normal	2.44E+07	А	69	1.00	194.2
	Effe	ctive Degrees o	of Freedom	286					
	Coverage	factor (95% C	onfidence)	1.96					
	Combi	ned Standard L	Incertainty	277	kNm				
		Expanded L	Incertainty	543	kNm				

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Nacelle + Rotor Mass	87000	2.50E+03	Ра	Rectangular	7.83E-01	В	inf	1.73	1.1
Nacelle + Rotor									
Center of Gravity	1.107	0.1	m	Rectangular	6.15E+04	В	inf	1.73	3.6
Yaw Angle									
Measurement	45	2	deg	Rectangular	6.81E+04	В	inf	1.73	78.6
Zero Calibration	3.25E-05	1.93E-06	V/V	Normal	5.08E+07	A	217	1.00	98.2
	Effe	ctive Degrees o	f Freedom	586			Mean Load a	t Rated (kNm)	12000
	Coverage	factor (95% C	onfidence) 1.98		Sta	ndard Uncert	ainty at Rated	1%
	Combi	ned Standard L	Incertainty	125.8	kNm	Expa	anded Uncert	ainty at Rated	2%
		Expanded L	Incertainty	249.6	kNm			•	

Table 33. Uncertainty Analysis for Tower-Top Bending 1

Table 34. Uncertainty Analysis for Tower-Top Bending 2

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Nacelle + Rotor Mass	87000	2.50E+03	Ра	Rectangular	7.83E-01	В	inf	1.73	1.1
Nacelle + Rotor Center of Gravity	1.107	0.1	m	Rectangular	6.15E+04	В	inf	1.73	3.6
Yaw Angle Measurement	45	2	deg	Rectangular	6.81E+04	В	inf	1.73	78.6
Zero Calibration	3.04E-04	1.80E-06	V/V	Normal	5.27E+07	А	217	1.00	94.6
	Effe	ctive Degrees o	f Freedom	622			Mean Load a	t Rated (kNm)	12000
Coverage factor (95% Confidence) 1.98 Standard Uncertainty at Rated 1%								1%	
Combined Standard Uncertainty 123.1 kNm Expanded Uncertainty at Rated								2%	
		Expanded L	Incertainty	244.2	kNm				

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Nacelle + Rotor Mass	87000	2.50E+03	Ра	Rectangular	7.83E-01	В	inf	1.73	1.1
Nacelle + Rotor									
Center of Gravity	1.107	0.1	m	Rectangular	6.15E+04	В	inf	1.73	3.6
Yaw Angle									
Measurement	45	2	deg	Rectangular	6.81E+04	В	inf	1.73	78.6
Zero Calibration	3.04E-04	1.80E-06	V/V	Normal	5.27E+07	Α	217	1.00	94.6
	Effe	ctive Degrees o	of Freedom	622			Mean Load a	t Rated (kNm)	12000
	Coverage	factor (95% C	confidence)	1.98		Sta	ndard Uncert	ainty at Rated	1%
	Combi	ned Standard L	Jncertainty	123.1	kNm	Expa	anded Uncert	ainty at Rated	2%
		Expanded L	Jncertainty	244.2	kNm				

Table 35. Uncertainty Analysis for Tower-Base Bending 1

Table 36. Uncertainty Analysis for Tower-Base Bending 2

Uncertainty Source	Estimated Value	Uncertainty	Units	Distribution/D ivisor	Sensitivity Coefficient	Туре	Degrees of Freedom	Distribution Divisor	Standard Uncertainty
Nacelle + Rotor Mass	87000	2.50E+03	Pa	Rectangular	7.83E-01	В	inf	1.73	1.1
Nacelle + Rotor Center of Gravity	1.107	0.1	m	Rectangular	6.15E+04	В	inf	1.73	3.6
Yaw Angle Measurement	45	2	deg	Rectangular	6.81E+04	В	inf	1.73	78.6
Zero Calibration	3.25E-05	1.93E-06	V/V	Normal	5.08E+07	А	217	1.00	98.2
	Effe	ctive Degrees o	f Freedom	586			Mean Load a	t Rated (kNm)	12000
	Coverage	factor (95% C	onfidence)	1.98		Sta	ndard Uncert	ainty at Rated	1%
	Combir	ned Standard L	Incertainty	125.8	kNm	Expa	anded Uncert	ainty at Rated	2%
		Expanded L	Incertainty	249.6	kNm				

11Exceptions

11.1 Exceptions to the Test Plan

The exceptions to the test plan include the following:

- Power signal is taken from the SCADA not from the NREL sensor.
- Main shaft gages upwind of main bearing were not used in analysis because of poor signal quality. Only results from the gages downwind of the bearing are shown.
- Tower-top gages were placed at a different location than what was specified.
- Loads channels were recorded at 100 Hz instead of 50 Hz.

11.2 Exceptions to the Standard

None.

11.3 Exceptions to NWTC Quality Assurance System

Four signal conditioning modules (sn: 1342666, 1357162, 1357177, and 136D7A2) were used past their calibration due date. Post-test calibrations were performed and the modules were found to be within tolerance. The post-test calibration sheets are included in Appendix I.

- Details of sensor used for rotor speed and azimuth not documented
- Details on lot or batch number for strain gages not documented.

References

- 1. "Wind Turbine Generator Systems Part 13: Measurement of Mechanical Loads." TS IEC 61400-13 first edition, 2001-06.
- "ASTM E 1049-85 (Reapproved 1997), Standard practices for cycle counting in fatigue analysis." *Annual Book of ASTM Standards*. Vol. 03.01, Philadelphia, PA. 1999; pp. 710-718.
- 3. "Wind turbines Part 12-1: Power performance measurements of electricity producing wind turbines," TS IEC 61400-13 First edition, 2005-12

Appendix A. Result Plots and Tables Turbulence Intensity

Figure 19. Turbulence intensity

Wind Speed Trend Detection Turbulence Intensity

Figure 20. Indication of presence of wind speed trending in data set

Figure 21. Scatterplot versus wind speed for air density

Global Capture Matrix with All Loads Channels Operating

Figure 22. Global capture matrix with all loads channels operating

Power Production Data

Electric Power

Figure 23. Capture matrix for electric power

Figure 24. Scatterplot for electric power

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-9.79	66.25	225.65
2	4.0	5.0	4.8	4	-12.18	106.94	517.22
3	5.0	6.0	5.5	11	-10.13	210.57	1,317.44
4	6.0	7.0	6.6	25	-39.33	339.20	1,191.74
5	7.0	8.0	7.4	28	-11.68	485.76	1,847.05
6	8.0	9.0	8.4	19	23.94	720.79	1,626.33
7	9.0	10.0	9.5	24	160.79	947.77	1,843.93
8	10.0	11.0	10.6	16	327.61	1,187.95	1,850.85
9	11.0	12.0	11.4	26	158.81	1,269.56	1,860.77
10	12.0	13.0	12.5	24	270.11	1,412.08	1,856.71
11	13.0	14.0	13.5	31	581.65	1,471.84	1,857.82
12	14.0	15.0	14.5	32	850.05	1,485.22	1,863.80
13	15.0	16.0	15.3	14	824.09	1,507.02	1,861.46
14	16.0	17.0	16.6	14	935.38	1,509.50	1,873.11
15	17.0	18.0	17.5	11	1,201.41	1,508.14	1,872.26
16	18.0	19.0	18.6	17	1,202.73	1,514.55	1,895.27
17	19.0	20.0	19.6	13	1,205.37	1,512.38	1,892.58
18	20.0	21.0	20.4	10	1,194.92	1,508.22	1,883.35
19	21.0	22.0	21.4	3	1,205.34	1,497.59	1,870.25
20	22.0	23.0	22.8	4	1,206.54	1,503.80	1,880.97
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 37. Binned Data for Electric Power

Figure 25. Time series for the first 60 seconds of electric power

Rotor Speed

Wind Speed (m/s)

Figure 26. Capture matrix for rotor speed

Figure 27. Scatterplot for rotor speed

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	11.01	11.47	13.55
2	4.0	5.0	4.8	4	10.94	11.81	17.90
3	5.0	6.0	5.5	11	10.73	12.95	18.78
4	6.0	7.0	6.6	25	10.86	14.97	18.77
5	7.0	8.0	7.4	28	10.75	16.49	19.14
6	8.0	9.0	8.4	19	11.02	17.79	18.82
7	9.0	10.0	9.5	24	11.96	18.14	19.13
8	10.0	11.0	10.6	16	15.38	18.27	19.24
9	11.0	12.0	11.4	26	11.89	18.28	19.31
10	12.0	13.0	12.5	24	13.92	18.33	19.19
11	13.0	14.0	13.5	31	17.43	18.34	19.26
12	14.0	15.0	14.5	32	17.24	18.33	19.33
13	15.0	16.0	15.3	14	16.95	18.34	19.46
14	16.0	17.0	16.6	14	17.47	18.34	19.69
15	17.0	18.0	17.5	11	17.30	18.34	19.47
16	18.0	19.0	18.6	17	17.02	18.33	19.72
17	19.0	20.0	19.6	13	16.74	18.32	19.74
18	20.0	21.0	20.4	10	16.96	18.32	19.81
19	21.0	22.0	21.4	3	16.75	18.31	19.58
20	22.0	23.0	22.8	4	16.90	18.31	19.66
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 38. Binned Data for Rotor Speed

Figure 28. Time series for first 60 seconds of rotor speed

Generator Speed

Wind Speed (m/s)

Figure 29. Capture matrix for generator speed

Figure 30. Scatterplot for generator speed

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums	
1	3.0	4.0	4.0	1	865.03	899.82	1,061.93	
2	4.0	5.0	4.8	4	859.37	926.92	1,405.25	
3	5.0	6.0	5.5	11	842.67	1,016.34	1,470.99	
4	6.0	7.0	6.6	25	853.26	1,174.66	1,471.56	
5	7.0	8.0	7.4	28	844.42	1,293.91	1,500.82	
6	8.0	9.0	8.4	19	865.89	1,396.05	1,477.11	
7	9.0	10.0	9.5	24	938.25	1,423.13	1,500.32	
8	10.0	11.0	10.6	16	1,206.48	1,433.37	1,508.48	
9	11.0	12.0	11.4	26	933.37	1,434.42	1,518.60	
10	12.0	13.0	12.5	24	1,117.66	1,437.86	1,505.47	
11	13.0	14.0	13.5	31	1,369.41	1,438.76	1,514.34	
12	14.0	15.0	14.5	32	1,349.41	1,438.56	1,520.02	
13	15.0	16.0	15.3	14	1,333.95	1,439.21	1,533.76	
14	16.0	17.0	16.6	14	1,366.13	1,438.79	1,542.22	
15	17.0	18.0	17.5	11	1,356.20	1,438.66	1,533.13	
16	18.0	19.0	18.6	17	1,332.81	1,438.39	1,551.20	
17	19.0	20.0	19.6	13	1,311.71	1,437.64	1,562.34	
18	20.0	21.0	20.4	10	1,324.28	1,437.68	1,557.21	
19	21.0	22.0	21.4	3	1,310.50	1,436.28	1,548.40	
20	22.0	23.0	22.8	4	1,323.80	1,436.96	1,546.62	
21	23.0	24.0	0.0	0	0.00	0.00	0.00	
22	24.0	25.0	0.0	0	0.00	0.00	0.00	
23	25.0	26.0	0.0	0	0.00	0.00	0.00	

 Table 39. Binned Data for Generator Speed

Figure 31. Time series for the first 60 seconds of generator speed

Blade 1 Pitch Position

Figure 32. Capture matrix for blade 1 pitch position

Figure 33. Scatterplot for blade 1 pitch position

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-2.05	-1.33	-0.94
2	4.0	5.0	4.8	4	-2.13	-1.33	-0.84
3	5.0	6.0	5.5	11	-2.12	-1.70	5.89
4	6.0	7.0	6.6	25	-2.20	-1.91	17.01
5	7.0	8.0	7.4	28	-2.29	-1.90	15.12
6	8.0	9.0	8.4	19	-2.13	-1.89	1.84
7	9.0	10.0	9.5	24	-2.35	-1.49	10.30
8	10.0	11.0	10.6	16	-2.24	0.21	14.62
9	11.0	12.0	11.4	26	-2.25	1.60	18.86
10	12.0	13.0	12.5	24	-2.26	4.12	22.79
11	13.0	14.0	13.5	31	-2.29	6.84	17.43
12	14.0	15.0	14.5	32	-2.29	9.35	18.87
13	15.0	16.0	15.3	14	-2.18	10.82	19.74
14	16.0	17.0	16.6	14	-2.14	13.11	22.66
15	17.0	18.0	17.5	11	2.41	14.85	23.28
16	18.0	19.0	18.6	17	2.91	16.63	25.62
17	19.0	20.0	19.6	13	1.05	17.99	28.86
18	20.0	21.0	20.4	10	7.40	19.24	30.82
19	21.0	22.0	21.4	3	10.85	20.99	28.73
20	22.0	23.0	22.8	4	13.39	22.30	30.50
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 40. Binned Data for Blade 1 Pitch Position

Figure 34. Time series for the first 60 seconds of blade 1 pitch position

Blade 2 Pitch Position

Figure 35. Capture matrix for blade 2 pitch position

Figure 36. Scatterplot for blade 2 pitch position

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-2.13	-1.38	-0.97
2	4.0	5.0	4.8	4	-2.13	-1.37	-0.82
3	5.0	6.0	5.5	11	-2.15	-1.68	5.88
4	6.0	7.0	6.6	25	-2.21	-2.00	16.89
5	7.0	8.0	7.4	28	-2.26	-1.98	15.09
6	8.0	9.0	8.4	19	-2.11	-1.99	1.83
7	9.0	10.0	9.5	24	-2.31	-1.50	10.41
8	10.0	11.0	10.6	16	-2.19	0.21	14.59
9	11.0	12.0	11.4	26	-2.19	1.60	18.85
10	12.0	13.0	12.5	24	-2.25	4.12	22.79
11	13.0	14.0	13.5	31	-2.30	6.84	17.43
12	14.0	15.0	14.5	32	-2.25	9.34	18.81
13	15.0	16.0	15.3	14	-2.20	10.81	19.72
14	16.0	17.0	16.6	14	-2.14	13.11	22.65
15	17.0	18.0	17.5	11	2.40	14.85	23.29
16	18.0	19.0	18.6	17	2.99	16.63	25.61
17	19.0	20.0	19.6	13	1.02	17.99	28.86
18	20.0	21.0	20.4	10	7.36	19.24	30.95
19	21.0	22.0	21.4	3	10.79	20.99	28.69
20	22.0	23.0	22.8	4	13.36	22.30	30.40
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 41. Binned Data for Blade 2 Pitch Position

Figure 37. Time series for the first 60 seconds of blade 2 pitch position

Figure 38. Capture matrix for blade 3 pitch position

Figure 39. Scatterplot for blade 3 pitch position

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-2.04	-1.30	-0.89
2	4.0	5.0	4.8	4	-2.10	-1.37	-0.88
3	5.0	6.0	5.5	11	-2.15	-1.69	5.86
4	6.0	7.0	6.6	25	-2.23	-2.03	16.96
5	7.0	8.0	7.4	28	-2.26	-1.99	15.07
6	8.0	9.0	8.4	19	-2.11	-1.87	1.84
7	9.0	10.0	9.5	24	-2.31	-1.48	10.25
8	10.0	11.0	10.6	16	-2.20	0.21	14.60
9	11.0	12.0	11.4	26	-2.26	1.60	18.84
10	12.0	13.0	12.5	24	-2.24	4.13	22.83
11	13.0	14.0	13.5	31	-2.31	6.84	17.43
12	14.0	15.0	14.5	32	-2.25	9.34	18.79
13	15.0	16.0	15.3	14	-2.15	10.82	19.71
14	16.0	17.0	16.6	14	-2.10	13.11	22.65
15	17.0	18.0	17.5	11	2.41	14.85	23.30
16	18.0	19.0	18.6	17	2.91	16.63	25.59
17	19.0	20.0	19.6	13	1.00	17.99	28.82
18	20.0	21.0	20.4	10	7.37	19.24	30.91
19	21.0	22.0	21.4	3	10.77	20.99	28.69
20	22.0	23.0	22.8	4	13.37	22.30	30.41
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 42. Binned Data for Blade 3 Pitch Position

Figure 40. Time series for the first 60 seconds of blade 3 pitch position

Nacelle Yaw Angle

Figure 41. Capture matrix for nacelle yaw angle

Figure 42. Vector average for nacelle yaw angle

Tower-Top Normal Acceleration

Figure 44. Scatterplot for tower-top normal acceleration

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-0.10	-0.00	0.20
2	4.0	5.0	4.8	4	-0.13	-0.00	0.15
3	5.0	6.0	5.5	11	-0.21	0.00	0.17
4	6.0	7.0	6.6	25	-0.15	-0.00	3.86
5	7.0	8.0	7.4	26	-6.87	0.00	7.91
6	8.0	9.0	8.4	17	-8.31	-0.00	9.04
7	9.0	10.0	9.5	24	-7.90	0.00	9.28
8	10.0	11.0	10.6	16	-8.19	0.00	9.20
9	11.0	12.0	11.4	25	-2.48	-0.00	9.22
10	12.0	13.0	12.5	24	-5.26	-0.00	7.91
11	13.0	14.0	13.5	30	-7.90	-0.00	7.93
12	14.0	15.0	14.5	29	-9.52	0.00	1.30
13	15.0	16.0	15.2	13	-0.52	-0.00	1.23
14	16.0	17.0	16.6	14	-7.89	0.00	1.26
15	17.0	18.0	17.5	11	-1.28	0.00	8.94
16	18.0	19.0	18.6	17	-0.21	0.00	1.30
17	19.0	20.0	19.6	13	-6.53	-0.00	5.26
18	20.0	21.0	20.4	10	-3.79	-0.00	1.24
19	21.0	22.0	21.4	3	-0.22	-0.00	9.20
20	22.0	23.0	22.8	4	-2.61	-0.00	7.93
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 43. Binned Data for Tower-Top Normal Acceleration

Figure 45. Time series for the first 60 seconds of tower-top normal acceleration

Figure 46. Power spectral density of tower-top normal acceleration

Tower-Top Lateral Acceleration

Figure 47. Capture matrix for tower-top lateral acceleration

Figure 48. Scatterplot for tower-top lateral acceleration

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-0.10	-0.00	0.11
2	4.0	5.0	4.8	4	-0.13	0.00	0.14
3	5.0	6.0	5.5	11	-0.13	0.00	0.27
4	6.0	7.0	6.6	25	-5.59	-0.00	3.97
5	7.0	8.0	7.4	28	-6.49	-0.00	9.81
6	8.0	9.0	8.4	19	-5.59	0.00	7.81
7	9.0	10.0	9.5	24	-3.93	0.00	9.29
8	10.0	11.0	10.6	16	-7.86	0.00	5.19
9	11.0	12.0	11.4	26	-5.25	0.00	3.96
10	12.0	13.0	12.5	23	-1.32	0.00	1.33
11	13.0	14.0	13.5	30	-5.26	0.00	2.61
12	14.0	15.0	14.5	32	-7.97	-0.00	9.47
13	15.0	16.0	15.3	14	-5.25	0.00	1.30
14	16.0	17.0	16.6	14	-2.64	0.00	9.70
15	17.0	18.0	17.5	11	-5.24	-0.00	4.04
16	18.0	19.0	18.6	17	-1.23	-0.00	5.20
17	19.0	20.0	19.6	11	-0.20	-0.00	1.33
18	20.0	21.0	20.4	10	-1.27	0.00	0.56
19	21.0	22.0	21.4	3	-2.65	-0.00	3.97
20	22.0	23.0	22.8	4	-1.30	0.00	0.54
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 44. Binned Data for Tower-Top Lateral Acceleration

Figure 49. Time series for the first 60 seconds of tower-top lateral acceleration

Figure 50. Power spectral density of tower-top lateral acceleration

Figure 51. Capture matrix for blade 1 flap bending

Figure 52. Scatterplot for blade 1 flap bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	102.18	453.70	934.87
2	4.0	5.0	4.8	4	100.28	588.47	1,663.66
3	5.0	6.0	5.5	11	113.62	768.68	2,455.97
4	6.0	7.0	6.5	17	-324.48	954.60	2,155.97
5	7.0	8.0	7.4	12	106.51	1,163.35	2,552.83
6	8.0	9.0	8.4	10	268.28	1,411.67	2,381.82
7	9.0	10.0	9.4	12	516.82	1,563.62	2,379.22
8	10.0	11.0	10.6	10	137.27	1,598.81	2,478.26
9	11.0	12.0	11.4	14	6.85	1,536.73	2,758.26
10	12.0	13.0	12.5	16	-217.60	1,479.41	2,640.94
11	13.0	14.0	13.5	21	-249.37	1,338.34	2,824.99
12	14.0	15.0	14.4	24	-267.32	1,210.77	2,711.50
13	15.0	16.0	15.2	10	-48.04	1,155.72	2,819.53
14	16.0	17.0	16.5	10	-455.31	1,058.57	2,819.28
15	17.0	18.0	17.4	7	-550.73	963.81	2,296.99
16	18.0	19.0	18.6	13	-944.26	901.67	2,798.18
17	19.0	20.0	19.6	7	-976.86	872.61	2,786.56
18	20.0	21.0	20.3	5	-1,976.12	821.11	2,619.03
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.6	2	-1,306.22	692.32	2,191.29
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 45. Binned Data for Blade 1 Flap Bending

Figure 53. Time series for the first 60 seconds of blade 1 flap bending

Figure 54. Damage equivalent load (DEL) (1 Hz, m=3, 6, 9, 10) for blade 1 flap bending

Figure 55. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 1 flap bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	178.79	178.79	178.79	262.69	262.69	262.69	410.01	410.01	410.01
2	4.0	5.0	4.8	4	211.22	284.47	333.84	280.05	418.60	502.45	410.53	632.00	757.57
3	5.0	6.0	5.5	11	147.91	368.15	551.59	207.39	534.43	789.55	319.45	790.17	1,165.34
4	6.0	7.0	6.5	17	210.59	328.01	563.47	319.16	471.10	825.39	492.25	697.48	1,239.57
5	7.0	8.0	7.4	12	246.67	386.79	619.80	342.51	541.52	880.53	485.13	789.51	1,263.47
6	8.0	9.0	8.4	10	279.20	360.72	500.83	344.81	496.36	722.73	441.52	723.41	1,069.89
7	9.0	10.0	9.4	12	308.60	420.28	539.39	379.07	535.68	704.01	496.88	721.11	972.98
8	10.0	11.0	10.6	10	292.33	501.32	630.17	349.87	632.76	819.12	440.33	837.95	1,154.60
9	11.0	12.0	11.4	14	474.76	591.87	683.00	606.75	762.39	871.48	827.37	1,035.24	1,221.47
10	12.0	13.0	12.5	16	484.41	581.46	765.39	623.70	746.25	979.12	842.85	1,019.47	1,385.57
11	13.0	14.0	13.5	21	526.54	635.00	770.95	690.57	825.06	1,055.65	907.90	1,135.75	1,545.89
12	14.0	15.0	14.4	24	495.63	667.81	781.18	635.49	864.69	1,018.92	906.20	1,184.93	1,407.34
13	15.0	16.0	15.2	10	572.59	670.30	823.58	717.98	840.38	1,055.19	919.12	1,104.00	1,439.66
14	16.0	17.0	16.5	10	629.41	797.09	991.61	764.03	987.03	1,290.04	961.44	1,275.00	1,766.99
15	17.0	18.0	17.4	7	676.60	804.90	879.11	820.81	991.50	1,087.95	1,039.36	1,273.53	1,440.68
16	18.0	19.0	18.6	13	783.99	951.29	1,199.69	944.09	1,173.42	1,478.75	1,197.81	1,510.94	1,895.50
17	19.0	20.0	19.6	7	848.89	1,056.11	1,199.84	1,017.94	1,310.52	1,538.38	1,252.37	1,691.42	2,047.54
18	20.0	21.0	20.3	5	888.85	1,097.95	1,280.82	1,062.56	1,369.22	1,699.82	1,326.38	1,787.20	2,402.10
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	22.6	2	1,058.63	1,089.59	1,120.55	1,305.10	1,338.85	1,372.60	1,733.22	1,747.36	1,761.51
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 46. Binned Damage Equivalent Load (DEL) Data for Blade 1 Flap Bending

Figure 56. Twenty-year fatigue load spectrum for blade 1 flap bending

Figure 57. Azimuth binning for blade 1 flap bending

Figure 58. Power spectral density of blade 1 flap bending

Blade 1 Leadlag Bending

Figure 59. Capture matrix for blade 1 leadlag bending

Figure 60. Scatterplot for blade 1 leadlag bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-753.36	-83.86	636.35
2	4.0	5.0	4.8	4	-767.34	13.54	992.06
3	5.0	6.0	5.5	11	-774.85	64.53	1,184.77
4	6.0	7.0	6.5	17	-810.33	65.99	1,137.95
5	7.0	8.0	7.4	12	-865.58	122.07	1,154.58
6	8.0	9.0	8.4	9	-713.46	149.90	1,183.86
7	9.0	10.0	9.4	12	-854.78	182.12	1,176.56
8	10.0	11.0	10.6	10	-901.60	207.55	1,329.01
9	11.0	12.0	11.4	14	-853.02	199.14	1,274.90
10	12.0	13.0	12.5	15	-888.11	192.47	1,206.00
11	13.0	14.0	13.5	20	-857.27	134.76	1,217.10
12	14.0	15.0	14.4	24	-837.90	129.37	1,252.52
13	15.0	16.0	15.2	10	-902.57	87.43	1,261.17
14	16.0	17.0	16.5	10	-931.56	91.13	1,272.30
15	17.0	18.0	17.4	7	-915.32	76.50	1,204.69
16	18.0	19.0	18.6	13	-920.76	78.31	1,220.67
17	19.0	20.0	19.6	7	-954.02	75.37	1,253.16
18	20.0	21.0	20.3	5	-903.10	122.26	1,321.16
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.6	2	-778.01	76.80	1,028.39
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 47. Binned Data for Blade 1 Leadlag Bending

Figure 61. Time series for the first 60 seconds of blade 1 leadlag bending

Figure 62. DEL (1 Hz, m=3, 6, 9, 10) for blade 1 leadlag bending

Figure 63. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 1 leadlag bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	826.44	826.44	826.44	949.87	949.87	949.87	1,063.53	1,063.53	1,063.53
2	4.0	5.0	4.8	4	828.11	857.41	882.81	952.74	984.50	1,010.39	1,067.25	1,103.74	1,130.93
3	5.0	6.0	5.5	11	841.67	902.77	961.08	964.40	1,029.74	1,086.80	1,076.03	1,150.08	1,217.39
4	6.0	7.0	6.5	17	882.72	955.47	991.68	1,004.37	1,076.26	1,119.42	1,115.16	1,187.38	1,244.36
5	7.0	8.0	7.4	12	945.41	999.09	1031.39	1,072.40	1,118.82	1,148.25	1,189.99	1,230.63	1,286.03
6	8.0	9.0	8.4	10	1,014.24	1,038.96	1,086.53	1,129.61	1,154.10	1,210.03	1,228.91	1,260.04	1,327.19
7	9.0	10.0	9.4	12	1,045.99	1,072.33	1,121.76	1,157.17	1,190.12	1,249.82	1,257.91	1,300.76	1,376.70
8	10.0	11.0	10.6	10	1,062.73	1,099.82	1,130.18	1,175.31	1,221.69	1,257.05	1,276.55	1,339.44	1,386.56
9	11.0	12.0	11.4	14	1,052.05	1,101.30	1,135.55	1,170.94	1,224.88	1,262.01	1,286.23	1,346.60	1,388.55
10	12.0	13.0	12.5	16	1,060.61	1,099.27	1,131.51	1,182.38	1,222.66	1,262.69	1,302.05	1,343.43	1,396.40
11	13.0	14.0	13.5	21	1,060.82	1,095.55	1,123.07	1,177.73	1,218.67	1,247.64	1,289.70	1,340.17	1,378.74
12	14.0	15.0	14.4	24	1,044.72	1,077.46	1,107.37	1,163.02	1,199.42	1,233.17	1,270.24	1,321.63	1,368.31
13	15.0	16.0	15.2	10	1,034.73	1,063.40	1,117.10	1,150.04	1,183.06	1,245.71	1,260.07	1,302.31	1,375.95
14	16.0	17.0	16.5	10	1,001.76	1,061.88	1,137.35	1,113.82	1,183.01	1,275.14	1,221.07	1,305.43	1,428.28
15	17.0	18.0	17.4	7	1,002.70	1,038.72	1,074.53	1,116.60	1,157.73	1,200.85	1,230.84	1,280.44	1,336.23
16	18.0	19.0	18.6	13	1,020.16	1,061.81	1,103.82	1,134.40	1,185.34	1,237.56	1,246.31	1,313.17	1,389.02
17	19.0	20.0	19.6	7	1,018.30	1,060.17	1,091.42	1,132.88	1,185.20	1,219.29	1,245.90	1,317.31	1,368.60
18	20.0	21.0	20.3	5	1,046.89	1,063.78	1,081.54	1,166.53	1,188.65	1,211.34	1,287.87	1,320.49	1,350.49
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	22.6	2	1,020.50	1,025.43	1,030.36	1,137.73	1,143.80	1,149.88	1,255.98	1,264.44	1,272.91
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 48. Binned DEL Data for Blade 1 Leadlag Bending

Figure 64. Twenty-year fatigue load spectrum for blade 1 leadlag bending

Figure 65. Azimuth binning for blade 1 leadlag bending

Figure 66. Power spectral density of blade 1 leadlag bending

Figure 67. Capture matrix for blade 2 flap bending

Figure 68. Scatterplot for blade 2 flap bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	194.72	491.17	995.02
2	4.0	5.0	4.8	4	132.81	578.23	1,726.31
3	5.0	6.0	5.5	11	121.76	771.16	2,310.20
4	6.0	7.0	6.5	17	-285.62	979.70	2,081.91
5	7.0	8.0	7.4	15	51.06	1,173.23	2,532.92
6	8.0	9.0	8.4	10	279.96	1,434.87	2,383.40
7	9.0	10.0	9.4	12	533.11	1,568.96	2,468.15
8	10.0	11.0	10.6	10	48.40	1,607.92	2,582.10
9	11.0	12.0	11.4	16	-97.89	1,547.20	2,622.83
10	12.0	13.0	12.5	15	-238.47	1,469.60	2,633.41
11	13.0	14.0	13.6	20	-64.87	1,311.56	2,845.00
12	14.0	15.0	14.4	24	-233.40	1,189.97	2,644.77
13	15.0	16.0	15.2	11	-29.06	1,120.07	2,785.06
14	16.0	17.0	16.5	10	-810.42	1,017.25	2,632.56
15	17.0	18.0	17.4	8	-507.90	928.45	2,497.23
16	18.0	19.0	18.6	13	-1,171.89	855.03	2,535.71
17	19.0	20.0	19.6	7	-1,217.29	805.85	2,440.66
18	20.0	21.0	20.2	4	-1,644.91	764.92	2,277.19
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.6	2	-1,197.47	707.75	2,041.19
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 49. Binned Data for Blade 2 Flap Bending

Figure 69. Time series for the first 60 seconds of blade 2 flap bending

Figure 70. DEL (1 Hz, m=3, 6, 9, 10) for blade 2 flap bending

Figure 71. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 2 flap bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	198.34	198.34	198.34	265.10	265.10	265.10	394.93	394.93	394.93
2	4.0	5.0	4.8	4	223.65	284.56	348.46	299.26	415.02	514.66	439.88	625.36	772.01
3	5.0	6.0	5.5	11	165.67	374.75	535.36	225.15	536.31	753.06	338.69	786.61	1,079.44
4	6.0	7.0	6.5	17	218.67	344.36	559.22	316.91	480.07	785.82	488.60	699.59	1,160.34
5	7.0	8.0	7.4	15	268.78	373.99	600.49	364.15	519.99	855.91	533.60	759.60	1,251.46
6	8.0	9.0	8.4	11	301.83	370.04	500.66	374.08	500.01	728.65	473.57	719.06	1,082.19
7	9.0	10.0	9.5	13	297.45	413.60	537.27	371.13	527.81	696.17	490.66	714.33	984.54
8	10.0	11.0	10.6	10	284.57	494.31	625.79	348.41	631.21	845.84	452.75	847.57	1,258.61
9	11.0	12.0	11.4	16	459.71	574.12	672.35	594.11	745.99	875.50	823.67	1,024.79	1,278.75
10	12.0	13.0	12.5	16	470.11	574.94	744.38	616.25	747.73	972.37	850.98	1,035.10	1,401.62
11	13.0	14.0	13.5	22	506.45	630.08	736.56	681.00	829.77	994.45	951.92	1,153.97	1,398.16
12	14.0	15.0	14.4	24	473.69	654.39	759.28	619.18	849.50	998.08	908.35	1,161.42	1,368.09
13	15.0	16.0	15.2	11	541.83	668.33	828.67	673.11	852.18	1,067.39	887.65	1,138.08	1,452.20
14	16.0	17.0	16.5	10	607.01	788.91	976.11	735.63	987.22	1,288.65	915.51	1,294.66	1,787.21
15	17.0	18.0	17.4	8	682.23	821.35	1,002.42	833.00	1,020.45	1,266.08	1,046.46	1,325.01	1,662.36
16	18.0	19.0	18.6	13	784.94	942.86	1,178.43	957.07	1,165.25	1,445.38	1,204.47	1,505.75	1,867.50
17	19.0	20.0	19.6	7	885.15	1,039.46	1,146.23	1,101.64	1,304.00	1,464.19	1,470.20	1,720.63	1,957.85
18	20.0	21.0	20.2	4	885.50	1,047.14	1,173.04	1,062.70	1,293.99	1,495.72	1,316.36	1,661.46	2,005.34
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	22.6	2	1,031.38	1,096.66	1,161.95	1,248.58	1,342.19	1,435.80	1,562.75	1701.07	1,839.40
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 72. Twenty-year fatigue load spectrum for blade 2 flap bending

Figure 73. Azimuth binning for blade 2 flap bending

Figure 74. Power spectral density of blade 2 flap bending

Blade 2 Leadlag Bending

Figure 75. Capture matrix for blade 2 leadlag bending

Figure 76. Scatterplot for blade 2 leadlag bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-608.01	47.80	791.10
2	4.0	5.0	4.8	4	-622.04	70.53	899.45
3	5.0	6.0	5.5	11	-733.10	94.93	1,217.56
4	6.0	7.0	6.5	17	-754.18	128.96	1,079.48
5	7.0	8.0	7.4	15	-648.73	158.78	1,156.93
6	8.0	9.0	8.4	10	-666.80	209.38	1,159.68
7	9.0	10.0	9.4	12	-814.11	237.76	1,247.94
8	10.0	11.0	10.6	10	-717.51	262.12	1,324.13
9	11.0	12.0	11.4	16	-820.69	235.32	1,422.31
10	12.0	13.0	12.5	15	-865.35	218.92	1,288.61
11	13.0	14.0	13.6	20	-815.81	174.46	1,316.71
12	14.0	15.0	14.4	24	-801.96	156.12	1,351.46
13	15.0	16.0	15.2	11	-874.89	124.32	1,228.60
14	16.0	17.0	16.5	10	-875.29	114.97	1,211.81
15	17.0	18.0	17.4	8	-881.16	103.99	1,154.79
16	18.0	19.0	18.6	13	-924.28	93.92	1,152.68
17	19.0	20.0	19.6	7	-936.19	87.02	1,224.55
18	20.0	21.0	20.2	4	-842.60	92.42	1,094.23
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.6	2	-796.84	101.12	1,031.32
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 51. Binned Data for Blade 2 Leadlag Bending

Figure 77. Time series for the first 60 seconds of blade 2 leadlag bending

Figure 78. DEL (1 Hz, m=3, 6, 9, 10) for blade 2 leadlag bending

Figure 79. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 2 leadlag bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	826.20	826.20	826.20	949.63	949.63	949.63	1,063.16	1,063.16	1,063.16
2	4.0	5.0	4.8	4	824.87	850.75	877.41	948.75	976.22	1,003.78	1,062.13	1,092.72	1,122.46
3	5.0	6.0	5.5	11	836.49	898.89	958.67	958.38	1,025.50	1,093.62	1,069.18	1,146.08	1,237.37
4	6.0	7.0	6.5	17	881.12	948.84	992.21	1,002.32	1,068.80	1,120.75	1,112.44	1,179.08	1,246.84
5	7.0	8.0	7.4	15	929.75	984.70	1,018.08	1,054.10	1,102.29	1,134.58	1,168.27	1,211.37	1,260.32
6	8.0	9.0	8.4	11	1,003.03	1,033.09	1,077.61	1,120.42	1,147.87	1,199.92	1,220.66	1,253.70	1,315.92
7	9.0	10.0	9.5	13	985.37	1,060.23	1,120.52	1,105.79	1,177.91	1,249.93	1,224.32	1,289.37	1,381.07
8	10.0	11.0	10.6	10	1,056.12	1,092.11	1,126.23	1,168.26	1,213.01	1,252.92	1,269.38	1,329.53	1,378.15
9	11.0	12.0	11.4	16	1,033.75	1,086.98	1,133.07	1,152.03	1,210.37	1,259.43	1,268.53	1,333.13	1,402.72
10	12.0	13.0	12.5	16	1,046.13	1,091.93	1,128.42	1,170.82	1,215.72	1,260.10	1,288.26	1,339.25	1,397.53
11	13.0	14.0	13.5	22	1,049.62	1,084.12	1,124.68	1,164.81	1,207.03	1,257.36	1,274.07	1,329.78	1,397.28
12	14.0	15.0	14.4	24	1,034.56	1,063.97	1,110.32	1,147.66	1,184.41	1,238.08	1,255.06	1,305.36	1,371.51
13	15.0	16.0	15.2	11	1,000.14	1,047.27	1,106.55	1,130.16	1,165.79	1,236.75	1,258.55	1,282.98	1,374.81
14	16.0	17.0	16.5	10	975.80	1,047.28	1,121.49	1,085.22	1,167.22	1,255.90	1,191.58	1,290.04	1,402.39
15	17.0	18.0	17.4	8	975.94	1,030.02	1,063.02	1,086.83	1,148.23	1,185.70	1,195.50	1,269.82	1,312.17
16	18.0	19.0	18.6	13	1,008.90	1,050.26	1,082.86	1,122.56	1,171.48	1,209.10	1,235.75	1,296.11	1,340.73
17	19.0	20.0	19.6	7	1,004.47	1,041.50	1,073.41	1,119.42	1,163.34	1,201.58	1,234.93	1,292.34	1,341.98
18	20.0	21.0	20.2	4	1,014.92	1,045.49	1,091.25	1,132.07	1,166.71	1,219.38	1,252.72	1,292.00	1,354.05
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	22.6	2	1,015.95	1,026.83	1,037.70	1,132.21	1,146.38	1,160.56	1,249.17	1,269.49	1,289.81
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 52. Binned DEL Data for Blade 2 Leadlag Bending

Figure 80. Twenty-year fatigue load spectrum for blade 2 leadlag bending

Figure 81. Azimuth binning for blade 2 leadlag bending

Figure 82. Power spectral density of blade 2 leadlag bending

Figure 83. Capture matrix for blade 3 flap bending

Wind Speed (m/s)

Figure 84. Scatterplot for blade 3 flap bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	214.88	506.17	978.65
2	4.0	5.0	4.8	4	125.23	583.64	1,630.30
3	5.0	6.0	5.5	10	128.22	743.47	2,357.58
4	6.0	7.0	6.5	19	-233.71	955.69	2,115.82
5	7.0	8.0	7.3	20	61.57	1,164.62	2,566.86
6	8.0	9.0	8.4	11	-479.02	1,392.52	2,280.36
7	9.0	10.0	9.5	19	443.85	1,544.30	2,576.19
8	10.0	11.0	10.6	14	-527.49	1,578.21	2,497.10
9	11.0	12.0	11.4	23	-527.49	1,530.03	2,816.42
10	12.0	13.0	12.5	20	-318.09	1,444.97	2,605.98
11	13.0	14.0	13.5	25	-335.81	1,319.32	2,760.67
12	14.0	15.0	14.5	28	-251.49	1,186.59	2,676.38
13	15.0	16.0	15.3	13	-118.29	1,117.64	2,632.46
14	16.0	17.0	16.5	10	-582.76	1,028.20	2,773.84
15	17.0	18.0	17.4	7	-583.69	938.27	2,197.43
16	18.0	19.0	18.6	14	-855.72	865.20	2,530.37
17	19.0	20.0	19.6	10	-1,516.41	825.57	2,830.99
18	20.0	21.0	20.4	9	-1,559.22	772.17	2,492.41
19	21.0	22.0	21.9	1	-760.23	633.24	2,084.29
20	22.0	23.0	22.7	3	-1,300.90	666.10	2,158.09
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 53. Binned Data for Blade 3 Flap Bending

Figure 85. Time series for the first 60 seconds of blade 3 flap bending

Figure 86. DEL (1 Hz, m=3, 6, 9, 10) for blade 3 flap bending

Figure 87. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 3 flap bending

Table 54. Binned DEI	. Data for Blade	3 Flap Bending
----------------------	------------------	----------------

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	186.72	186.72	186.72	250.37	250.37	250.37	376.50	376.50	376.50
2	4.0	5.0	4.8	4	215.40	279.69	333.21	282.37	405.48	494.41	410.41	608.16	746.39
3	5.0	6.0	5.5	10	155.28	356.12	548.19	211.14	512.58	767.27	319.62	754.10	1,104.18
4	6.0	7.0	6.5	19	210.74	319.77	559.14	317.54	452.77	797.10	484.88	666.56	1,180.44
5	7.0	8.0	7.3	20	256.45	366.35	612.36	321.84	507.58	872.19	428.44	736.98	1,266.57
6	8.0	9.0	8.4	11	293.53	376.99	492.90	356.41	526.54	805.05	455.22	768.68	1,232.02
7	9.0	10.0	9.5	19	273.67	417.22	563.60	340.01	536.66	735.77	442.13	728.80	1,008.98
8	10.0	11.0	10.6	14	297.98	498.07	631.68	354.93	642.87	921.50	437.87	862.94	1,419.13
9	11.0	12.0	11.4	23	473.20	581.89	685.67	610.40	753.78	1,026.87	847.53	1,026.23	1,552.49
10	12.0	13.0	12.5	20	456.32	571.49	766.00	601.85	747.03	979.38	808.46	1,037.53	1,391.04
11	13.0	14.0	13.5	25	507.62	626.17	733.22	651.83	818.72	1,013.46	882.16	1,129.68	1,489.74
12	14.0	15.0	14.5	28	480.16	660.11	772.77	613.81	859.87	1,051.70	876.42	1,182.77	1,494.19
13	15.0	16.0	15.3	13	558.70	670.64	810.15	697.09	847.43	1,036.19	913.39	1,121.20	1,414.08
14	16.0	17.0	16.5	10	614.26	773.76	982.03	745.06	957.37	1,303.76	939.78	1,234.50	1,812.06
15	17.0	18.0	17.4	7	686.57	798.45	888.85	834.91	991.52	1,112.56	1,047.80	1,286.82	1,492.51
16	18.0	19.0	18.6	14	769.78	939.94	1,176.58	937.56	1,158.73	1,443.24	1,181.82	1,487.76	1,825.11
17	19.0	20.0	19.6	10	845.42	1,048.34	1,148.91	1,036.52	1,317.19	1,481.68	1,340.04	1,746.50	2,003.63
18	20.0	21.0	20.4	9	867.93	1,088.61	1,169.19	1,031.82	1,350.70	1,480.87	1,260.26	1,741.87	2,020.75
19	21.0	22.0	21.9	1	1,003.50	1,003.50	1,003.50	1,231.25	1,231.25	1,231.25	1,573.86	1,573.86	1,573.86
20	22.0	23.0	22.7	3	1,053.70	1,119.83	1,159.57	1,271.10	1,376.47	1,452.41	1,566.44	1,747.85	1,906.80
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 88. Twenty-year fatigue load spectrum for blade 3 flap bending

Figure 89. Azimuth binning for blade 3 flap bending

Figure 90. Power spectral density of blade 3 flap bending

Blade 3 Leadlag Bending

Figure 91. Capture matrix for blade 3 leadlag bending

Figure 92. Scatterplot for blade 3 leadlag bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-576.47	50.25	758.02
2	4.0	5.0	4.8	4	-696.20	46.09	867.38
3	5.0	6.0	5.5	10	-715.70	62.73	1,059.66
4	6.0	7.0	6.5	19	-746.38	111.98	1,122.30
5	7.0	8.0	7.3	20	-748.50	134.79	1,221.23
6	8.0	9.0	8.4	10	-666.14	182.24	1,099.80
7	9.0	10.0	9.5	17	-742.35	214.18	1,173.11
8	10.0	11.0	10.6	12	-751.88	227.12	1,202.89
9	11.0	12.0	11.4	23	-771.93	203.87	1,227.65
10	12.0	13.0	12.5	18	-843.22	171.25	1,203.45
11	13.0	14.0	13.5	22	-872.95	133.63	1,201.68
12	14.0	15.0	14.5	27	-860.08	106.74	1,269.08
13	15.0	16.0	15.3	13	-899.61	79.07	1,157.34
14	16.0	17.0	16.5	10	-961.47	59.34	1,187.14
15	17.0	18.0	17.4	7	-842.69	43.87	1,019.94
16	18.0	19.0	18.6	14	-1,001.77	36.50	1,122.30
17	19.0	20.0	19.6	10	-1,035.62	27.37	1,197.23
18	20.0	21.0	20.4	9	-1,000.04	23.88	1,122.30
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.7	3	-886.98	7.33	1,094.63
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 55. Binned Data for Blade 3 Leadlag Bending

Figure 93. Time series for the first 60 seconds of blade 3 leadlag bending

Figure 94. DEL (1 Hz, m=3, 6, 9, 10) for blade 3 leadlag bending

Figure 95. Binned DEL (1 Hz, m=3, 6, 9, 10) for blade 3 leadlag bending

Table 56. Binned DEL	Data for Blade 3	Leadlag Bending
----------------------	------------------	-----------------

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	805.44	805.44	805.44	926.03	926.03	926.03	1,037.24	1,037.24	1,037.24
2	4.0	5.0	4.8	4	807.04	835.88	863.97	928.39	959.74	989.46	1,039.90	1,075.64	1,108.81
3	5.0	6.0	5.5	10	823.38	880.72	945.96	943.33	1,005.28	1,071.72	1,052.64	1,123.13	1,201.17
4	6.0	7.0	6.5	19	866.45	941.13	977.40	986.21	1,060.48	1,099.80	1,095.47	1,170.96	1,218.46
5	7.0	8.0	7.3	20	924.86	981.29	1,017.25	1,048.83	1,098.44	1,131.90	1,162.81	1,208.16	1,265.01
6	8.0	9.0	8.4	11	984.37	1,020.79	1,061.05	1,099.79	1,133.75	1,180.55	1,210.84	1,237.34	1,292.50
7	9.0	10.0	9.5	19	946.87	1,043.47	1,088.64	1,068.84	1,159.90	1,211.81	1,192.17	1,269.97	1,332.69
8	10.0	11.0	10.6	14	982.67	1,057.91	1,095.22	1,111.37	1,177.81	1,218.26	1,248.38	1,294.59	1,344.68
9	11.0	12.0	11.4	23	994.62	1,070.53	1,114.65	1,129.09	1,190.72	1,238.11	1,238.72	1,307.95	1,357.92
10	12.0	13.0	12.5	20	967.56	1,066.84	1,106.83	1,091.99	1,188.05	1,233.09	1,224.10	1,308.72	1,366.30
11	13.0	14.0	13.5	25	961.85	1,062.10	1,104.29	1,091.53	1,183.44	1,231.97	1,238.02	1,305.36	1,364.84
12	14.0	15.0	14.5	28	941.04	1,039.50	1,088.48	1,067.18	1,159.00	1,213.98	1,212.59	1,281.17	1,362.82
13	15.0	16.0	15.3	13	1,003.19	1,027.04	1,050.64	1,118.63	1,143.58	1,169.84	1,226.00	1,261.18	1,291.34
14	16.0	17.0	16.5	10	935.79	1,022.82	1,114.40	1,047.03	1,141.15	1,248.07	1,156.12	1,262.51	1,393.07
15	17.0	18.0	17.4	7	938.44	997.63	1,031.70	1,050.63	1,111.89	1,149.54	1,161.03	1,226.23	1,268.19
16	18.0	19.0	18.6	14	978.73	1,020.25	1,058.17	1,088.01	1,139.15	1,187.79	1,194.14	1,262.92	1,335.45
17	19.0	20.0	19.6	10	972.28	1,025.10	1,063.51	1,081.96	1,149.05	1,199.18	1,190.13	1,285.25	1,355.85
18	20.0	21.0	20.4	9	1,008.25	1,028.64	1,053.00	1,128.46	1,153.19	1,183.10	1,245.46	1,291.01	1,333.75
19	21.0	22.0	21.9	1	948.07	948.07	948.07	1,064.64	1,064.64	1,064.64	1,186.81	1,186.81	1,186.81
20	22.0	23.0	22.7	3	953.30	978.57	1,011.40	1,081.20	1,097.66	1,129.95	1,190.36	1,225.30	1,253.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 96. Twenty-year fatigue load spectrum for blade 3 leadlag bending

Figure 97. Azimuth binning for blade 3 leadlag bending

Figure 98. Power spectral density of blade 3 leadlag bending

Figure 99. Capture matrix for main shaft bending 0

Wind Speed (m/s)

Figure 100. Scatterplot for main shaft bending 0

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-419.62	22.57	452.34
2	4.0	5.0	4.8	4	-495.97	12.50	546.46
3	5.0	6.0	5.5	9	-589.37	5.25	708.78
4	6.0	7.0	6.5	10	-762.01	4.09	675.61
5	7.0	8.0	7.3	3	-661.75	11.30	600.15
6	8.0	9.0	8.7	1	-778.09	5.15	561.43
7	9.0	10.0	9.5	2	-641.43	12.32	624.99
8	10.0	11.0	10.6	4	-790.64	6.47	733.04
9	11.0	12.0	11.6	3	-760.36	-1.44	625.15
10	12.0	13.0	12.4	8	-828.99	0.64	825.45
11	13.0	14.0	13.6	7	-778.03	1.38	771.15
12	14.0	15.0	14.5	13	-746.17	3.05	778.51
13	15.0	16.0	15.1	2	-738.59	5.17	647.97
14	16.0	17.0	16.3	3	-948.08	7.46	745.24
15	17.0	18.0	17.4	4	-921.30	0.61	796.44
16	18.0	19.0	18.6	6	-890.07	4.31	821.98
17	19.0	20.0	19.7	2	-916.19	14.48	869.30
18	20.0	21.0	0.0	0	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 57. Binned Data for Main Shaft Bending 0

Figure 101. Time series for the first 60 seconds of main shaft bending 0

Figure 102. DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 0

Figure 103. Binned DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 0

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	461.75	461.75	461.75	533.78	533.78	533.78	604.45	604.45	604.45
2	4.0	5.0	4.8	4	472.97	490.26	510.90	547.26	568.73	591.75	625.33	650.52	676.32
3	5.0	6.0	5.5	9	451.66	505.94	576.22	522.58	587.20	665.14	594.10	677.58	770.76
4	6.0	7.0	6.5	10	423.84	527.79	636.45	484.43	608.28	751.95	542.24	699.45	894.90
5	7.0	8.0	7.3	3	551.89	558.01	569.13	632.62	641.85	655.39	722.22	736.12	755.67
6	8.0	9.0	8.7	1	571.39	571.39	571.39	660.91	660.91	660.91	780.69	780.69	780.69
7	9.0	10.0	9.5	2	564.40	601.41	638.42	645.44	683.77	722.10	745.10	780.36	815.62
8	10.0	11.0	10.6	4	614.53	625.09	642.01	701.49	723.32	747.09	807.79	850.32	883.06
9	11.0	12.0	11.6	3	490.37	564.30	631.66	563.38	648.23	723.13	650.25	752.43	835.77
10	12.0	13.0	12.4	8	518.26	616.97	711.13	591.35	716.81	823.73	679.35	848.23	972.92
11	13.0	14.0	13.6	7	563.02	599.64	655.64	654.77	697.16	776.55	770.07	825.95	929.38
12	14.0	15.0	14.5	13	530.52	584.48	658.80	605.55	677.82	768.15	693.58	799.27	905.33
13	15.0	16.0	15.1	2	572.70	579.72	586.74	674.22	675.36	676.50	782.76	803.33	823.89
14	16.0	17.0	16.3	3	547.98	609.61	672.52	632.69	712.64	794.76	743.65	850.06	966.35
15	17.0	18.0	17.4	4	563.08	595.92	642.96	650.66	699.16	761.63	761.83	840.80	939.53
16	18.0	19.0	18.6	6	530.07	596.03	701.23	617.14	699.45	827.67	729.33	838.14	990.95
17	19.0	20.0	19.7	2	625.51	677.57	729.64	733.82	802.55	871.28	877.72	971.33	1,064.95
18	20.0	21.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 104. Twenty-year fatigue load spectrum for main shaft bending 0

Figure 105. Azimuth binning for main shaft bending 0

Figure 106. Power spectral density of main shaft bending 0

Wind Speed (m/s)

Figure 107. Capture matrix for main shaft bending 90

Figure 108. Scatterplot for main shaft bending 90

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-391.26	14.29	420.62
2	4.0	5.0	4.8	4	-504.91	15.84	524.55
3	5.0	6.0	5.5	9	-614.11	12.25	694.07
4	6.0	7.0	6.5	10	-724.61	17.70	740.08
5	7.0	8.0	7.3	3	-689.21	15.65	565.04
6	8.0	9.0	8.7	1	-684.05	18.03	672.27
7	9.0	10.0	9.5	2	-578.47	21.83	605.77
8	10.0	11.0	10.6	4	-721.68	20.32	741.82
9	11.0	12.0	11.6	3	-677.05	23.24	739.16
10	12.0	13.0	12.4	8	-792.06	24.28	880.33
11	13.0	14.0	13.6	7	-720.22	26.71	806.07
12	14.0	15.0	14.5	13	-740.92	28.36	853.50
13	15.0	16.0	15.1	2	-738.57	29.73	753.81
14	16.0	17.0	16.3	3	-715.72	30.23	856.37
15	17.0	18.0	17.4	4	-759.76	30.60	878.91
16	18.0	19.0	18.6	6	-780.53	31.48	948.90
17	19.0	20.0	19.7	2	-948.46	32.12	888.78
18	20.0	21.0	0.0	0	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 59. Binned Data for Main Shaft Bending 90

Figure 109. Time series for the first 60 seconds of main shaft bending 90

Figure 110. DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 90

Figure 111. Binned DEL (1 Hz, m=3, 6, 9, 10) for main shaft bending 90

Table 60. Binned DEI	. Data for Main	Shaft Bending 90
----------------------	-----------------	------------------

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	451.68	451.68	451.68	521.80	521.80	521.80	589.91	589.91	589.91
2	4.0	5.0	4.8	4	467.14	481.58	502.43	540.78	558.38	582.00	617.45	637.71	665.32
3	5.0	6.0	5.5	9	447.90	495.81	563.04	518.92	574.43	649.02	589.42	661.56	750.30
4	6.0	7.0	6.5	10	414.56	518.82	630.19	473.84	597.65	744.67	530.71	686.24	887.39
5	7.0	8.0	7.3	3	540.52	547.50	560.66	616.58	629.32	645.30	700.46	722.50	742.58
6	8.0	9.0	8.7	1	565.77	565.77	565.77	658.82	658.82	658.82	793.82	793.82	793.82
7	9.0	10.0	9.5	2	557.57	585.17	612.77	636.79	664.40	692.02	731.44	755.39	779.35
8	10.0	11.0	10.6	4	603.97	616.38	638.16	688.15	713.03	744.88	786.65	834.89	881.42
9	11.0	12.0	11.6	3	481.83	551.29	616.34	553.34	633.79	710.85	638.26	737.18	837.54
10	12.0	13.0	12.4	8	506.19	604.56	704.70	576.57	701.88	816.07	663.40	831.03	959.44
11	13.0	14.0	13.6	7	552.35	587.62	635.79	640.66	681.34	752.06	745.33	801.09	903.87
12	14.0	15.0	14.5	13	511.65	573.27	644.14	586.05	664.59	746.93	678.98	786.64	873.14
13	15.0	16.0	15.1	2	565.48	570.17	574.86	661.37	665.16	668.94	774.14	802.57	831.00
14	16.0	17.0	16.3	3	544.64	597.07	650.21	630.30	697.56	760.84	742.95	831.12	907.73
15	17.0	18.0	17.4	4	553.26	593.92	647.00	639.56	696.06	763.72	746.31	835.32	931.74
16	18.0	19.0	18.6	6	527.81	592.91	695.14	619.08	699.94	823.95	745.72	850.01	993.59
17	19.0	20.0	19.7	2	603.09	664.08	725.08	706.68	786.35	866.02	845.15	957.17	1,069.19
18	20.0	21.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 112. Twenty-year fatigue load spectrum for main shaft bending 90

Figure 113. Azimuth binning for main shaft bending 90

Figure 114. Power spectral density of main shaft bending 90

Main Shaft Torque

Figure 115. Capture matrix for main shaft torque

Figure 116. Scatterplot for main shaft torque

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-163.83	-70.60	113.00
2	4.0	5.0	4.8	4	-297.59	-81.19	295.53
3	5.0	6.0	5.5	10	-299.33	-22.06	860.62
4	6.0	7.0	6.5	11	-201.51	71.79	743.70
5	7.0	8.0	7.3	3	-251.20	151.00	1,225.76
6	8.0	9.0	8.7	1	-160.51	447.27	965.45
7	9.0	10.0	9.5	2	45.66	473.86	1,158.36
8	10.0	11.0	10.6	4	49.68	600.92	1,264.56
9	11.0	12.0	11.7	4	-96.95	698.45	1,157.72
10	12.0	13.0	12.4	8	36.35	772.23	1,227.08
11	13.0	14.0	13.6	7	138.15	799.15	1,180.11
12	14.0	15.0	14.5	13	281.78	820.86	1,197.06
13	15.0	16.0	15.1	2	541.05	837.33	1,166.29
14	16.0	17.0	16.3	3	418.39	850.52	1,310.35
15	17.0	18.0	17.4	5	445.63	824.25	1,232.10
16	18.0	19.0	18.6	6	398.15	835.33	1,298.37
17	19.0	20.0	19.7	2	548.99	896.87	1,300.80
18	20.0	21.0	0.0	0	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 61. Binned Data for Main Shaft Torque

Figure 117. Time series for first 60 seconds of main shaft torque

Figure 118. DEL (1 Hz, m=3, 6, 9, 10) for main shaft torque

Figure 119. Binned DEL (1 Hz, m=3, 6, 9, 10) for main shaft torque

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	52.92	52.92	52.92	85.43	85.43	85.43	136.23	136.23	136.23
2	4.0	5.0	4.8	4	56.43	80.43	93.51	90.42	126.65	152.29	143.80	196.75	233.15
3	5.0	6.0	5.5	10	45.51	121.02	208.39	71.40	191.87	352.57	113.71	292.73	540.08
4	6.0	7.0	6.5	11	65.70	118.43	201.85	95.79	181.85	324.71	142.55	277.36	491.95
5	7.0	8.0	7.3	3	110.52	186.05	265.18	162.35	299.89	440.49	245.92	470.50	695.42
6	8.0	9.0	8.7	1	240.28	240.28	240.28	369.07	369.07	369.07	561.53	561.53	561.53
7	9.0	10.0	9.5	2	218.24	249.66	281.08	301.19	360.03	418.87	420.40	510.51	600.63
8	10.0	11.0	10.6	4	262.74	282.38	304.90	376.83	416.02	451.77	554.90	605.92	650.97
9	11.0	12.0	11.7	4	251.19	264.90	285.38	360.47	390.34	416.20	527.71	571.41	636.53
10	12.0	13.0	12.4	8	199.35	243.79	286.92	272.37	342.97	399.39	385.77	490.83	574.24
11	13.0	14.0	13.6	7	215.91	236.25	250.87	280.01	322.54	358.76	376.23	452.45	523.21
12	14.0	15.0	14.5	13	191.54	212.88	237.85	251.74	281.16	320.47	325.35	378.74	460.47
13	15.0	16.0	15.1	2	210.01	213.09	216.16	273.84	276.31	278.79	358.73	360.20	361.67
14	16.0	17.0	16.3	3	211.33	230.23	249.73	277.06	303.24	332.21	358.80	407.46	457.31
15	17.0	18.0	17.4	5	205.92	228.15	260.77	270.58	295.40	332.03	351.18	383.45	426.04
16	18.0	19.0	18.6	6	205.84	234.56	286.62	273.12	305.51	366.46	361.23	394.54	469.21
17	19.0	20.0	19.7	2	257.14	267.33	277.51	325.13	337.26	349.40	411.66	428.27	444.88
18	20.0	21.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 62. Binned DEL Data for Main Shaft Torque

Figure 120. Twenty-year fatigue load spectrum for main shaft torque

Figure 121. Azimuth binning for main shaft torque

Figure 122. Power spectral density of main shaft torque

Tower-Top Normal Bending

Wind Speed (m/s)

Figure 124. Scatterplot for tower-top normal bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-1,149.02	-716.28	-350.83
2	4.0	5.0	4.8	4	-1,162.59	-660.82	68.41
3	5.0	6.0	5.5	11	-1,281.65	-583.43	937.82
4	6.0	7.0	6.4	15	-1,230.48	-476.05	243.51
5	7.0	8.0	7.3	9	-1,369.73	-424.89	696.37
6	8.0	9.0	8.4	6	-1,051.03	-285.59	441.34
7	9.0	10.0	9.4	13	-1,109.53	-277.42	679.54
8	10.0	11.0	10.6	10	-1,107.21	-211.04	735.18
9	11.0	12.0	11.4	16	-1,499.59	-181.79	1,320.04
10	12.0	13.0	12.5	13	-1,024.09	-195.90	803.47
11	13.0	14.0	13.6	17	-1,182.11	-222.13	1,066.83
12	14.0	15.0	14.4	23	-1,225.21	-231.04	722.32
13	15.0	16.0	15.1	9	-1,177.88	-242.16	835.63
14	16.0	17.0	16.5	8	-1,199.30	-203.89	1,170.32
15	17.0	18.0	17.4	8	-1,303.56	-173.17	944.11
16	18.0	19.0	18.7	10	-1,384.30	-194.29	1,380.01
17	19.0	20.0	19.6	6	-1,450.50	-217.58	1,602.27
18	20.0	21.0	20.4	7	-1,478.13	-155.51	1,737.26
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 63. Binned Data for Tower-Top Normal Bending

Figure 125. Time series for the first 60 seconds of tower-top normal bending

Figure 126. DEL (1 Hz, m=3, 6, 9, 10) for tower-top normal bending

Figure 127. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-top normal bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	319.55	319.55	319.55	338.47	338.47	338.47	413.72	413.72	413.72
2	4.0	5.0	4.8	4	215.95	275.74	350.51	268.76	331.54	381.14	362.81	449.28	497.01
3	5.0	6.0	5.5	11	92.56	315.09	582.96	109.58	401.48	777.36	152.84	552.86	1,037.97
4	6.0	7.0	6.4	15	145.08	258.15	424.37	170.31	324.40	552.41	232.73	450.82	766.64
5	7.0	8.0	7.3	9	204.63	329.58	538.63	251.07	428.46	708.30	335.33	601.54	1,030.49
6	8.0	9.0	8.4	6	210.38	303.97	368.04	303.16	402.45	473.28	459.89	572.61	655.16
7	9.0	10.0	9.4	13	256.53	338.95	482.87	306.24	426.53	645.51	399.60	578.86	927.31
8	10.0	11.0	10.6	10	293.65	430.02	625.63	360.99	533.09	755.67	485.27	712.82	986.75
9	11.0	12.0	11.4	16	329.18	442.55	518.43	400.64	572.29	753.30	526.95	791.47	1,130.21
10	12.0	13.0	12.5	13	362.93	455.83	523.77	442.66	560.91	659.64	573.72	745.25	918.74
11	13.0	14.0	13.6	17	390.59	470.71	574.32	476.83	587.89	751.04	630.50	791.20	1,072.33
12	14.0	15.0	14.4	23	397.72	480.07	546.84	485.85	595.59	691.19	635.56	789.71	935.13
13	15.0	16.0	15.1	9	459.61	488.55	518.38	565.98	622.89	692.63	758.05	853.42	985.77
14	16.0	17.0	16.5	8	505.05	573.02	717.41	607.22	723.86	910.32	782.61	989.97	1,245.01
15	17.0	18.0	17.4	8	450.15	579.27	699.17	560.61	712.34	856.84	759.88	935.82	1,101.98
16	18.0	19.0	18.7	10	534.96	643.06	806.53	651.86	802.83	1,050.63	857.21	1,065.20	1,447.78
17	19.0	20.0	19.6	6	609.86	749.75	842.42	772.44	969.10	1,092.84	1,063.22	1,327.31	1,485.24
18	20.0	21.0	20.4	7	620.33	805.43	903.27	768.34	1,042.90	1,223.88	1,021.50	1,416.92	1,717.06
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 64. Binned DEL Data for Tower-Top Normal Bending

Figure 128. Twenty-year fatigue load spectrum for tower-top normal bending

Figure 129. Power spectral density of tower-top normal bending

Tower-Top Lateral Bending

Figure 130. Capture matrix for tower-top lateral bending

Wind Speed (m/s)

Figure 131. Scatterplot for tower-top lateral bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-184.53	255.38	530.89
2	4.0	5.0	4.8	4	-39.03	260.29	551.35
3	5.0	6.0	5.5	11	-148.78	272.90	1,006.87
4	6.0	7.0	6.4	14	59.15	359.12	973.37
5	7.0	8.0	7.3	9	-94.89	365.01	1,427.84
6	8.0	9.0	8.5	4	107.92	539.89	1,055.76
7	9.0	10.0	9.4	13	164.80	630.17	1,374.08
8	10.0	11.0	10.6	9	194.09	738.89	1,402.28
9	11.0	12.0	11.4	13	40.70	804.49	1,311.24
10	12.0	13.0	12.5	11	296.39	881.64	1,298.65
11	13.0	14.0	13.5	19	132.95	905.48	1,337.91
12	14.0	15.0	14.4	23	406.13	917.22	1,372.41
13	15.0	16.0	15.1	11	427.10	921.73	1,506.65
14	16.0	17.0	16.5	8	447.65	902.78	1,348.78
15	17.0	18.0	17.4	8	442.36	863.49	1,700.37
16	18.0	19.0	18.7	9	446.12	914.63	1,522.32
17	19.0	20.0	19.6	6	439.45	930.73	1,455.81
18	20.0	21.0	20.5	5	-264.34	854.58	1,443.12
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 65. Binned Data for Tower-Top Lateral Bending

Figure 132. Time series for the first 60 seconds of tower-top lateral bending

Figure 133. DEL (1 Hz, m=3, 6, 9, 10) for tower-top lateral bending

Figure 134. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-top lateral bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	243.82	243.82	243.82	265.77	265.77	265.77	357.69	357.69	357.69
2	4.0	5.0	4.8	4	104.68	163.41	237.11	138.15	187.53	253.53	198.62	251.52	315.99
3	5.0	6.0	5.5	11	70.72	150.39	274.92	88.89	196.20	368.17	138.41	288.14	569.65
4	6.0	7.0	6.4	14	80.82	160.05	274.28	99.96	215.80	364.19	153.96	305.64	461.28
5	7.0	8.0	7.3	9	124.45	180.90	280.81	179.84	279.99	470.22	277.74	428.92	749.46
6	8.0	9.0	8.5	4	166.08	183.32	198.63	248.78	269.82	298.03	373.16	399.05	444.78
7	9.0	10.0	9.4	13	132.54	182.69	246.32	178.19	262.87	379.58	262.14	385.92	587.95
8	10.0	11.0	10.6	9	178.34	238.88	297.12	254.17	339.56	416.74	365.51	495.87	615.04
9	11.0	12.0	11.4	13	203.54	230.18	245.30	287.12	326.43	399.64	409.65	474.42	611.82
10	12.0	13.0	12.5	11	168.11	220.46	258.76	228.69	297.39	351.49	322.46	418.27	496.85
11	13.0	14.0	13.5	19	180.77	220.61	269.87	229.31	287.15	369.14	305.43	393.02	521.43
12	14.0	15.0	14.4	23	188.81	215.88	241.35	235.72	277.15	315.01	301.15	373.57	443.82
13	15.0	16.0	15.1	11	208.17	225.65	268.61	257.03	291.16	369.49	330.54	394.72	533.75
14	16.0	17.0	16.5	8	210.47	237.08	276.02	266.63	297.08	335.00	341.19	386.21	426.91
15	17.0	18.0	17.4	8	181.63	237.76	292.07	237.19	307.61	402.94	317.10	410.91	610.83
16	18.0	19.0	18.7	9	219.76	264.93	337.74	275.50	333.98	427.86	358.72	437.94	578.62
17	19.0	20.0	19.6	6	227.11	311.71	355.54	286.04	384.06	428.44	366.32	492.29	540.76
18	20.0	21.0	20.5	5	277.02	347.49	382.69	346.21	463.93	514.11	447.99	641.33	777.17
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 66. Binned DEL Data for Tower-Top Lateral Bending

Figure 135. Twenty-year fatigue load spectrum for tower-top lateral bending

Figure 136. Power spectral density of tower-top lateral bending

Tower-Top Torque

Wind Speed (m/s)

Figure 137. Capture matrix for tower-top torque

Figure 138. Scatterplot for tower-top torque

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-356.57	-71.94	263.82
2	4.0	5.0	4.8	4	-546.97	-19.57	401.35
3	5.0	6.0	5.5	11	-868.08	-25.85	685.55
4	6.0	7.0	6.5	18	-648.75	-36.43	697.05
5	7.0	8.0	7.3	10	-825.02	-17.74	1,029.92
6	8.0	9.0	8.4	6	-587.75	3.39	929.04
7	9.0	10.0	9.5	16	-1,900.59	-11.50	688.31
8	10.0	11.0	10.6	11	-933.12	7.80	904.04
9	11.0	12.0	11.4	19	-1,177.87	-10.43	1,626.87
10	12.0	13.0	12.5	18	-841.47	5.26	945.90
11	13.0	14.0	13.5	22	-1,107.94	1.08	986.10
12	14.0	15.0	14.3	22	-1,045.35	28.97	1,243.75
13	15.0	16.0	15.3	11	-1,037.72	-5.77	981.68
14	16.0	17.0	16.5	10	-1,275.80	11.77	1,291.35
15	17.0	18.0	17.4	7	-1,415.25	-15.42	1,144.16
16	18.0	19.0	18.6	15	-1,388.47	30.15	1,389.20
17	19.0	20.0	19.5	8	-1,675.66	12.00	1,536.01
18	20.0	21.0	20.4	7	-2,054.04	22.87	1,397.90
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	22.7	1	-1,287.86	12.37	1,269.62
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 67. Binned Data for Tower-Top Torque

Figure 139. Time series for the first 60 seconds of tower-top torque

Figure 140. DEL (1 Hz, m=3, 6, 9, 10) for tower-top torque

Figure 141. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-top torque

Table 68	. Binned DEL	. Data for	Tower-Top	Torque
----------	--------------	------------	------------------	--------

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	215.48	215.48	215.48	240.09	240.09	240.09	312.78	312.78	312.78
2	4.0	5.0	4.8	4	241.55	263.98	305.99	277.47	318.46	393.25	363.17	417.10	530.53
3	5.0	6.0	5.5	11	128.40	309.59	452.04	152.86	388.07	597.33	193.34	518.91	804.50
4	6.0	7.0	6.5	18	186.16	268.71	431.55	208.78	325.38	514.46	247.95	423.23	635.65
5	7.0	8.0	7.3	10	213.77	335.57	469.36	248.87	412.99	636.66	308.32	544.46	929.79
6	8.0	9.0	8.4	6	229.39	322.05	388.53	263.19	397.50	497.63	319.70	529.46	700.16
7	9.0	10.0	9.5	16	264.11	374.72	488.74	316.21	478.48	781.35	393.99	646.40	1,212.25
8	10.0	11.0	10.6	11	259.26	402.48	523.39	309.42	488.89	646.48	389.66	642.02	862.24
9	11.0	12.0	11.4	19	408.58	471.72	552.36	494.03	595.01	727.71	629.06	806.53	1,103.75
10	12.0	13.0	12.5	18	379.34	471.47	612.78	448.36	565.77	735.18	558.10	729.37	959.28
11	13.0	14.0	13.5	22	385.26	490.68	559.92	471.11	599.55	688.47	628.72	795.40	932.65
12	14.0	15.0	14.3	22	375.66	507.74	596.90	455.21	623.52	742.76	595.18	823.92	1,043.12
13	15.0	16.0	15.3	11	457.86	524.74	593.42	557.79	649.54	738.23	701.55	861.21	991.38
14	16.0	17.0	16.5	10	478.89	610.94	737.51	571.32	748.17	922.34	728.05	986.26	1,252.13
15	17.0	18.0	17.4	7	498.36	681.70	828.92	593.99	846.76	1,028.42	760.37	1,123.78	1,361.00
16	18.0	19.0	18.6	15	590.35	728.03	871.14	722.27	897.68	1,093.56	946.89	1,183.42	1,454.30
17	19.0	20.0	19.5	8	707.20	822.14	897.45	906.37	1,043.18	1,162.12	1,247.21	1,420.07	1,609.29
18	20.0	21.0	20.4	7	676.68	897.18	1,006.01	820.02	1,136.56	1,304.21	1,063.22	1,530.26	1,795.85
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	22.7	1	844.87	844.87	844.87	1,060.92	1,060.92	1,060.92	1,413.01	1,413.01	1,413.01
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 142. Twenty-year fatigue load spectrum for tower-top torque

Figure 143. Power spectral density of tower-top torque

Tower-Base Normal Bending

Figure 145. Scatterplot for tower-base normal bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	328.41	2,140.26	5,318.86
2	4.0	5.0	4.8	4	463.88	2,972.27	9,897.02
3	5.0	6.0	5.5	11	-121.15	4,410.42	14,828.62
4	6.0	7.0	6.5	15	-1,019.57	6,254.84	13,838.58
5	7.0	8.0	7.3	7	-99.06	7,400.05	16,327.88
6	8.0	9.0	8.3	9	568.07	10,055.18	15,934.91
7	9.0	10.0	9.5	16	3,221.44	11,368.53	19,109.44
8	10.0	11.0	10.6	11	2,147.80	11,681.87	16,833.23
9	11.0	12.0	11.4	20	2,459.26	11,539.41	17,342.28
10	12.0	13.0	12.5	13	1,035.51	11,181.80	18,195.95
11	13.0	14.0	13.5	21	1,336.56	10,108.96	16,517.02
12	14.0	15.0	14.5	22	3,150.80	9,339.03	19,924.30
13	15.0	16.0	15.3	11	1,508.94	8,770.67	16,317.71
14	16.0	17.0	16.5	8	-2,792.49	8,510.48	18,535.56
15	17.0	18.0	17.5	9	1,508.58	8,042.16	16,339.34
16	18.0	19.0	18.6	16	-3,249.59	7,711.00	16,728.31
17	19.0	20.0	19.6	7	-3,383.85	7,444.25	16,726.79
18	20.0	21.0	20.4	5	-2,483.22	7,425.14	15,454.35
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 69. Binned Data for Tower-Base Normal Bending

Figure 146. Time series for the first 60 seconds of tower-base normal bending

Figure 147. DEL (1 Hz, m=3, 6, 9, 10) for tower-base normal bending

Figure 148. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-base normal bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	982.85	982.85	982.85	1,542.15	1,542.15	1,542.15	2,455.94	2,455.94	2,455.94
2	4.0	5.0	4.8	4	1,088.53	1,544.80	1,800.62	1,786.06	2,529.14	3,011.95	2,850.35	3,941.07	4,612.85
3	5.0	6.0	5.5	11	764.83	2,048.36	2,768.33	1,247.09	3,341.53	4,675.41	1,995.41	5,118.62	7,186.18
4	6.0	7.0	6.5	15	1,342.99	1,928.07	3,066.79	2,276.08	3,157.82	4,981.71	3,497.55	4,842.39	7,549.58
5	7.0	8.0	7.3	7	1,497.81	2,295.38	3,385.79	2,373.36	3,670.89	5,451.48	3,565.05	5,585.55	8,266.57
6	8.0	9.0	8.3	9	1,501.41	2,250.36	3,264.76	2,415.90	3,670.51	5,085.38	3,668.31	5,606.82	7,417.26
7	9.0	10.0	9.5	16	1,671.75	2,583.79	3,444.00	2,301.12	3,904.94	5,542.17	3,253.56	5,739.54	8,291.05
8	10.0	11.0	10.6	11	1,907.08	2,691.54	3,697.87	2,581.24	3,794.64	5,388.55	3,645.25	5,352.32	7,355.49
9	11.0	12.0	11.4	20	1,990.93	2,590.24	3,268.41	2,707.10	3,652.01	4,605.94	3,805.36	5,195.03	6,839.90
10	12.0	13.0	12.5	13	2,120.43	2,653.91	3,453.19	2,974.20	3,780.01	5,162.06	4,216.88	5,428.43	7,974.30
11	13.0	14.0	13.5	21	2,263.85	2,867.49	3,441.29	3,170.92	4,031.29	5,005.46	4,474.70	5,712.41	7,224.84
12	14.0	15.0	14.5	22	2,249.19	3,045.19	3,527.61	3,267.02	4,321.51	5,394.26	4,798.16	6,178.61	8,125.16
13	15.0	16.0	15.3	11	2,405.11	2,747.55	3,285.31	3,222.06	3,754.56	4,729.53	4,431.66	5,246.56	6,931.32
14	16.0	17.0	16.5	8	2,832.07	3,847.70	4,892.36	3,903.90	5,408.58	7,236.35	5,546.02	7,752.63	10,740.38
15	17.0	18.0	17.5	9	2,531.58	3,765.16	4,633.93	3,391.04	4,906.75	5,974.93	4,710.37	6,536.39	7,883.62
16	18.0	19.0	18.6	16	3,158.43	4,274.78	5,202.49	4,227.16	5,585.17	7,135.85	5,515.10	7,513.96	10,084.94
17	19.0	20.0	19.6	7	3,704.23	4,935.17	5,651.24	4,828.69	6,495.08	7,680.16	6,552.56	8,734.33	10,649.64
18	20.0	21.0	20.4	5	3,742.33	4,970.87	5,662.76	4,846.39	6,325.36	7,250.68	6,373.76	8,252.54	9,533.79
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 70. Binned DEL Data for Tower-Base Normal Bending

Figure 149. Twenty-year fatigue load spectrum for tower-base normal bending

Figure 150. Power spectral density of tower-base normal bending

Figure 151. Capture matrix for tower-base lateral bending

Figure 152. Scatterplot for tower-base lateral bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-884.65	-33.92	876.57
2	4.0	5.0	4.8	4	-1,576.01	139.05	1,564.84
3	5.0	6.0	5.5	11	-1,708.72	138.51	2,591.90
4	6.0	7.0	6.5	9	-2,027.95	88.04	1,689.71
5	7.0	8.0	7.3	3	-2,036.28	45.96	5,390.45
6	8.0	9.0	8.5	2	-2,582.85	-242.90	2,150.12
7	9.0	10.0	9.3	5	-2,423.31	-101.59	2,570.20
8	10.0	11.0	10.6	6	-2,857.02	120.19	3,466.78
9	11.0	12.0	11.6	5	-2,189.41	417.63	3,622.78
10	12.0	13.0	12.5	9	-2,830.91	385.97	3,526.11
11	13.0	14.0	13.6	15	-2,830.46	479.45	3,521.28
12	14.0	15.0	14.4	15	-3,419.75	437.19	4,382.73
13	15.0	16.0	15.1	8	-3,187.61	468.08	3,989.09
14	16.0	17.0	16.4	6	-2,562.67	820.09	5,531.17
15	17.0	18.0	17.3	6	-3,944.66	1,156.85	5,852.17
16	18.0	19.0	18.7	9	-3,829.99	1,262.19	9,547.81
17	19.0	20.0	19.7	4	-5,448.96	1,134.72	7,721.29
18	20.0	21.0	20.0	1	-3,383.09	874.39	4,737.94
19	21.0	22.0	0.0	0	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 71. Binned Data for Tower-Base Lateral Bending

Figure 153. Time series for the first 60 seconds of tower-base lateral bending

Figure 154. DEL (1 Hz, m=3, 6, 9, 10) for tower-base lateral bending

Figure 155. Binned DEL (1 Hz, m=3, 6, 9, 10) for tower-base lateral bending

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Del (m=3)	Mean of Del (m=3)	Max of Del (m=3)	Min of Del (m=6)	Mean of Del (m=6)	Max of Del (m=6)	Min of Del (m=9)	Mean of Del (m=9)	Max of Del (m=9)
1	3.0	4.0	4.0	1	1,071.06	1,071.06	1,071.06	1,021.02	1,021.02	1,021.02	1,093.34	1,093.34	1,093.34
2	4.0	5.0	4.8	4	1,126.44	1,264.46	1,444.77	1,110.95	1,310.92	1,565.29	1,237.89	1,499.89	1,809.92
3	5.0	6.0	5.5	11	1,111.78	1,312.71	1,498.69	1,080.98	1,377.38	1,642.50	1,199.90	1,636.21	2,054.30
4	6.0	7.0	6.5	9	1,224.88	1,400.60	1,504.25	1,157.91	1,424.96	1,576.27	1,214.92	1,622.10	1,816.87
5	7.0	8.0	7.3	3	1,645.58	1,715.32	1,763.25	1,800.75	2,089.95	2,467.09	2,178.05	2,766.38	3,729.85
6	8.0	9.0	8.5	2	1,752.25	1,859.88	1,967.50	1,874.59	1,998.67	2,122.76	2,211.36	2,406.46	2,601.55
7	9.0	10.0	9.3	5	1,850.05	1,926.35	1,980.69	1,907.78	2,006.08	2,128.13	2,183.85	2,318.45	2,512.95
8	10.0	11.0	10.6	6	2,030.29	2,280.19	2,538.41	2,171.25	2,477.95	2,844.28	2,544.54	2,902.79	3,380.02
9	11.0	12.0	11.6	5	1,957.13	2,253.50	2,423.14	2,146.66	2,482.76	2,685.30	2,564.20	2,939.82	3,136.65
10	12.0	13.0	12.5	9	2,010.93	2,331.51	2,582.94	2,164.67	2,547.78	2,931.93	2,542.14	2,988.82	3,507.75
11	13.0	14.0	13.6	15	2,070.98	2,316.19	2,670.99	2,222.66	2,546.86	3,079.45	2,581.59	2,995.44	3,711.96
12	14.0	15.0	14.4	15	2,078.30	2,472.34	3,340.10	2,257.22	2,786.99	3,833.00	2,659.91	3,314.99	4,465.46
13	15.0	16.0	15.1	8	2,173.05	2,460.62	2,768.11	2,474.96	2,801.46	3,238.34	2,952.06	3,355.65	3,924.05
14	16.0	17.0	16.4	6	2,305.42	2,597.33	3,133.57	2,561.18	2,974.87	3,668.13	2,974.17	3,557.88	4,479.79
15	17.0	18.0	17.3	6	2,228.96	2,988.20	3,524.49	2,572.18	3,508.59	4,310.26	3,136.28	4,230.59	5,382.65
16	18.0	19.0	18.7	9	2,758.65	3,327.81	4,191.25	3,200.03	3,978.89	5,230.70	3,777.74	4,912.92	6,919.41
17	19.0	20.0	19.7	4	2,698.23	3,716.08	4,910.21	3,151.91	4,518.86	6,076.24	3,801.75	5,663.47	7,628.19
18	20.0	21.0	20.0	1	3,341.98	3,341.98	3,341.98	3,954.01	3,954.01	3,954.01	4,833.73	4,833.73	4,833.73
19	21.0	22.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	22.0	23.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	23.0	24.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 72. Binned DEL Data for Tower-Base Lateral Bending

Figure 156. Twenty-year fatigue load spectrum for tower-base lateral bending

Figure 157. Power spectral density of tower-base lateral bending

Hub-Height Wind Speed

Figure 158. Capture matrix for hub-height wind speed

Figure 159. Scatterplot for hub-height wind speed

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	1.80	3.96	8.02
2	4.0	5.0	4.8	4	2.25	4.76	10.59
3	5.0	6.0	5.5	11	1.15	5.50	14.66
4	6.0	7.0	6.6	25	1.29	6.57	12.83
5	7.0	8.0	7.4	28	0.28	7.37	14.25
6	8.0	9.0	8.4	19	1.89	8.40	13.52
7	9.0	10.0	9.5	24	3.95	9.47	17.32
8	10.0	11.0	10.6	16	4.36	10.62	20.62
9	11.0	12.0	11.4	26	3.95	11.39	21.99
10	12.0	13.0	12.5	24	6.05	12.49	20.02
11	13.0	14.0	13.5	31	0.24	13.53	21.58
12	14.0	15.0	14.5	32	5.83	14.47	21.58
13	15.0	16.0	15.3	14	8.44	15.27	21.90
14	16.0	17.0	16.6	14	7.93	16.55	27.07
15	17.0	18.0	17.5	11	9.35	17.46	26.29
16	18.0	19.0	18.6	17	10.31	18.61	28.72
17	19.0	20.0	19.6	13	9.26	19.59	30.28
18	20.0	21.0	20.4	10	8.25	20.41	33.89
19	21.0	22.0	21.4	3	12.24	21.41	34.95
20	22.0	23.0	22.8	4	12.65	22.77	32.11
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 73. Binned Data for Hub-Height Wind Speed

Figure 160. Time series for the first 60 seconds of hub-height wind speed

Wind Speed at 87 m

Figure 161. Capture matrix for wind speed at 87 m

Figure 162. Scatterplot for wind speed at 87 m

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	0.0	0	0.00	0.00	0.00
2	4.0	5.0	4.7	2	1.48	4.23	10.53
3	5.0	6.0	5.6	5	1.79	5.37	14.65
4	6.0	7.0	6.8	3	3.00	6.60	10.48
5	7.0	8.0	7.5	8	2.69	7.22	12.45
6	8.0	9.0	8.3	3	2.33	8.24	12.72
7	9.0	10.0	9.3	8	4.84	9.16	14.51
8	10.0	11.0	10.7	9	5.64	10.61	18.37
9	11.0	12.0	11.6	9	5.96	11.52	20.47
10	12.0	13.0	12.5	11	6.18	12.20	18.59
11	13.0	14.0	13.5	25	6.85	13.40	21.01
12	14.0	15.0	14.5	20	7.53	14.42	21.23
13	15.0	16.0	15.2	11	8.42	14.91	21.81
14	16.0	17.0	16.6	9	7.61	16.48	24.64
15	17.0	18.0	17.5	9	9.00	17.45	27.86
16	18.0	19.0	18.6	16	9.81	18.69	28.49
17	19.0	20.0	19.6	11	9.41	19.78	30.50
18	20.0	21.0	20.4	10	10.71	20.50	34.49
19	21.0	22.0	21.4	3	13.62	21.58	32.30
20	22.0	23.0	22.8	4	14.24	22.81	33.06
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 74. Binned Data for Wind Speed at 87 m

Figure 163. Time series for the first 60 seconds of wind speed at 87 m

Air Pressure

Figure 164. Capture matrix for air pressure

Figure 165. Scatterplot for air pressure

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	80.41	80.43	80.43
2	4.0	5.0	4.8	4	80.04	80.54	81.32
3	5.0	6.0	5.5	11	80.13	80.53	81.34
4	6.0	7.0	6.6	25	80.27	80.88	81.26
5	7.0	8.0	7.4	28	79.43	80.78	81.34
6	8.0	9.0	8.4	19	80.24	81.03	81.22
7	9.0	10.0	9.5	24	79.59	80.76	81.33
8	10.0	11.0	10.6	16	79.49	80.53	81.31
9	11.0	12.0	11.4	26	79.35	80.92	81.34
10	12.0	13.0	12.5	24	79.37	80.77	81.33
11	13.0	14.0	13.5	31	79.33	80.54	81.32
12	14.0	15.0	14.5	32	79.29	80.80	81.33
13	15.0	16.0	15.3	14	79.32	80.47	81.30
14	16.0	17.0	16.6	14	79.89	80.63	81.29
15	17.0	18.0	17.5	11	80.13	80.73	81.29
16	18.0	19.0	18.6	17	79.25	80.35	81.10
17	19.0	20.0	19.6	13	79.80	80.18	80.34
18	20.0	21.0	20.4	10	79.10	80.12	80.33
19	21.0	22.0	21.4	3	79.10	79.90	80.28
20	22.0	23.0	22.8	4	79.19	79.74	80.28
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 75. Binned Data for Air Pressure

Figure 166. Time series for the first 60 seconds of air pressure

Temperature

Figure 167. Capture matrix for temperature

Figure 168. Scatterplot for temperature

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	15.70	15.81	15.88
2	4.0	5.0	4.8	4	-3.95	9.39	19.80
3	5.0	6.0	5.5	11	-3.95	7.11	16.41
4	6.0	7.0	6.6	25	1.18	8.89	16.26
5	7.0	8.0	7.4	28	-4.11	7.04	16.22
6	8.0	9.0	8.4	19	6.98	8.42	16.05
7	9.0	10.0	9.5	24	3.92	9.55	16.15
8	10.0	11.0	10.6	16	3.41	8.80	16.17
9	11.0	12.0	11.4	26	3.70	7.09	9.91
10	12.0	13.0	12.5	24	-2.86	6.53	15.98
11	13.0	14.0	13.5	31	-2.46	6.76	12.67
12	14.0	15.0	14.5	32	3.50	6.23	11.08
13	15.0	16.0	15.3	14	-1.89	6.99	11.47
14	16.0	17.0	16.6	14	-1.32	5.86	13.63
15	17.0	18.0	17.5	11	-0.37	4.72	9.77
16	18.0	19.0	18.6	17	0.28	4.79	13.49
17	19.0	20.0	19.6	13	0.61	4.11	13.59
18	20.0	21.0	20.4	10	0.86	2.70	8.84
19	21.0	22.0	21.4	3	1.41	2.53	4.68
20	22.0	23.0	22.8	4	1.43	3.03	4.80
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 76. Binned Data for Temperature

Figure 169. Time series for the first 60 seconds of temperature

Figure 170. Scatterplot versus time for turbine yaw error

Bin #	Bin WS Low	Bin WS High	Mean WS	# Files	Min of Minimums	Mean of Means	Max of Maximums
1	3.0	4.0	4.0	1	-4.20	-4.20	-4.20
2	4.0	5.0	4.8	4	-2.57	2.55	6.35
3	5.0	6.0	5.5	11	-1.29	6.05	16.56
4	6.0	7.0	6.6	25	-11.86	3.69	8.70
5	7.0	8.0	7.4	28	-6.81	5.78	17.12
6	8.0	9.0	8.4	19	-4.84	4.29	9.58
7	9.0	10.0	9.5	24	-1.40	4.52	11.33
8	10.0	11.0	10.6	16	-1.91	3.29	10.36
9	11.0	12.0	11.4	26	-2.17	3.39	7.64
10	12.0	13.0	12.5	24	-0.85	3.43	6.62
11	13.0	14.0	13.5	31	0.25	2.87	6.36
12	14.0	15.0	14.5	32	-0.25	2.81	7.45
13	15.0	16.0	15.3	14	-2.58	1.58	4.46
14	16.0	17.0	16.6	14	1.22	3.30	5.52
15	17.0	18.0	17.5	11	0.45	2.91	4.85
16	18.0	19.0	18.6	17	1.24	3.02	5.62
17	19.0	20.0	19.6	13	-1.42	1.41	4.12
18	20.0	21.0	20.4	10	0.08	2.12	4.01
19	21.0	22.0	21.4	3	1.52	1.97	2.20
20	22.0	23.0	22.8	4	-0.44	0.78	2.09
21	23.0	24.0	0.0	0	0.00	0.00	0.00
22	24.0	25.0	0.0	0	0.00	0.00	0.00
23	25.0	26.0	0.0	0	0.00	0.00	0.00

Table 77. Binned Data for Turbine Yaw Error
Transient Events

Normal Start at 6.6 m/s

Event Description:	Normal Start at 6.6 m/s			
File Name:	FastWaveforms 2011_03_11 14_07_43 100Hz.tdms			
Date:	11-Mar-2011 14:07:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	6.6	1.6	4.2	10.1
Wind Direction at 87 m (deg)	301.4	16.2	227.5	339.5
Air Pressure (kPa)	80.3	0.0	80.3	80.3
Temperature (deg C)	15.9	0.1	15.8	16.1
Electric Power (kW)	162.1	103.1	-9.4	312.1
Rotor Speed (rpm)	12.6	1.5	11.0	15.2
Generator Speed (m/s)	991.2	115.3	860.6	1,186.2
Nacelle Yaw Angle (deg)	261.0	0.0	261.0	261.0
Blade 1 Pitch Position (deg)	-1.9	0.0	-1.9	-1.9
Blade 2 Pitch Position (deg)	-1.9	0.0	-1.9	-1.9
Blade 3 Pitch Position (deg)	-2.1	0.0	-2.1	-2.1
Operational Status (-)	20.6	6.6	16.0	30.0
State Fault (-)	2.0	0.0	2.0	2.0
Availability Status (V)	89.9	0.0	89.9	89.9
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.0	0.0
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.0	0.0
Blade 1 Flap Bending (kNm)	692.5	279.6	106.5	1,348.2
Blade 1 Leadlag Bending (kNm)	-53.0	458.2	-730.2	723.9
Blade 2 Flap Bending (kNm)	711.7	293.4	51.1	1,358.8
Blade 2 Leadlag Bending (kNm)	59.9	457.4	-626.7	820.5
Blade 3 Flap Bending (kNm)	708.7	280.0	61.6	1,359.0
Blade 3 Leadlag Bending (kNm)	78.9	453.2	-613.9	828.8
Main Shaft Bending 0 (kNm)	8.3	304.2	-493.9	600.2
Main Shaft Bending 90 (kNm)	13.7	301.4	-514.0	565.0
Main Shaft Torque (kNm)	5.7	91.5	-185.0	177.8
Tower-Top Normal Bending (kNm)	-710.8	138.9	-1,369.7	-148.5
Tower-Top Lateral Bending (kNm)	468.3	78.7	204.9	653.5
Tower-Top Torque (kNm)	-31.8	147.6	-385.3	586.9
Tower-Base Normal Bending (kNm)	3,622.6	2,106.5	-99.1	7,801.8
Tower-Base Lateral Bending (kNm)	528.8	313.2	-516.1	1,645.3

Table 78. Brief Statistical Description for Normal Start at 6.6 m/s

Figure 171. Normal start at 6.6 m/s-met quantities

Figure 172. Normal start at 6.6 m/s—wind turbine operational quantities

Figure 173. Normal start at 6.6 m/s-blade loads

Figure 174. Normal start at 6.6 m/s—shaft and tower-top loads

Figure 175. Normal start at 6.6 m/s-tower-base loads

Normal Start at 14.0 m/s

Event Description:	Normal Start at 14.0 m/s			
File Name:	FastWaveforms 2011_03_09 10_16_11 100Hz.tdms			
Date:	09-Mar-2011 10:16:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	14.0	2.9	8.3	18.2
Wind Direction at 87 m (deg)	280.7	6.9	259.2	294.1
Air Pressure (kPa)	81.1	0.0	81.1	81.2
Temperature (deg C)	4.5	0.1	4.3	4.5
Electric Power (kW)	271.9	353.1	-29.1	976.5
Rotor Speed (rpm)	14.4	2.2	12.3	18.4
Generator Speed (m/s)	1,136.9	174.9	967.6	1,449.8
Nacelle Yaw Angle (deg)	287.2	3.3	278.0	289.0
Blade 1 Pitch Position (deg)	17.8	2.0	14.8	20.9
Blade 2 Pitch Position (deg)	17.8	2.0	14.8	20.9
Blade 3 Pitch Position (deg)	17.8	2.0	14.8	20.8
Operational Status (-)	314.8	287.2	16.0	602.0
State Fault (-)	2.5	0.5	2.0	3.0
Availability Status (V)	90.0	0.0	90.0	90.0
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.1	0.1
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1
Blade 1 Flap Bending (kNm)	195.7	398.6	-592.8	1,140.7
Blade 1 Leadlag Bending (kNm)	42.7	414.5	-667.4	784.8
Blade 2 Flap Bending (kNm)	176.8	360.0	-489.6	1,055.9
Blade 2 Leadlag Bending (kNm)	82.4	411.8	-563.9	782.1
Blade 3 Flap Bending (kNm)	205.0	376.8	-417.4	1,099.2
Blade 3 Leadlag Bending (kNm)	25.5	399.1	-642.1	710.3
Main Shaft Bending 0 (kNm)	10.7	228.9	-662.9	497.6
Main Shaft Bending 90 (kNm)	16.2	215.5	-567.3	481.4
Main Shaft Torque (kNm)	5.7	272.7	-279.9	548.1
Tower-Top Normal Bending (kNm)	-614.1	238.6	-1,243.1	201.1
Tower-Top Lateral Bending (kNm)	143.5	199.0	-123.1	556.0
Tower-Top Torque (kNm)	174.9	199.1	-380.9	733.7
Tower-Base Normal Bending (kNm)	2,065.4	2,534.5	-1,378.1	7,137.7
Tower-Base Lateral Bending (kNm)	-82.2	562.5	-2,049.6	1,747.8

Table 79. Brief Statistical Description for Normal Start at 14.0 m/s

Figure 176. Normal start at 14.0 m/s-met quantities

Figure 177. Normal start at 14.0 m/s—wind turbine operational quantities

Figure 178. Normal start at 14.0 m/s-blade loads

Figure 179. Normal start at 14.0 m/s—shaft and tower-top loads

Figure 180. Normal start at 14.0 m/s-tower-base loads

Normal Start at 23.5 m/s

Event Description:	Normal Start at 23.5 m/s			
File Name:	FastWaveforms 2011_03_11 08_07_14 100Hz.tdms			
Date:	11-Mar-2011 08:07:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	23.5	2.9	17.6	29.5
Wind Direction at 87 m (deg)	272.5	6.4	253.0	282.4
Air Pressure (kPa)	80.0	0.0	79.9	80.0
Temperature (deg C)	13.2	0.0	13.1	13.2
Electric Power (kW)	188.2	241.6	-31.3	711.4
Rotor Speed (rpm)	14.1	1.9	12.2	17.8
Generator Speed (m/s)	1,107.2	151.3	942.9	1,413.1
Nacelle Yaw Angle (deg)	276.4	1.5	275.0	278.0
Blade 1 Pitch Position (deg)	35.3	7.1	22.1	42.4
Blade 2 Pitch Position (deg)	35.3	7.1	22.1	42.5
Blade 3 Pitch Position (deg)	35.3	7.1	22.1	42.4
Operational Status (-)	314.3	287.7	16.0	602.0
State Fault (-)	2.5	0.5	2.0	3.0
Availability Status (V)	89.6	0.0	89.6	89.6
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.1	0.1
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1
Blade 1 Flap Bending (kNm)	133.0	467.3	-840.6	1,130.3
Blade 1 Leadlag Bending (kNm)	-75.7	369.7	-778.8	603.8
Blade 2 Flap Bending (kNm)	16.2	432.9	-1,069.5	905.8
Blade 2 Leadlag Bending (kNm)	3.0	369.9	-619.8	664.6
Blade 3 Flap Bending (kNm)	94.6	440.2	-820.1	993.7
Blade 3 Leadlag Bending (kNm)	-7.2	372.6	-659.2	619.8
Main Shaft Bending 0 (kNm)	13.8	287.0	-721.7	711.0
Main Shaft Bending 90 (kNm)	26.9	267.9	-794.5	790.7
Main Shaft Torque (kNm)	8.1	211.3	-441.3	497.6
Tower-Top Normal Bending (kNm)	-673.3	275.8	-1,693.3	125.2
Tower-Top Lateral Bending (kNm)	325.8	152.3	-72.2	733.6
Tower-Top Torque (kNm)	34.5	212.7	-646.8	732.5
Tower-Base Normal Bending (kNm)	2,491.0	1,840.6	-2,482.6	6,505.2
Tower-Base Lateral Bending (kNm)	148.2	1,857.3	-5,008.2	4,182.8

Table 80. Brief Statistical Description for Normal Start at 23.5 m/s

Figure 181. Normal start at 23.5 m/s-met quantities

Figure 182. Normal start at 23.5 m/s—wind turbine operational quantities

Figure 183. Normal start at 23.5 m/s-blade loads

Figure 184. Normal start at 23.5 m/s—shaft and tower-top loads

Figure 185. Normal start at 23.5 m/s-tower-base loads

Normal Stop at 7.0 m/s

Event Description:	Normal Stop at 7.0 m/s			
File Name:	FastWaveforms 2011_03_11 11_07_29 100Hz.tdms			
Date:	11-Mar-2011 11:07:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	7.0	0.8	5.5	8.8
Wind Direction at 87 m (deg)	340.8	14.3	243.6	353.9
Air Pressure (kPa)	80.3	0.0	80.3	80.3
Temperature (deg C)	14.2	0.0	14.2	14.3
Electric Power (kW)	135.0	163.2	-20.1	521.3
Rotor Speed (rpm)	12.6	1.9	7.4	14.6
Generator Speed (m/s)	979.5	150.6	566.9	1,140.6
Nacelle Yaw Angle (deg)	304.3	12.3	284.0	326.0
Blade 1 Pitch Position (deg)	6.0	10.1	-1.9	28.7
Blade 2 Pitch Position (deg)	6.0	10.1	-1.9	28.7
Blade 3 Pitch Position (deg)	6.0	10.1	-2.0	28.7
Operational Status (-)	364.1	337.0	17.0	701.0
State Fault (-)	1.5	0.5	1.0	2.0
Availability Status (V)	89.8	0.0	89.8	89.8
Tower-Top Normal Acceleration (g)	0.0	0.0	-0.1	0.2
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1
Blade 1 Flap Bending (kNm)	416.2	482.8	-641.4	1,094.8
Blade 1 Leadlag Bending (kNm)	-17.6	438.4	-713.0	737.6
Blade 2 Flap Bending (kNm)	391.9	486.8	-610.0	1,092.0
Blade 2 Leadlag Bending (kNm)	64.2	437.6	-621.7	789.8
Blade 3 Flap Bending (kNm)	382.2	493.5	-645.9	1,073.1
Blade 3 Leadlag Bending (kNm)	28.2	439.3	-630.5	808.5
Main Shaft Bending 0 (kNm)	21.1	260.6	-461.1	507.6
Main Shaft Bending 90 (kNm)	21.1	251.9	-415.1	479.5
Main Shaft Torque (kNm)	-62.1	162.8	-253.0	313.5
Tower-Top Normal Bending (kNm)	-748.3	90.0	-980.0	-527.0
Tower-Top Lateral Bending (kNm)	177.4	76.9	-19.2	374.1
Tower-Top Torque (kNm)	-33.0	98.1	-273.7	269.8
Tower-Base Normal Bending (kNm)	1,724.6	3,222.6	-3,243.7	6,074.7
Tower-Base Lateral Bending (kNm)	505.5	200.4	-206.3	1,433.1

Table 81. Brief Statistical Description for Normal Stop at 7.0 m/s

Figure 186. Normal stop at 7.0 m/s-met quantities

Figure 187. Normal stop at 7.0 m/s—wind turbine operational quantities

Figure 188. Normal stop at 7.0 m/s-blade loads

Figure 189. Normal stop at 7.0 m/s—shaft and tower-top loads

Figure 190. Normal stop at 7.0 m/s-tower-base loads

Normal Stop at 12.2 m/s

Event Description:	Normal Stop at 12.2 m/s			
File Name:	FastWaveforms 2011_03_03 18_18_12 100Hz.tdms			
Date:	03-Mar-2011 18:18:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	12.2	1.9	8.7	16.1
Wind Direction at 87 m (deg)	289.1	9.0	265.9	305.9
Air Pressure (kPa)	80.4	0.0	80.3	80.4
Temperature (deg C)	6.5	0.0	6.5	6.6
Electric Power (kW)	241.0	283.8	-26.5	974.6
Rotor Speed (rpm)	10.0	3.9	3.2	17.0
Generator Speed (m/s)	770.6	310.4	235.3	1,320.5
Nacelle Yaw Angle (deg)	298.0	0.0	298.0	298.0
Blade 1 Pitch Position (deg)	24.6	22.6	-2.1	65.4
Blade 2 Pitch Position (deg)	24.6	22.6	-2.1	65.4
Blade 3 Pitch Position (deg)	24.6	22.6	-2.1	65.5
Operational Status (-)	358.8	337.5	17.0	701.0
State Fault (-)	1.5	0.5	1.0	2.0
Availability Status (V)	82.6	0.0	82.6	82.6
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.0	0.0
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.0	0.0
Blade 1 Flap Bending (kNm)	293.9	567.5	-671.7	1,468.5
Blade 1 Leadlag Bending (kNm)	-38.6	390.4	-711.3	841.6
Blade 2 Flap Bending (kNm)	317.4	559.0	-713.2	1,399.5
Blade 2 Leadlag Bending (kNm)	52.9	388.3	-573.1	893.1
Blade 3 Flap Bending (kNm)	275.0	573.4	-652.4	1,397.8
Blade 3 Leadlag Bending (kNm)	23.6	389.8	-570.5	921.7
Main Shaft Bending 0 (kNm)	-1,254.3	0.1	-1,254.6	-1,254.0
Main Shaft Bending 90 (kNm)	-1,713.9	0.1	-1,714.1	-1,713.6
Main Shaft Torque (kNm)	-2,627.8	0.1	-2,628.3	-2,627.4
Tower-Top Normal Bending (kNm)	-579.6	288.6	-1,216.9	69.0
Tower-Top Lateral Bending (kNm)	118.2	166.9	-275.6	445.4
Tower-Top Torque (kNm)	27.4	148.6	-425.2	615.0
Tower-Base Normal Bending (kNm)	1,771.0	3,352.6	-2,950.9	8,914.4
Tower-Base Lateral Bending (kNm)	302.0	583.5	-1,476.4	2,398.3

Table 82. Brief Statistical Description for Normal Stop at 12.2 m/s

Figure 191. Normal stop at 12.2 m/s-met quantities

Figure 192. Normal stop at 12.2 m/s—wind turbine operational quantities

Figure 193. Normal stop at 12.2 m/s—blade loads

Figure 194. Normal stop at 12.2 m/s—shaft and tower-top loads

Figure 195. Normal stop at 12.2 m/s-tower-base loads

Normal Stop at 16.1 m/s

Event Description:	Normal Stop at 16.1 m/s			
File Name:	FastWaveforms 2011_03_09 15_56_38 100Hz.tdms			
Date:	09-Mar-2011 15:56:00			
Measured Quantity	mean	sdv	min	max
Wind Speed at 80 m (m/s)	16.1	1.7	11.6	19.5
Wind Direction at 87 m (deg)	283.3	6.8	267.1	300.0
Air Pressure (kPa)	81.1	0.0	81.1	81.1
Temperature (deg C)	7.3	0.0	7.3	7.3
Electric Power (kW)	367.7	465.2	-26.3	1,583.3
Rotor Speed (rpm)	11.4	4.4	4.6	18.7
Generator Speed (m/s)	883.2	345.3	352.2	1,470.3
Nacelle Yaw Angle (deg)	291.3	6.2	284.0	298.0
Blade 1 Pitch Position (deg)	33.6	13.9	7.4	61.3
Blade 2 Pitch Position (deg)	33.6	13.9	7.3	61.3
Blade 3 Pitch Position (deg)	33.6	13.9	7.4	61.3
Operational Status (-)	363.7	337.4	17.0	701.0
State Fault (-)	1.5	0.5	1.0	2.0
Availability Status (V)	90.3	0.0	90.3	90.3
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.1	0.1
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1
Blade 1 Flap Bending (kNm)	126.3	480.5	-669.3	1,387.6
Blade 1 Leadlag Bending (kNm)	-17.2	375.7	-747.8	918.7
Blade 2 Flap Bending (kNm)	131.8	468.2	-703.3	1,497.5
Blade 2 Leadlag Bending (kNm)	36.5	370.8	-624.3	864.1
Blade 3 Flap Bending (kNm)	89.9	462.5	-735.8	1,556.9
Blade 3 Leadlag Bending (kNm)	-17.6	360.6	-708.3	772.0
Main Shaft Bending 0 (kNm)	15.2	313.1	-724.0	698.3
Main Shaft Bending 90 (kNm)	11.9	311.3	-698.4	660.1
Main Shaft Torque (kNm)	8.3	331.4	-434.8	726.9
Tower-Top Normal Bending (kNm)	-783.9	249.2	-1,428.7	199.9
Tower-Top Lateral Bending (kNm)	254.9	190.0	-117.9	763.1
Tower-Top Torque (kNm)	-27.7	181.5	-480.8	649.8
Tower-Base Normal Bending (kNm)	609.2	2,209.9	-3,306.0	9,662.6
Tower-Base Lateral Bending (kNm)	148.6	1,609.5	-4,004.1	3,936.9

Table 83. Brief Statistical Description for Normal Stop at 16.1 m/s

Figure 196. Normal stop at 16.1 m/s-met quantities

Figure 197. Normal stop at 16.1 m/s—wind turbine operational quantities

Figure 198. Normal stop at 16.1 m/s—blade loads

Figure 199. Normal stop at 16.1 m/s—shaft and tower-top loads

Figure 200. Normal stop at 16.1 m/s-tower-base loads
Parked or Idling (Online) Parked at 4.2 m/s

File Name: FastWaveforms 2U1_03_08 18_50_35 100Hz.tdms Date: 08-Mar-2011 18:500 Measured Quantity mean sdv min max Wind Speed at 80 m (m/s) 4.2 2.7 0.3 12.1 Wind Direction at 87 m (deg) 266.3 52.9 7.3 352.2 Air Pressure (kPa) 80.4 0.0 80.4 80.4 Temperature (deg C) -3.6 0.1 3.7 -3.4 Electire Power (KW) -6.1 4.6 -14.7 -2.6 Rotor Speed (rpm) 0.7 1.0 0.0 3.0 Generator Speed (m/s) 74.1 64.5 7.2 28.8 Nacelle Yaw Angle (deg) 219.2 50.4 151.0 270.0 Blade 1 Pitch Position (deg) 57.5 17.2 1.6 68.4 Blade 3 Pitch Position (deg) 57.5 17.2 1.6 68.4 Operational Status (·) 88.9 0.0 88.9 88.9 Ower-Top Normal Acceleration (g) 0.0 0.1	Event Description:	Parked at 4.2 m/s	3			
Date:08-Mar-2011 18:50:00Measured QuantitymeansdvminmaxWind Speed at 80 m (m)4.22.70.312.1Wind Direction at 87 m (deg)258.352.97.3352.2Air Pressure (RPa)80.40.080.480.4Temperature (deg C)-3.60.1-3.7-3.4Electric Power (kW)-6.14.614.7-2.6Roto Speed (mp)0.71.00.03.0Generator Speed (ms)74.164.57.2238.8Nacelle Yaw Angle (deg)57.517.21.668.4Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Operational Status (-)537.469.7501.0701.0State Fault (-)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.1Idade 1 Flap Bending (khm)79.642.7-736.3666.3Blade 2 Flap Bending (khm)58.942.147.334.6Blade 3 Flap Bending (khm)58.922.138.732.1Blade 1 Land Bending (khm)3.822.138.732.1Blade 1 Status (D)3.822.138.732.1Blade 1 State Fault (-)1.53.642.773.666.3Blade 1 Stater (D)0.0-0.10.	File Name:	FastWaveforms 2	2011_03_08 18_50_3	5 100Hz.tdms		
Measured QuantilymeansdvminmaxWind Speed at 80 m (m's)4.22.70.312.1Wind Direction at 87 m (deg)256.352.97.3352.2Air Pressure (kPa)80.40.080.480.4Temperature (deg C)-3.60.1-3.7-3.4Electire Power (WW)6.14.614.7-2.6Rotor Speed (rpm)0.71.00.03.0Generator Speed (mis)74.184.57.2238.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.03.0State Fault (-)1.20.61.03.0Availability Status (/)88.90.088.988.9Tower-Top Narmal Acceleration (g)0.00.10.1Inder 1 Elap Bending (KNm)79.6454.0625.7743.4Blade 1 Flap Bending (KNm)5.0442.7-736.3676.7Blade 2 Flap Bending (KNm)5.0442.7-736.3676.7Blade 2 Flap Bending (KNm)63.6221.1337.7321.1Blade 3 Flap Bending (KNm)63.6222.1-337.7321.1Blade 3 Flap Bending (KNm)3.8222.1-337.7321.3Blade 3 Flap Bending (KNm)63.6221.1-331.5-2	Date:	08-Mar-2011 18:50:00				
Wind Speed at 80 m (m/s)4.22.70.312.1Wind Direction at 87 m (deg)256.352.97.3352.2Air Pressure (kPa)80.40.080.480.4Temperature (deg C)-3.60.1-3.7-3.4Electric Power (kW)-6.14.6-14.7-2.6Rotor Speed (rpm)0.71.00.03.0Generator Speed (rpm)74.164.57.2238.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (-)537.469.7501.0701.0State Fault (-)120.61.03.0Variability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.00.10.1Blade 1 Flap Bending (KNm)79.6454.0-625.7743.4Blade 1 Flap Bending (KNm)5.5420.1-670.3757.8Blade 2 Flap Bending (KNm)5.5244.2-618.4546.2Blade 2 Flap Bending (KNm)5.5242.1-618.4546.2Blade 3 Leadlag Bending (KNm)5.6244.2-618.4546.2Blade 1 Flap Bending (KNm)3.8232.0-357.1321.1Blade 1 Flap Bending (KNm)3.8232.0	Measured Quantity	mean	sdv	min	max	
Wind Direction at 87 m (deg)256.352.97.3352.2Air Pressure (kPa)80.40.080.480.4Temperature (deg C)-3.60.1-3.7-3.4Electric Power (kW)-6.14.6-14.7-2.6Rotor Speed (rpm)0.71.00.03.0Generator Speed (rpm)7.164.57.228.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.668.4Dide 3 Pitch Position (deg)57.517.21.668.4Dide 3 Pitch Position (deg)67.517.21.668.4Dide 3 Pitch Position (deg)67.517.21.668.4Dide 4 Pitch Position (deg)67.517.21.668.4Operational Status (.1)1.20.61.00.1State Fault (.2)68.90.088.968.968.9Tower-Top Normal Acceleration (g)0.00.10.11.1Blade 1 Flap Bending (Nhm)79.6450.0621.7743.4Blade 2 Flap Bending (Nhm)40.4266.9661.4662.9Blade 3 Flap Bending (Nhm)65.5244.2618.4642.2Blade 3 Flap Bending (Nhm)3.8221.1377.0231.1 <trr<tr>Blade 3 Flap Bending (Nhm)3.8<</trr<tr>	Wind Speed at 80 m (m/s)	4.2	2.7	0.3	12.1	
Air Pressure (kPa)80.40.080.480.480.4Temperature (deg C)-3.60.1-3.7-3.4Electric Power (kW)-6.14.6-14.7-2.6Roto Speed (rpm)0.71.00.03.0Generator Speed (rbm)74.164.57.2238.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (.)537.469.7501.0701.0State Fault (.)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (9)0.00.0-0.10.1Blade 1 Flap Bending (kNm)79.6254.0625.774.3Blade 1 Flap Bending (kNm)5.0242.7736.3676.7Blade 1 Eadlag Bending (kNm)5.0242.1-670.357.8Blade 3 Flap Bending (kNm)25.924.2-818.454.2Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)5.822.1-87.7321.1Blade 3 Flap Bending (kNm)5.822.1-87.7321.1Blade 3 Flap Bending (kNm)5.8	Wind Direction at 87 m (deg)	256.3	52.9	7.3	352.2	
Temperature (deg C)-3.60.1-3.7-3.4Electric Power (kW)6.14.6-14.72.6Rotor Speed (rpm)0.71.00.03.0Generator Speed (rpm)74.164.57.2238.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (·)537.469.7501.0701.0State Fault (·)1.20.61.03.0Nower-Top Normal Acceleration (g)0.00.00.10.1Tower-Top Lateral Acceleration (g)0.00.00.10.1Blade 2 Flap Bending (kNm)79.6454.0625.7743.4Blade 2 Flap Bending (kNm)50.042.7-736.3676.7Blade 2 Flap Bending (kNm)50.042.1-736.3676.7Blade 3 Flap Bending (kNm)58.822.1-87.7321.1Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)3.822.1-87.7321.1Blade 3 Flap Bending (kNm)5.822.1-87.7321.1Blade 1 Flap Bending (kNm)3.8<	Air Pressure (kPa)	80.4	0.0	80.4	80.4	
Electric Power (kW)Rotor Speed (rpm)0.71.00.03.0Generator Speed (rms)74.164.57.228.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Operation Status (-)57.517.21.668.4Operation Status (-)57.57.250.070.0State Fault (-)63.760.150.050.0State Fault (-)1.20.68.98.9Tower-Top Normal Acceleration ()0.00.00.10.1Blade 1 Flag Bending (NMm)70.8253.0251.666.3Blade 1 Flag Bending (NMm)50.0254.7776.366.3Blade 2 Flag Bending (NMm)50.0254.7776.366.3Blade 3 Flag Bending (NMm)63.5242.1770.377.8Blade 3 Flag Bending (NMm)63.5242.1670.377.8Blade 3 Laedag Bending (NMm)3.8222.1381.734.6Minshaft Bending OKNm3.8222.1381.734.6Minshaft Bending (NMm)3.8232.0351.734.6Minshaft Bending (NMm)3.8232.0351.734.6Minshaft Bending (NMm)3.8232.131.534.6Minshaft Bending (NMm)3.823.134.634.6 </td <td>Temperature (deg C)</td> <td>-3.6</td> <td>0.1</td> <td>-3.7</td> <td>-3.4</td>	Temperature (deg C)	-3.6	0.1	-3.7	-3.4	
Rotor Speed (rpm)0.71.00.03.0Generator Speed (m/s)74.164.57.223.8Nacelle Yaw Angle (deg)219.250.415.10270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.668.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (-)537.469.7501.0701.0State Fault (-)68.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.10.1Blade 1 Flap Bending (NM)9.6454.0625.773.4Blade 2 Flap Bending (NM)50.0268.9564.0668.3Blade 2 Leadlag Bending (NM)50.9424.7736.3676.7Blade 3 Flap Bending (NM)65.9654.0620.9631.4Blade 3 Flap Bending (NM)3.6222.1387.7321.1Blade 3 Flap Bending (NM)3.6222.1337.7321.1Blade 3 Flap Bending (NM)3.8.8232.0351.5351.3Blade 3 Flap Bending (NM)3.8.6222.1387.7321.1Min Shaft Bending 0 (NM)3.9.6232.0351.5351.3Min Shaft Bending 0 (NM)3.9.6322.0351.5351.3Min Shaft Bending 0 (NM)3.9.6321.5351.3351.3Min Shaft Bending 0 (NM)3.9.6321.5351.3351.3Min Shaft Bendi	Electric Power (kW)	-6.1	4.6	-14.7	-2.6	
Generator Speed (m/s)74.164.57.2238.8Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.768.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (.)53.7.469.7501.0701.0State Fault (.)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.10.1Blade 1 Flap Bending (NRm)79.6454.0652.773.3Blade 1 Lead ag Bending (NRm)50.6426.7736.3667.7Blade 2 Lead ag Bending (NRm)259.0256.9564.0620.9Blade 3 Lead ag Bending (NRm)3.8222.1387.7321.1Blade 3 Lead ag Bending (NRm)3.8222.1387.7345.6Blade 3 Lead ag Bending (NRm)3.8222.1387.7345.6Blade 3 Lead ag Bending (NRm)3.8222.1387.7345.6Main Shaft Bending (NRm)3.8222.1387.7345.6Main Shaft Bending (NRm)3.8232.0357.1345.6Main Shaft Bending (NRm)3.8232.0357.1345.6Main Shaft Bending (NRm)3.8232.0357.1345.6Main Shaft Bending (NRm)3.84232.0357.1345.6 <trr< td=""><td>Rotor Speed (rpm)</td><td>0.7</td><td>1.0</td><td>0.0</td><td>3.0</td></trr<>	Rotor Speed (rpm)	0.7	1.0	0.0	3.0	
Nacelle Yaw Angle (deg)219.250.4151.0270.0Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.768.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (.)537.469.7501.070.0State Fault (.)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.10.1Blade 1 Flap Bending (kNm)79.6454.0625.7743.4Blade 2 Leadlag Bending (kNm)5.0442.7736.3666.3Blade 3 Leadlag Bending (kNm)5.0254.9664.0620.9Blade 3 Leadlag Bending (kNm)5.5242.1670.3757.8Blade 3 Leadlag Bending (kNm)68.5242.1618.4548.2Blade 3 Leadlag Bending (kNm)5.5242.1617.331.1Blade 3 Leadlag Bending (kNm)68.5242.1618.4548.2Blade 3 Leadlag Bending (kNm)68.5242.1618.4548.2Main Shaft Bending 0 (kNm)3.8222.1387.731.1Main Shaft Bending 0 (kNm)68.261.1698.761.1Main Shaft Bending 0 (kNm)68.261.2687.163.1Main Shaft Bending 0 (kNm)68.263.1697.263.1Main Shaft Bending 0 (kNm)68.263.1697.263.1 </td <td>Generator Speed (m/s)</td> <td>74.1</td> <td>64.5</td> <td>7.2</td> <td>238.8</td>	Generator Speed (m/s)	74.1	64.5	7.2	238.8	
Blade 1 Pitch Position (deg)57.517.21.668.4Blade 2 Pitch Position (deg)57.517.21.768.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (.)537.469.7501.070.10State Fault (.)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.10.1Blade 1 Flap Bending (kNm)79.6454.0625.7743.4Blade 2 Flap Bending (kNm)5.0442.7736.3668.3Blade 2 Leadlag Bending (kNm)5.9420.1670.3676.7Blade 3 Leadlag Bending (kNm)5.9420.1670.375.8Blade 3 Leadlag Bending (kNm)68.5242.1618.4548.2Blade 3 Leadlag Bending (kNm)6.8222.1387.7321.1Blade 3 Leadlag Bending (kNm)3.8322.1331.5251.3Main Shaft Bending 0 (kNm)3.8322.0357.1345.6Main Shaft Bending 0 (kNm)6.82.96.19.87.26.87.2Tower-Top Normal Bending (kNm)19.19.331.5251.3Tower-Top Normal Bending (kNm)19.19.334.524.2Tower-Top Normal Bending (kNm)19.19.334.524.2Tower-Top Normal Bending (kNm)19.19.334.524.2Tower-Top Torque (kNm)19.19.335.824.2<	Nacelle Yaw Angle (deg)	219.2	50.4	151.0	270.0	
Blade 2 Pitch Position (deg)57.517.21.768.4Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (.)537.469.7501.0701.0State Fault (.)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.10.10.1Blade 1 Flap Bending (kNm)79.6454.0-625.773.4Blade 1 Leadlag Bending (kNm)20.7258.3-521.6668.3Blade 2 Flap Bending (kNm)50.0242.7-736.3676.7Blade 3 Flap Bending (kNm)25.9420.1-736.3620.9Blade 3 Flap Bending (kNm)53.8222.1-387.7321.1Blade 3 Flap Bending (kNm)38.8222.1387.7321.1Main Shaft Bending 0 (kNm)38.4232.0-357.1345.6Main Shaft Torque (kNm)384.64.7-331.5-251.3Tower-Top Normal Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)195.190.3-143.0242.8Tower-Top Torque (kNm)-190.7234.7-132.2248.9Tower-Top Torque (kNm)114.8169.3-620.61,073.1	Blade 1 Pitch Position (deg)	57.5	17.2	1.6	68.4	
Blade 3 Pitch Position (deg)57.517.21.668.4Operational Status (-)537.469.7501.0701.0State Fault (-)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.0-0.10.1Tower-Top Lateral Acceleration (g)0.0-0.10.1Blade 1 Flap Bending (kNm)79.6454.0-625.7743.4Blade 1 Leadlag Bending (kNm)20.7258.3-521.6668.3Blade 2 Flap Bending (kNm)50.0442.7-736.3667.7Blade 2 Leadlag Bending (kNm)25.9-564.0620.9Blade 3 Flap Bending (kNm)25.9-670.3757.8Blade 3 Flap Bending (kNm)3.8222.1-387.7321.1Main Shaft Bending 0 (kNm)3.8232.0-357.1345.6Main Shaft Torque (kNm)-304.64.7-331.5-251.3Tower-Top Normal Bending (kNm)90.3-143.0347.6Tower-Top Torque (kNm)19.190.3-143.0347.6Tower-Top Torque (kNm)19.09.3-355.8242.8Tower-Top Torque (kNm)14.8169.3-302.61.073.1	Blade 2 Pitch Position (deg)	57.5	17.2	1.7	68.4	
Operational Status (-)537.469.7501.0701.0State Fault (-)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.00.10.1Tower-Top Lateral Acceleration (g)0.00.00.10.1Blade 1 Flap Bending (kNm)79.6454.0625.7743.4Blade 1 Leadlag Bending (kNm)20.7258.3521.6668.3Blade 2 Flap Bending (kNm)50.0442.7.736.3676.7Blade 2 Leadlag Bending (kNm)50.9420.1670.357.8Blade 3 Leadlag Bending (kNm)25.9264.0670.3542.0Blade 3 Leadlag Bending (kNm)68.5244.2618.4548.2Main Shaft Bending (kNm)3.8222.1387.7321.1Main Shaft Bending 0 (kNm)3.8232.0.357.1345.6Main Shaft Torque (kNm).304.64.7.331.5.251.3Tower-Top Normal Bending (kNm)195.190.3.443.0.347.6Tower-Top Lateral Bending (kNm)195.190.3.443.0.347.6Tower-Top Torque (kNm)195.190.3.443.0.345.6Tower-Top Torque (kNm)195.190.3.443.0.347.6Tower-Top Torque (kNm)195.190.3.443.0.347.6Tower-Top Torque (kNm)195.190.3.443.0.347.6Tower-Top Torque (kNm)195.190.3.453.0<	Blade 3 Pitch Position (deg)	57.5	17.2	1.6	68.4	
State Fault (-)1.20.61.03.0Availability Status (V)88.90.088.988.9Tower-Top Normal Acceleration (g)0.00.00.10.1Tower-Top Lateral Acceleration (g)0.00.0-0.10.1Blade 1 Flap Bending (KNm)79.6454.0-625.7743.4Blade 1 Leadlag Bending (KNm)20.7258.3-521.6668.3Blade 2 Flap Bending (KNm)5.0442.7-736.3676.7Blade 2 Leadlag Bending (KNm)40.4256.9-564.0620.9Blade 3 Leadlag Bending (KNm)25.9420.1-670.3757.8Blade 3 Leadlag Bending (KNm)68.5244.2-618.4548.2Main Shaft Bending 0 (KNm).36.222.1.387.7321.1Main Shaft Bending 0 (KNm).38232.0.357.1345.6Tower-Top Normal Bending (KNm).822.9.651.1.987.2.687.2Tower-Top Normal Bending (KNm)195.190.3.143.0347.6Tower-Top Lateral Bending (KNm).190.99.3.355.8242.8Tower-Top Torque (KNm).767.7.234.7.1,321.2248.9Tower-Base Lateral Bending (KNm)114.8169.3.620.61,073.1	Operational Status (-)	537.4	69.7	501.0	701.0	
Availability Status (V)88.90.088.90.0Tower-Top Normal Acceleration (g)0.00.00.10.1Tower-Top Lateral Acceleration (g)0.00.0-0.10.1Blade 1 Flap Bending (kNm)79.6454.0-625.7743.4Blade 1 Leadlag Bending (kNm)20.7258.3-521.6668.3Blade 2 Flap Bending (kNm)-50.0442.7-736.3676.7Blade 2 Leadlag Bending (kNm)40.4256.9-564.0620.9Blade 3 Flap Bending (kNm)25.9420.1-670.3757.8Blade 3 Leadlag Bending (kNm)-68.5244.2-618.4548.2Main Shaft Bending 0 (kNm)-35.8222.1-387.7321.1Main Shaft Bending 0 (kNm)3.8232.0-357.1345.6Tower-Top Normal Bending (kNm)-822.965.1-987.2-687.2Tower-Top Normal Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)-19.099.3-355.8242.8Tower-Base Normal Bending (kNm)114.8169.3-620.61,073.1	State Fault (-)	1.2	0.6	1.0	3.0	
Tower-Top Normal Acceleration (g)0.00.00.10.1Tower-Top Lateral Acceleration (g)0.00.00.00.1Blade 1 Flap Bending (kNm)79.6454.0-625.7743.4Blade 1 Leadlag Bending (kNm)20.7258.3-521.6668.3Blade 2 Flap Bending (kNm)-5.0442.7-736.3676.7Blade 2 Leadlag Bending (kNm)40.4256.9-564.0620.9Blade 3 Flap Bending (kNm)25.9420.1-670.3757.8Blade 3 Leadlag Bending (kNm)25.9244.2-618.4548.2Main Shaft Bending 0 (kNm)-85.8222.1-387.7321.1Main Shaft Bending 0 (kNm)3.8232.0-357.1345.6Main Shaft Torque (kNm)-822.965.1-987.2-687.2Tower-Top Normal Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)195.199.3-355.8242.8Tower-Base Normal Bending (kNm)114.8169.3-620.61,073.1	Availability Status (V)	88.9	0.0	88.9	88.9	
Tower-Top Lateral Acceleration (g) 0.0 0.0 0.1 0.1 Blade 1 Flap Bending (kNm) 79.6 454.0 -625.7 743.4 Blade 1 Leadlag Bending (kNm) 20.7 258.3 -521.6 668.3 Blade 2 Flap Bending (kNm) -5.0 442.7 -736.3 676.7 Blade 2 Leadlag Bending (kNm) -40.4 256.9 -564.0 620.9 Blade 3 Flap Bending (kNm) 25.9 420.1 -670.3 757.8 Blade 3 Leadlag Bending (kNm) 685.5 244.2 -618.4 548.2 Main Shaft Bending 0 (kNm) 3.8 232.0 -357.1 321.1 Main Shaft Bending 0 (kNm) 3.8 232.0 -357.1 345.6 Main Shaft Torque (kNm) 3.8 232.0 -357.1 251.3 Tower-Top Normal Bending (kNm) 822.9 65.1 -987.2 687.2 Tower-Top Normal Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) 19.0 99.3 -355.8 242.8	Tower-Top Normal Acceleration (g)	0.0	0.0	-0.1	0.1	
Blade 1 Flap Bending (kNm) 79.6 454.0 -625.7 743.4 Blade 1 Leadlag Bending (kNm) 20.7 258.3 -521.6 668.3 Blade 2 Flap Bending (kNm) -5.0 442.7 -736.3 676.7 Blade 2 Leadlag Bending (kNm) -40.4 256.9 -564.0 620.9 Blade 3 Leadlag Bending (kNm) 25.9 420.1 -670.3 548.2 Blade 3 Leadlag Bending (kNm) -68.5 244.2 -618.4 548.2 Main Shaft Bending 0 (kNm) -35.8 222.1 -387.7 321.1 Main Shaft Bending 0 (kNm) -36.4 232.0 -357.1 345.6 Main Shaft Torque (kNm) -304.6 4.7 -331.5 -687.2 Tower-Top Normal Bending (kNm) -822.9 65.1 -987.2 -687.2 Tower-Top Torque (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1	
Blade 1 Leadlag Bending (kNm) 20.7 258.3 -521.6 668.3 Blade 2 Flap Bending (kNm) -5.0 442.7 -736.3 676.7 Blade 2 Leadlag Bending (kNm) -40.4 256.9 -564.0 620.9 Blade 3 Flap Bending (kNm) 25.9 420.1 -670.3 757.8 Blade 3 Leadlag Bending (kNm) 68.5 244.2 -618.4 548.2 Main Shaft Bending 0 (kNm) -35.8 222.1 -387.7 321.1 Main Shaft Bending 0 (kNm) 3.8 232.0 -357.1 345.6 Main Shaft Torque (kNm) -304.6 4.7 -331.5 -251.3 Tower-Top Normal Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Lateral Bending (kNm) 195.1 90.3 -355.8 242.8 Tower-Top Torque (kNm) 190.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) 114.8 169.3 -620.6 1,073.1	Blade 1 Flap Bending (kNm)	79.6	454.0	-625.7	743.4	
Blade 2 Flap Bending (kNm) -5.0 442.7 -736.3 676.7 Blade 2 Leadlag Bending (kNm) -40.4 256.9 -564.0 620.9 Blade 3 Flap Bending (kNm) 25.9 420.1 -670.3 757.8 Blade 3 Leadlag Bending (kNm) -68.5 244.2 -618.4 548.2 Main Shaft Bending 0 (kNm) -35.8 222.1 -387.7 321.1 Main Shaft Bending 0 (kNm) 3.8 232.0 -357.1 345.6 Main Shaft Torque (kNm) -304.6 4.7 -331.5 -251.3 Tower-Top Normal Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) 114.8 169.3 -20.6 1,073.1	Blade 1 Leadlag Bending (kNm)	20.7	258.3	-521.6	668.3	
Blade 2 Leadlag Bending (kNm)-40.4256.9-564.0620.9Blade 3 Flap Bending (kNm)25.9420.1-670.3757.8Blade 3 Leadlag Bending (kNm)-68.5244.2-618.4548.2Main Shaft Bending 0 (kNm)-35.8222.1-387.7321.1Main Shaft Bending 90 (kNm)3.8232.0-357.1345.6Main Shaft Torque (kNm)-822.965.1-987.2-687.2Tower-Top Normal Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)-19.099.3-355.8242.8Tower-Base Normal Bending (kNm)114.8169.3-620.61,073.1	Blade 2 Flap Bending (kNm)	-5.0	442.7	-736.3	676.7	
Blade 3 Flap Bending (kNm)25.9420.1-670.3757.8Blade 3 Leadlag Bending (kNm)-68.5244.2-618.4548.2Main Shaft Bending 0 (kNm)-35.8222.1-387.7321.1Main Shaft Bending 90 (kNm)3.8232.0-357.1345.6Main Shaft Torque (kNm)-304.64.7-331.5-251.3Tower-Top Normal Bending (kNm)-822.965.1-987.2-687.2Tower-Top Lateral Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)-19.099.3-355.8242.8Tower-Base Normal Bending (kNm)114.8169.3-620.61,073.1	Blade 2 Leadlag Bending (kNm)	-40.4	256.9	-564.0	620.9	
Blade 3 Leadlag Bending (kNm) -68.5 244.2 -618.4 548.2 Main Shaft Bending 0 (kNm) -35.8 222.1 -387.7 321.1 Main Shaft Bending 90 (kNm) 3.8 232.0 -357.1 345.6 Main Shaft Torque (kNm) -304.6 4.7 -331.5 -251.3 Tower-Top Normal Bending (kNm) -822.9 65.1 -987.2 -687.2 Tower-Top Lateral Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Blade 3 Flap Bending (kNm)	25.9	420.1	-670.3	757.8	
Main Shaft Bending 0 (kNm)-35.8222.1-387.7321.1Main Shaft Bending 90 (kNm)3.8232.0-357.1345.6Main Shaft Torque (kNm)-304.64.7-331.5-251.3Tower-Top Normal Bending (kNm)-822.965.1-987.2-687.2Tower-Top Lateral Bending (kNm)195.190.3-143.0347.6Tower-Top Torque (kNm)-19.099.3-355.8242.8Tower-Base Normal Bending (kNm)767.7234.7-1,321.2248.9Tower-Base Lateral Bending (kNm)114.8169.3-620.61,073.1	Blade 3 Leadlag Bending (kNm)	-68.5	244.2	-618.4	548.2	
Main Shaft Bending 90 (kNm) 3.8 232.0 -357.1 345.6 Main Shaft Torque (kNm) -304.6 4.7 -331.5 -251.3 Tower-Top Normal Bending (kNm) -822.9 65.1 -987.2 -687.2 Tower-Top Lateral Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Main Shaft Bending 0 (kNm)	-35.8	222.1	-387.7	321.1	
Main Shaft Torque (kNm) -304.6 4.7 -331.5 -251.3 Tower-Top Normal Bending (kNm) -822.9 65.1 -987.2 -687.2 Tower-Top Lateral Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Main Shaft Bending 90 (kNm)	3.8	232.0	-357.1	345.6	
Tower-Top Normal Bending (kNm) -822.9 65.1 -987.2 -687.2 Tower-Top Lateral Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Main Shaft Torque (kNm)	-304.6	4.7	-331.5	-251.3	
Tower-Top Lateral Bending (kNm) 195.1 90.3 -143.0 347.6 Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Tower-Top Normal Bending (kNm)	-822.9	65.1	-987.2	-687.2	
Tower-Top Torque (kNm) -19.0 99.3 -355.8 242.8 Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Tower-Top Lateral Bending (kNm)	195.1	90.3	-143.0	347.6	
Tower-Base Normal Bending (kNm) -767.7 234.7 -1,321.2 248.9 Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Tower-Top Torque (kNm)	-19.0	99.3	-355.8	242.8	
Tower-Base Lateral Bending (kNm) 114.8 169.3 -620.6 1,073.1	Tower-Base Normal Bending (kNm)	-767.7	234.7	-1,321.2	248.9	
	Tower-Base Lateral Bending (kNm)	114.8	169.3	-620.6	1,073.1	

Table 84. Brief Statistical Description for Parked at 4.2 m/s

Figure 201. Parked at 4.2 m/s-met quantities

Figure 202. Parked at 4.2 m/s—wind turbine operational quantities

Figure 203. Parked at 4.2 m/s-blade loads

Figure 204. Parked at 4.2 m/s-shaft and tower-top loads

Figure 205. Parked at 4.2 m/s-tower-base loads

Parked at 13.5 m/s

Event Description:	Parked at 13.5 m/s					
File Name:	FastWaveforms 2	FastWaveforms 2011_03_03 16_48_05 100Hz.tdms				
Date:	03-Mar-2011 16:48:00					
Measured Quantity	mean	sdv	min	max		
Wind Speed at 80 m (m/s)	13.5	1.5	8.9	18.6		
Wind Direction at 87 m (deg)	265.5	5.2	249.0	281.5		
Air Pressure (kPa)	80.1	0.0	80.0	80.1		
Temperature (deg C)	10.1	0.0	10.1	10.2		
Electric Power (kW)	-5.2	1.0	-14.4	-5.0		
Rotor Speed (rpm)	0.0	0.0	0.0	0.0		
Generator Speed (m/s)	0.0	0.0	0.0	0.0		
Nacelle Yaw Angle (deg)	265.8	2.4	261.0	267.0		
Blade 1 Pitch Position (deg)	85.0	0.0	85.0	85.0		
Blade 2 Pitch Position (deg)	85.0	0.0	85.0	85.0		
Blade 3 Pitch Position (deg)	85.0	0.0	85.0	85.0		
Operational Status (-)	203.0	0.0	203.0	203.0		
State Fault (-)	9.0	0.0	9.0	9.0		
Availability Status (V)	81.6	0.0	81.5	81.6		
Tower-Top Normal Acceleration (g)	-0.0	0.0	-0.1	0.1		
Tower-Top Lateral Acceleration (g)	-0.0	0.0	-0.1	0.1		
Blade 1 Flap Bending (kNm)	98.2	63.0	-63.8	257.7		
Blade 1 Leadlag Bending (kNm)	-98.8	13.9	-138.6	-39.6		
Blade 2 Flap Bending (kNm)	-599.8	35.4	-728.6	-463.9		
Blade 2 Leadlag Bending (kNm)	-136.7	15.1	-265.4	-23.6		
Blade 3 Flap Bending (kNm)	549.5	47.0	389.7	698.8		
Blade 3 Leadlag Bending (kNm)	-24.0	15.0	-144.1	79.6		
Main Shaft Bending 0 (kNm)	-1,254.3	0.1	-1,254.6	-1,254.0		
Main Shaft Bending 90 (kNm)	-1,713.9	0.1	-1,714.2	-1,713.5		
Main Shaft Torque (kNm)	-2,628.0	0.1	-2,628.5	-2,627.5		
Tower-Top Normal Bending (kNm)	-754.4	20.3	-837.2	-668.7		
Tower-Top Lateral Bending (kNm)	336.2	67.3	100.6	587.7		
Tower-Top Torque (kNm)	-16.7	25.9	-192.9	167.2		
Tower-Base Normal Bending (kNm)	-593.7	252.2	-1,550.0	236.2		
Tower-Base Lateral Bending (kNm)	302.0	664.3	-1,573.1	3,313.6		

Table 85. Brief Statistical Description for Parked at 13.5 m/s

Figure 206. Parked at 13.5 m/s-met quantities

Figure 207. Parked at 13.5 m/s—wind turbine operational quantities

Figure 208. Parked at 13.5 m/s—blade loads

Figure 209. Parked at 13.5 m/s—shaft and tower-top loads

Figure 210. Parked at 13.5 m/s-tower-base loads

Parked at 27.6 m/s

Event Description:	Parked at 27.6 m/s					
File Name:	FastWaveforms 20	011_03_22 18_42_26 1	00Hz.tdms			
Date:	22-Mar-2011 18:42:00					
Measured Quantity	mean	sdv	min	max		
Wind Speed at 80 m (m/s)	27.6	4.9	13.7	41.3		
Wind Direction at 87 m (deg)	272.5	8.1	245.4	295.9		
Air Pressure (kPa)	79.2	0.1	79.0	79.4		
Temperature (deg C)	2.8	0.6	2.0	3.8		
Electric Power (kW)	-5.1	0.6	-15.8	-4.9		
Rotor Speed (rpm)	1.0	1.0	0.0	8.4		
Generator Speed (m/s)	86.0	67.5	0.0	659.3		
Nacelle Yaw Angle (deg)	267.0	0.0	267.0	267.0		
Blade 1 Pitch Position (deg)	84.7	2.9	54.0	85.6		
Blade 2 Pitch Position (deg)	84.6	2.9	54.1	85.6		
Blade 3 Pitch Position (deg)	84.7	2.9	54.0	85.7		
Operational Status (-)	204.4	33.6	104.0	601.0		
State Fault (-)	439.9	492.4	3.0	1,000.0		
Availability Status (V)	89.9	0.4	89.6	90.8		
Tower-Top Normal Acceleration (g)	0.0	0.0	-0.1	0.1		
Tower-Top Lateral Acceleration (g)	0.0	0.0	-0.1	0.1		
Blade 1 Flap Bending (kNm)	-38.5	514.6	-1,101.1	1,360.6		
Blade 1 Leadlag Bending (kNm)	-16.2	89.1	-305.5	493.6		
Blade 2 Flap Bending (kNm)	76.9	519.4	-1,140.7	1,328.6		
Blade 2 Leadlag Bending (kNm)	3.0	86.9	-501.6	506.9		
Blade 3 Flap Bending (kNm)	21.7	521.5	-1,215.6	1,179.4		
Blade 3 Leadlag Bending (kNm)	-21.3	79.1	-470.1	303.3		
Main Shaft Bending 0 (kNm)	-30.7	209.3	-437.2	411.3		
Main Shaft Bending 90 (kNm)	-17.1	213.7	-442.7	402.2		
Main Shaft Torque (kNm)	-254.4	59.3	-723.5	132.7		
Tower-Top Normal Bending (kNm)	-726.7	110.4	-1,148.6	-264.8		
Tower-Top Lateral Bending (kNm)	296.3	144.6	-377.1	862.7		
Tower-Top Torque (kNm)	71.7	106.4	-435.7	456.7		
Tower-Base Normal Bending (kNm)	783.6	1,808.5	-4,908.3	5,849.4		
Tower-Base Lateral Bending (kNm)	2,207.4	3,306.0	-9,047.7	14,293.1		

Table 86. Brief Statistical Description for Parked at 27.6 m/s

Figure 211. Parked at 27.6 m/s-met quantities

Figure 212. Parked at 27.6 m/s—wind turbine operational quantities

Figure 213. Parked at 27.6 m/s—blade loads

Figure 214. Parked at 27.6 m/s—shaft and tower-top loads

Figure 215. Parked at 27.6 m/s-tower-base loads

Appendix B. Pictures of Test Site

Figure 216. View towards the west. Photo by Ismael Mendoza, NREL

Figure 217. View towards the northwest. Photo by Ismael Mendoza, NREL

Figure 218. View towards the north. Photo by Ismael Mendoza, NREL

Figure 219. View towards the northeast. Photo by Ismael Mendoza, NREL

Figure 220. View towards the east. Photo by Ismael Mendoza, NREL

Figure 221. View towards the southeast. Photo by Ismael Mendoza, NREL

Figure 222. View towards the south. Photo by Ismael Mendoza, NREL

Figure 223. View towards the southwest. Photo by Ismael Mendoza, NREL

Appendix C. Blade Slow Roll Results

This appendix shows the slow rolls used to derive the calibration coefficients for the blade bending moments. The blade signals were calibrated using slow rolls with three different pitch angles: ~ 0 degrees, ~ 85 degrees, and ~ 65 degrees.

Figure 225. Blade 1 flap slow roll calibration

Figure 226. Blade 1 leadlag crosstalk correction

Figure 227. Blade 1 flap crosstalk correction

Figure 229. Blade 2 flap slow roll calibration

Figure 230. Blade 2 leadlag crosstalk correction

Figure 231. Blade 2 flapwise crosstalk correction

Figure 233. Blade 3 flapwise slow roll calibration

Figure 234. Blade 3 leadlag crosstalk correction

Figure 235. Blade 3 flapwise crosstalk correction

Figure 236. Blade 1 flap pitch sweep calibration results

Figure 237. Blade 1 leadlag pitch sweep calibration results

Figure 238. Blade 2 leadlag pitch sweep calibration results

Figure 239. Blade 2 flap pitch sweep calibration results

Figure 240. Blade 3 leadlag pitch sweep calibration results

Figure 241. Blade 3 flap pitch sweep calibration results

Appendix D. Main Shaft Slow Roll Results

Figure 242. Main shaft bending 0 slow roll calibration

Figure 243. Main shaft bending 0 crosstalk correction

Figure 244. Main shaft bending 90 slow roll calibration

Figure 245. Main shaft bending 90 crosstalk correction

DOE 1.5 ML Test Report 140904.doc

Appendix E. Yaw Sweeps

Figure 246. Tower-top nacelle 360 sweep calibration

Figure 247. Tower-top 1 crosstalk calibration

Figure 248. Tower-top 1 nonlinear gain correction

Figure 249. Tower-top 2 crosstalk calibration

Figure 250. Tower-top 2 nonlinear gain correction

Figure 251. Tower-top nacelle validation original

Figure 252. Tower-base nacelle validation nonlinear correction

GE 1.5sle Tower Base Bending Signal after low pass filtering

Figure 253. Tower-base nacelle yaw sweep calibration

Figure 254. Tower-base nacelle validation

Appendix F. Shunt Calibrations

The shunt calibration is a measure of the system end-to-end gain. It is used on strain gage bridges. A 174.65 kOhm precision resistor was placed parallel to one of the arms of the Wheatstone bridge to simulate a change in gage strain. Using information about the structural composition of the gage location, strain-gage properties, and excitation voltage from the DAQ, an end-to-end analytical calibration of the gain is calculated. Figure 255 through Figure 268 and Table 87 through Table 100 show the results of the shunt calibrations on the blades, main shaft, and tower.

Client	National Renewable Energy Laboratory				
Turbine	DOE/GE 1.5sle				
Location	National Wind Technology Center, Golden , CO				
Signal	Blade 1 Flap Bend	ding			
Input Data	Value	Units	Approved		
(1) Outer Diameter	1950	[mm]	RS		
(2) Inner Diameter	1850	[mm]	RS		
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	II.		RS		
(6) Strain Gage Resistance	1000	[Ω]	RS		
(7) Gage Factor	2.05	0	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Excitation	1	0	RS		
(10) Amplifier Gain	1		RS		
(11) Calibration Date	2/10/2011	10/2011 RS			
Calculations					
(11) Section Modulus	1.38E+08	[mm^3]			
(12) Voltage Ratio	-1.42E-03	[V/V]			
(12) Simulated Strain	-694.29	microstrain			
(13) Simulatred Stress	-34.71	[N/mm^2]			
(14) Simulated Moment	-4798.38	[kNm]			
			_		
Calibrations					
(15) Bridge Voltage	-1.423	[mV]			
(16) Analog Signal Voltage	-0.001	[V]			
(17) Gain	3371342.49	[kNm/V]			
Shunt Calibration T	est				
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	0.00142	0.00143	-0.5%		
(19) e+ s-	-0.00142	-0.00143	-0.5%		
(20) e- s+	0.00142	0.00143	-0.5%		
(21) e- s-	-0.00142	-0.00142 -0.00143 -0.5%			

Table 87. Blade 1 Flap Bending Shunt Calibration Results

Figure 255. Blade 1 flap bending shunt calibration

Client	National Renewable Energy Laboratory			
Turbine	DOE/GE 1.5sle			
Location	National Wind Technology Center, Golden , CO			
Signal	Blade 1 Edge Bending			
Input Data	Value	Units	Approved	
(1) Outer Diameter	1950	[mm]	RS	
(2) Inner Diameter	1850	[mm]	RS	
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS	
(4) Poissons Ratio	0.3	0	RS	
(5) Strain Gage Type	II		RS	
(6) Strain Gage Resistance	1000	[Ω]	RS	
(7) Gage Factor	2.05	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	1	0	RS	
(10) Amplifier Gain	1		RS	
(11) Calibration Date	2/10/2011	2/10/2011		
Calculations				
(11) Section Modulus	1.38E+08	[mm^3]		
(12) Voltage Ratio	-1.42E-03	[V/V]		
(12) Simulated Strain	-694.29	microstrain		
(13) Simulatred Stress	-34.71	[N/mm^2]		
(14) Simulated Moment	-4798.38	[kNm]		
Calibrations				
(15) Bridge Voltage	-1.423	[mV]		
(16) Analog Signal Voltage	-0.001	[V]		
(17) Gain	3371342.49	[kNm/V]		
Shunt Calibration T	est			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	0.00142	0.00143	-0.5%	
(19) e+ s-	-0.00142	-0.00143	-0.5%	
(20) e- s+	0.00142	0.00143	-0.5%	
(21) e- s-	-0.00142 -0.00143 -0.5%			

Table 88. Blade 1 Leadlag Bending Shunt Calibration Results

Figure 256. Blade 1 leadlag bending shunt calibration

Client	National Renewa	able Energy Laboratory		
Turbine	DOE/GE 1.5sle			
Location	National Wind Technology Center, Golden , CO			
Signal	Blade 2 Flap Ber	nding		
Input Data	Value	Units	Approved	
(1) Outer Diameter	1950	[mm]	RS	
(2) Inner Diameter	1850	[mm]	RS	
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS	
(4) Poissons Ratio	0.3	0	RS	
(5) Strain Gage Type	11		RS	
(6) Strain Gage Resistance	1000	[Ω]	RS	
(7) Gage Factor	2.05	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	1	0	RS	
(10) Amplifier Gain	1		RS	
(11) Calibration Date	2/10/2011		RS	
Calculations				
(11) Section Modulus	1.38E+08	[mm^3]		
(12) Voltage Ratio	-1.42E-03	[V/V]		
(12) Simulated Strain	-694.29	microstrain		
(13) Simulatred Stress	-34.71	[N/mm^2]		
(14) Simulated Moment	-4798.38	[kNm]		
Calibrations				
(15) Bridge Voltage	-1.423	[mV]		
(16) Analog Signal Voltage	-0.001	[V]		
(17) Gain	3371342.49	[kNm/V]		
Shunt Calibration	Fest			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	0.00142	0.00143	-0.5%	
(19) e+ s-	-0.00142	-0.00143	-0.5%	
(20) e- s+	0.00142	0.00143	-0.5%	
(21) e- s-	-0.00142	-0.00143	-0.5%	

Table 89. Blade 2 Flap Bending Shunt Calibration Results

Figure 257. Blade 2 flap bending shunt calibration

Client	National Renewable Energy Laboratory				
Turbine	DOE/GE 1.5sle				
Location	National Wind Technology Center, Golden , CO				
Signal	Blade 2 Edge Bending				
Input Data	Value	Units	Approved		
(1) Outer Diameter	1950	[mm]	RS		
(2) Inner Diameter	1850	[mm]	RS		
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	11		RS		
(6) Strain Gage Resistance	1000	[Ω]	RS		
(7) Gage Factor	2.05	0	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Excitation	1	0	RS		
(10) Amplifier Gain	1		RS		
(11) Calibration Date	2/10/2011	2/10/2011 RS			
Calculations					
(11) Section Modulus	1.38E+08	[mm^3]			
(12) Voltage Ratio	-1.42E-03	[V/V]			
(12) Simulated Strain	-694.29	microstrain			
(13) Simulatred Stress	-34.71	[N/mm^2]			
(14) Simulated Moment	-4798.38	[kNm]			
Calibrations					
(15) Bridge Voltage	-1.423	[mV]			
(16) Analog Signal Voltage	-0.001	[V]			
(17) Gain	3371342.49	[kNm/V]			
Shunt Calibration Test					
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	0.00142	0.00143	-0.4%		
(19) e+ s-	-0.00142	-0.00143	-0.4%		
(20) e- s+	0.00142	0.00143	-0.4%		
(21) e- s-	-0.00142	.00142 -0.00143 -0.4%			

Table 90. Blade 2 Leadlag Bending Shunt Calibration Results

Figure 258. Blade 2 leadlag bending shunt calibration

Client	National Renewable Energy Laboratory			
Turbine	DOE/GE 1.5sle			
Location	National Wind Technology Center, Golden , CO			
Signal	Blade 3 Flap Bending			
Input Data	Value	Units	Approved	
(1) Outer Diameter	1950	[mm]	RS	
(2) Inner Diameter	1850	[mm]	RS	
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS	
(4) Poissons Ratio	0.3	0	RS	
(5) Strain Gage Type	II		RS	
(6) Strain Gage Resistance	1000	[Ω]	RS	
(7) Gage Factor	2.05	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	1	0	RS	
(10) Amplifier Gain	1		RS	
(11) Calibration Date	2/10/2011	2/10/2011		
Calculations				
(11) Section Modulus	1.38E+08	[mm^3]		
(12) Voltage Ratio	-1.42E-03	[V/V]		
(12) Simulated Strain	-694.29	microstrain		
(13) Simulatred Stress	-34.71	[N/mm^2]		
(14) Simulated Moment	-4798.38	[kNm]		
Calibrations				
(15) Bridge Voltage	-1.423	[mV]		
(16) Analog Signal Voltage	-0.001	[V]		
(17) Gain	3371342.49	[kNm/V]		
Shunt Calibration T	est			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	0.00142	0.00143	-0.3%	
(19) e+ s-	-0.00142	-0.00143	-0.6%	
(20) e- s+	0.00142	0.00143	-0.3%	
(21) e- s-	-0.00142 -0.00143 -0.6%			

Table 91. Blade 3 Flap Bending Shunt Calibration Results

Figure 259. Blade 3 flap bending shunt calibration

Client	National Renewable Energy Laboratory			
Turbine	DOE/GE 1.5sle			
Location	National Wind Technology Center, Golden , CO			
Signal	Blade 3 Edge Bending			
Input Data	Value	Units	Approved	
(1) Outer Diameter	1950	[mm]	RS	
(2) Inner Diameter	1850	[mm]	RS	
(3) Modulus of Elasticity	5.00E+04	[N/mm^2]	RS	
(4) Poissons Ratio	0.3	0	RS	
(5) Strain Gage Type	II		RS	
(6) Strain Gage Resistance	1000	[Ω]	RS	
(7) Gage Factor	2.05	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	1	0	RS	
(10) Amplifier Gain	1		RS	
(11) Calibration Date	2/10/2011	2/10/2011 RS		
Calculations				
(11) Section Modulus	1.38E+08	[mm^3]		
(12) Voltage Ratio	-1.42E-03	[V/V]		
(12) Simulated Strain	-694.29	microstrain		
(13) Simulatred Stress	-34.71	[N/mm^2]		
(14) Simulated Moment	-4798.38	[kNm]		
Calibrations				
(15) Bridge Voltage	-1.423	[mV]		
(16) Analog Signal Voltage	-0.001	[V]		
(17) Gain	3371342.49	[kNm/V]		
Shunt Calibration T	est			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	0.00142	0.00143	-0.3%	
(19) e+ s-	-0.00142	-0.00143	-0.4%	
(20) e- s+	0.00142	0.00143	-0.3%	
(21) e- s-	-0.00142 -0.00143 -0.4%			

Table 92. Blade 3 Leadlag Bending Shunt Calibration Results

Figure 260. Blade 3 leadlag bending shunt calibration

Client	National Renewable Energy Laboratory				
Turbine	DOE/GE 1.5sle				
Location	National Wind Technology Center, Golden , CO				
Signal	Main Shaft Down	Main Shaft Downwind 0 Bending			
Input Data	Value	Units	Approved		
(1) Outer Diameter	581	[mm]	RS		
(2) Inner Diameter	40	[mm]	RS		
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	П		RS		
(6) Strain Gage Resistance	350	[Ω]	RS		
(7) Gage Factor	2.02	0	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Amplifier Gain	999	0	RS		
(10) Excitation	3	[] RS			
(11) Calibration Date	2/10/2011	0/2011 RS			
Calculations					
(12) Section Modulus	1.93E+07	[mm^3]			
(13) Voltage Ratio	-5.00E-04	[V/V]			
(14) Simulated Strain	-247.52	microstrain			
(15) Simulatred Stress	-51.98	[N/mm^2]			
(16) Simulated Moment	-1000.82	[kNm]			
Calibrations					
(17) Bridge Voltage	-1.500	[mV]			
(18) Analog Signal Voltage	-1.499	[V]			
(19) Gain	667.88	[kNm/V]			
Shunt Calibration Test					
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	-1.499	-1.497	0.1%		
(19) e+ s-	1.499	1.482	1.1%		
(20) e- s+	-1.499	-1.479	1.3%		
(21) e- s-	1.499	1.499 1.482 1.1%			

Table 93. Main Shaft Bending 0 Shunt Calibration Results

Figure 261. Main shaft bending 0 shunt calibration

Client	National Renewable Energy Laboratory				
Turbine	DOE/GE 1.5sle				
Location	National Wind Technology Center, Golden , CO				
Signal	Main Shaft Downwind 90 Bending				
Input Data	Value	Units	Approved		
(1) Outer Diameter	581	[mm]	RS		
(2) Inner Diameter	40	[mm]	RS		
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	II		RS		
(6) Strain Gage Resistance	350	[Ω]	RS		
(7) Gage Factor	2.02	0	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Amplifier Gain	999	0	RS		
(10) Excitation	3	[] RS			
(11) Calibration Date	2/10/2011	10/2011 RS			
Calculations					
(12) Section Modulus	1.93E+07	[mm^3]			
(13) Voltage Ratio	-5.00E-04	[V/V]			
(14) Simulated Strain	-247.52	microstrain			
(15) Simulatred Stress	-51.98	[N/mm^2]			
(16) Simulated Moment	-1000.82	[kNm]			
Calibrations					
(17) Bridge Voltage	-1.500	[mV]			
(18) Analog Signal Voltage	-1.499	[V]			
(19) Gain	667.88	[kNm/V]			
Shunt Calibration T	Shunt Calibration Test				
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	-1.499	-1.498	0.0%		
(19) e+ s-	1.499	1.482	1.1%		
(20) e- s+	-1.499	-1.489	0.6%		
(21) e- s-	1.499	1.499 1.482 1.1%			

Table 94. Main Shaft Bending 90 Shunt Calibration Results

Figure 262. Main shaft bending 90 shunt calibration

Client	National Renewable Energy Laboratory			
Turbine	DOE/GE 1.5sle			
Location	National Wind Technology Center, Golden , CO			
Signal	Main Shaft Downwind	Main Shaft Downwind Torsion		
Input Data	Value	Units	Approved	
(1) Outer Diameter	581	[mm]	RS	
(2) Inner Diameter	40	[mm]	RS	
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS	
(4) Pissons Ratio	0.3	0	RS	
(5) Strain Gage Type	S		RS	
(6) Strain Gage Resistance	350	[Ω]	RS	
(7) Gage Factor	2.03	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	3	0	RS	
(9) Amplifier Gain	999	0	RS	
(10) Calibration Date	2/10/2011		RS	
Calculations				
Polar Moment	3.85E+07	[mm^3]		
Voltage Ratio	-0.0005	[V/V]		
Simulated Strain	-246.3054187	[micro-strain]		
Shear Modulus	80769	[N/mm^2]		
Torque	-1532	[kNm]		
Calibrations				
(15) Bridge Voltage	-1.50	[mV]		
(16) Analog Signal Voltage	-1.50	[V]		
(17) Gain	1022.45	[kNm/V]		
Shunt Calibration Te	est			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	-1.499	-1.480	1.2%	
(19) e+ s-	1.499	1.490	0.6%	
(20) e- s+	-1.499	-1.480	1.2%	
(21) e- s-	1.499	1.480	1.3%	

Table 95. Main Shaft Torque Shunt Calibration Results

Figure 263. Main shaft torque shunt calibration

Client	National Penewahle	National Penewahle Energy Laboratory			
Turbine	DOF/GE 1 5sle				
Location	National Wind Tech	National Wind Technology Center, Golden, CO			
Signal	TowerTop Bending	TowerTon Bending 1			
Input Data	Value	Units	Approved		
(1) Outer Diameter	2564	[mm]	RS		
(2) Inner Diameter	2540	[mm]	RS		
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	т		RS		
(6) Strain Gage Resistance	350	[Ω]	RS		
(7) Gage Factor	2.02	0	RS		
(8) Excitation Voltage	5	[Y]	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Calibration Date	2/10/2011		RS		
		1			
Calculations					
(11) Section Modulus	6.11E+07	[mm^3]			
(12) Voltage Ratio	-5.00E-04	[V/V]			
(12) Simulated Strain	-380.81	microstrain			
(13) Simulatred Stress	-79.97	[N/mm^2]			
(14) Simulated Moment	-4886	[kNm]			
			_		
Calibrations					
(15) Bridge Voltage	2.98E-05	[mV]			
(16) Analog Signal Voltage	0.00	[V]			
(17) Gain	9.77E+06	[kNm/V/V]			
Shunt Calibration Tes	t				
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	5.0000E-04	5.0331E-04	-0.7%		
(19) e+ s-	-5.0000E-04	-5.0237E-04	-0.5%		
(20) e- s+	5.0000E-04	5.0288E-04	-0.6%		
(21) e- s-	-5.0000E-04	-5.0317E-04	-0.6%		

Table 96. Tower-Top 1 Bending Shunt Calibration Results

Figure 264. Tower-top 1 bending shunt calibration

Client	National Renewable Energy Laboratory				
Turbine	DOE/GE 1.5sle				
Location	National Wind Technology Center, Golden , CO				
Signal	TowerTop Bending 2				
Input Data	Value	Units	Approved		
(1) Outer Diameter	2564	[mm]	RS		
(2) Inner Diameter	2540	[mm]	RS		
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS		
(4) Poissons Ratio	0.3	0	RS		
(5) Strain Gage Type	т		RS		
(6) Strain Gage Resistance	350	[Ω]	RS		
(7) Gage Factor	2.02	0	RS		
(8) Excitation Voltage	5	[V]	RS		
(8) Shunt Resistance	174.65	[kΩ]	RS		
(9) Calibration Date	2/10/2011 F		RS		
		1			
Calculations					
(11) Section Modulus	6.11E+07	[mm^3]			
(12) Voltage Ratio	-5.00E-04	[V/V]			
(12) Simulated Strain	-380.81	microstrain			
(13) Simulatred Stress	-79.97	[N/mm^2]			
(14) Simulated Moment	-4886	[kNm]			
			_		
Calibrations					
(15) Bridge Voltage	2.98E-05	[mV]			
(16) Analog Signal Voltage	0.00	[V]			
(17) Gain	9.77E+06	[kNm/V/V]			
Shunt Calibration Test					
Test Case	Simulated	DAS	Error (%)		
(18) e+ s+	0.00E+00	0.00E+00	0.0%		
(19) e+ s-	5.00E-04	5.04E-04	-0.8%		
(20) e- s+	0.00E+00	1.93E-06	0.0%		
(21) e- s-	-5.00E-04	-5.01E-04	-0.2%		

Table 97. Tower-Top 2 Bending Shunt Calibration Results

Figure 265. Tower-top 2 bending shunt calibration

Client	National Renewable End	ergy Laboratory		
Turbine	DOE/GE 1.5sle	DOE/GE 1.5sle		
Location	National Wind Technolo	ogy Center, Golden	, CO	
Signal	Tower Top Torsion			
Input Data	Value	Units	Approved	
(1) Outer Diameter	2564	[mm]	RS	
(2) Inner Diameter	2540	[mm]	RS	
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS	
(4) Pissons Ratio	0.3	0	RS	
(5) Strain Gage Type	S		RS	
(6) Strain Gage Resistance	350	[Ω]	RS	
(7) Gage Factor	2.02	0	RS	
(8) Shunt Resistance	174.65	[kΩ]	RS	
(9) Excitation	5	0	RS	
(10) Calibration Date	2/10/2011		RS	
Calculations				
(11) Polar Moment	1.22E+08	[mm^3]		
(12) Voltage Ratio	-5.00E-04	[kNm]		
(13) strain	-247.52	[microstrain]		
(14) Shear Modulus	80769.23	[N/mm^2]		
(15) Torque	-4886	[kNm]		
Calibrations				
(15) Bridge Voltage	-2.50	[mV]		
(16) Analog Signal Voltage	-2.50	[mV]		
(17) Gain	9.77E+06	[kNm/V/V]		
Shunt Calibration To	est			
Test Case	Simulated	DAS	Error (%)	
(18) e+ s+	5.000E-04	5.038E-04	-0.8%	
(19) e+ s-	-5.000E-04	-5.048E-04	-1.0%	
(20) e- s+	5.000E-04	5.038E-04	-0.8%	
(21) e- s-	-5.000E-04	-5.048E-04	-1.0%	

Table 98. Tower-Top Torque Bending Shunt Calibration Results

Figure 266. Tower-top torque shunt calibration

Client	National Renewable Energy Lab	oratory	
Turbine	DOE/GE 1.5sle		
Location	National Wind Technology Cent	er, Golden , C	0
Signal	Tower Base Bending 1		
Input Data	Value	Units	Approved
(1) Outer Diameter	4297	[mm]	RS
(2) Inner Diameter	4255	[mm]	RS
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS
(4) Pissons Ratio	0.3	0	RS
(5) Strain Gage Type	Т		RS
(6) Strain Gage Resistance	350	[Ω]	RS
(7) Gage Factor	2.02	0	RS
(8) Excitation Voltage	5	[V]	RS
(8) Shunt Resistance	174.65	[kΩ]	RS
(9) Calibration Date	2/10/2011		RS
Calculations			
(11) Section Modulus	3.00E+08	[mm^3]	
(12) Voltage Ratio	-5.00E-04	[V/V]	
(12) Simulated Strain	-380.81	microstrain	
(13) Simulatred Stress	-79.97	[N/mm^2]	
(14) Simulated Moment	-23999	[kNm]	
Calibrations			
(15) Bridge Voltage	-2.50	[mV]	
(16) Analog Signal Voltage	-2.50	[V]	
(17) Gain	4.80E+07	[kNm/V/V]	
Shunt Calibration Test			
Test Case	Simulated	DAS	Error (%)
(18) e+ s+	5.000E-04	5.058E-04	-1.2%
(19) e+ s-	-5.000E-04	-5.058E-04	-1.2%
(20) e- s+	5.000E-04	5.058E-04	-1.2%
(21) e- s-	-5.000E-04	-5.058E-04	-1.2%

Table 99. Tower-Base 1 Bending Shunt Calibration Results

Figure 267. Tower-base 1 bending shunt calibration

Client	National Renewable Energy Lab	oratory	
Turbine	DOE/GE 1.5sle		
Location	National Wind Technology Cent	er, Golden , C	0
Signal	Tower Base Bending 2		
Input Data	Value	Units	Approved
(1) Outer Diameter	4297	[mm]	RS
(2) Inner Diameter	4255	[mm]	RS
(3) Modulus of Elasticity	2.10E+05	[N/mm^2]	RS
(4) Pissons Ratio	0.3	0	RS
(5) Strain Gage Type	Т		RS
(6) Strain Gage Resistance	350	[Ω]	RS
(7) Gage Factor	2.02	0	RS
(8) Excitation Voltage	5	[V]	RS
(8) Shunt Resistance	174.65	[kΩ]	RS
(9) Calibration Date	2/10/2011		RS
Calculations			
(11) Section Modulus	3.00E+08	[mm^3]	
(12) Voltage Ratio	-5.00E-04	[V/V]	
(12) Simulated Strain	-380.81	microstrain	
(13) Simulatred Stress	-79.97	[N/mm^2]	
(14) Simulated Moment	-23999	[kNm]	
Calibrations			
(15) Bridge Voltage	-2.50	[mV]	
(16) Analog Signal Voltage	-2.50	[V]	
(17) Gain	4.80E+07	[kNm/V/V]	
Shunt Calibration Test			
Test Case	Simulated	DAS	Error (%)
(18) e+ s+	5.000E-04	5.057E-04	-1.1%
(19) e+ s-	-5.000E-04	-5.057E-04	-1.1%
(20) e- s+	5.000E-04	5.057E-04	-1.1%
(21) e- s-	-5.000E-04	-5.057E-04	-1.1%

Table 100. Tower-Base 2 Bending Shunt Calibration Results

Figure 268. Tower-base 2 bending shunt calibration

Appendix G. Instrument Calibration Sheets

 Room Temperature:
 24.6
 °C
 Room Relative Humidity:
 42.9

Recommended calibration interval is 12 months from the first day of use.

Calibration Standards

Standards	Manufacturer	Model	SN	Cal Due
DMM	HEWLETT PACKARD	3468B	2231A01057	April 7, 2011
TEMPERATURE	ROSEMONT	T-200	1171688	January 12, 2011
RH Sensor	Met One Instruments	083D-1-35	W3673	June 26, 2011
BAROMETRIC PRESSURE	MET ONE INSTRUMENTS	090B	H6507	July 2, 2011

Test Data

TEST	UUT	SPEC	NOTES
OUTPUT Vpp	10.6 Vpp	8.0 Vpp Min	
SYMMETRY %Duty	55.90%	50 ±10%	
CURRENT DRAIN	3.5 mA	5.0 mA TYP.	
STARTING TORQUE	0.324 GM-CM	1.0 GM-CM MAX	
SHAFT END PLAY	0.0145 in	0.006 to 0.020 in	
SHAFT & HUB RUNOUT	0.0005 in	0.000 to 0.005 in	

Test Procedure # 42061-6101, 53645-6101

The standards used for this calibration have accuracies equal to or greater than the instruments tested. These standards are on record and traceable to NIST to the extent allowed by the institute's calibration facility. Unless otherwise stated hereon, all instruments are calibrated to meet the manufacturer's published specifications. The Calibration system complies with MIL-STD-45662A.

SS201-9600 Rev B

Figure 269. Calibration sheet for reference anemometer

%

DEUTSCHER KALIBRIERDIENST DKD

Kalibrierlaboratorium / Calibration laboratory Akkreditiert durch die / accredited by the Akkreditierungsstelle des Deutschen Kalibrierdienstes

Deutsche WindGuard Wind Tunnel Services GmbH Varel

DKD-K- 36801

			09/5843
Kalibrierschein		Kalibrierzeichen	DKD-K- 36801
Calibration Certificate		Calibration label	09/2009
Gegenstand Object	Cup Anemometer	Dieser Kalibrierschein Rückführung auf nationa Darstellung der Einheiten ir	dokumentiert die ale Normale zur n Übereinstimmung
Hersteller	Thies Clima	mit dem Internationalen Ein	heitensystem (SI).
Manufacturer	D-37083 Göttingen	Übereinkommen der Europe	an co-operation for
Тур Туре	4.3351.10.000	Laboratory Accreditation C zur gegenseitigen Al	Cooperation (ILAC) nerkennung der
Fabrikat/Serien-Nr. Serial number	Body: 0909219 Cup: 0909219	Für die Einhaltung einer a zur Wiederholung der Ka	ngemessenen Frist alibrierung ist der
Auftraggeber Customer	Sky Power International LLC USA - Liberty, SC 29657	Benutzer verantwortlich. This calibration certificativ traceability to national stand the units of measurement International System of Unit	e documents the fards, which realize t according to the s (SI).
Auftragsnummer Order No.	VT09556	The DKD is signatory agreements of the Europe	to the multilateral an co-operation for
Anzahl der Seiten des Kalit Number of pages of the certificate	prierscheines 3	Laboratory Accreditation (EA) and o Laboratory Accreditation (for the mutual recogniti certificates.	Cooperation (ILAC) ion of calibration
Datum der Kalibrierung Date of calibration	26.09.2009	The user is obliged to have recalibrated at appropriate in	the object ntervals.

Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung sowohl der Akkreditierungsstelle des DKD als auch des ausstellenden Kalibrierlaboratoriums. Kalibrierscheine ohne Unterschrift und Stempel haben keine Gültigkeit.

This calibration certificate may not be reproduced other than in full except with the permission of both the Accreditation Body of the DKD and the issuing laboratory. Calibration certificates without signature and seal are not valid.

Deutsche WindGuard Wind Tunnel Services GmbH Oldenburger Str. 65 26316 Varel ; Tel. ++49 (0)4451 9515 0

Figure 270. Calibration sheet for primary anemometer

Met One Instruments, Inc. 1600 NW Washington Blvd. Grants Pass, Oregon 97526 Telephone 541-471-7111 Facsimile 541-541-7116 Regional Service 3206 Main St. Suite 106 Rowlett, Texas 75088 Telephone 972-412-4715 Facsimile 972-412-4716

			les	t Certificate			
Model:	SD201			Sensor Serial	No: K16689	9	
Job Num	iber:			Customer:			
Test Date	e: 12/10)/2010		Tested by:	D. Hoaglan	d	
Room Te	mperature:	24.6	°C	Room Relativ	e Humidity:	42.9	%
Recomme	nded calibratio	n interval is 12	months fro	m the first day of use.			

Calibration Standards

Standards	Manufacturer	Model	SN	Cal Due
DM M	HEWLETT PACKARD	3468B	2231A01057	April 7, 2011
TEMPERATURE	ROSEMONT	T-200	1171688	January 12, 2011
RH Sensor	Met One Instruments	083D-1-35	W3673	June 26, 2011
BAROMETRIC PRESSURE	MET ONE INSTRUMENTS	090B	H6507	July 2, 2011

Test Data

TEST	OUTPUT VOLTS	INDICATED $^\circ$	ERROR °	SPEC	NOTES
0°	0.001	0.1	0.1	±5°	
30°	0.299	29.9	-0.1	±5°	
60°	0.601	60.1	0.1	±5°	
90°	0.905	90.5	0.5	±5°	
120°	1.204	120.4	0.4	±5°	
150°	1.503	150.3	0.3	±5°	
180°	1.804	180.4	0.4	±5°	
210°	2.109	210.9	0.9	±5°	
240°	2.416	241.6	1.6	±5°	
270°	2.723	272.3	2.3	±5°	
300°	3.030	303.0	3.0	±5°	
330°	3.337	333.7	3.7	±5°	

Test Procedure #42062-6200

The standards used for this calibration have accuracies equal to or greater than the instruments tested. These standards are on record and traceable to NIST to the extent allowed by the institute's calibration facility. Unless otherwise stated hereon, all instruments are calibrated to meet the manufacturer's published specifications. The Calibration system complies with MIL-STD-45662A.

SD210-9600 Rev B

Figure 271. Calibration sheet of wind vane K16689

Branch #: 5000

sheet: 1 of: 1

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Pressure Transmitter

DOE #: 03466C S/N : B2130018

Model # : PTB101B

Due Date: 09/22/2011

Calibration	Date:	09/22	/2010
CHING LACING	These and a state of the	Contraction and	- mar

()Mfr. Specs. Function Nominal Measured Output Voltage Value OR Tested (VDC) N (kPa) (X)Data only (mb) 0 As Found As Left * Absolute Pressure 65 0.265 70 0.538 75 0.809 80 1.081 85 1.352 90 1.624 95 1.895 100 2.167 103 2.330 Notes: 1. Expanded Uncertainty of the nominal value is ± 0.2 kPa, with k = 2. 2. Calibration was performed at 24°C and 39% RH. 3. Calibration was performed using standards that are traceable to NIST. DOE numbers: 128120, and 02301C.

Calibrated By: P. Morse Date: 09/22/2010

Approved By: D. Myers Date: 09/22/2010

Figure 272. Calibration sheet for pressure transducer

Branch #: 5000

sheet: 1 of: 1

NREL METROLOGY LABORATORY

Test Report

Test Instrument: RTD

DOE #: 03507C

Model # : 78N01N00N04

S/N : 0673552 Due Date: 09/23/2011

Calibration Date: 09/23/2010

No Function		Nominal	Measured Values (Ω)		()Mfr. Specs. OR
Tested	Tested Value (°C)	AS Found	AS Left	(X)Data only	
*	Temperature:	-15	94.118	Same	
		0	100.005	w	
		15	105.854	w	
		30	111.680	w	
		45	117.481	w	
	Notes: - Calibration was NIST. DOE#s 124272 - Calibration was humidity = 40%. - Uncertainty of N	performed us , 108603, an performed at ominal Value	ing instrume d 108604. temperature s = ± 0.02 °	nts that are = $23 ^{\circ}\text{C}$ and C, $k = 2$.	relative
-					
				2	

Calibrated By: P. Morse Date: 9/23/2010 Approved By: D. Myers Date: 9/23/2010

Figure 273. Calibration sheet for temperature sensor

Board Information: Serial Number: 158B4F4 NI Part Number: 198857A-01L Description: NI 9239

Certificate Information: Certificate Number: 1981620 Date Printed: 16-MAR-11

Calibration Date: 10-JAN-11 Recommended Calibration Due Date: 10-JAN-12*

Ambient Temperature: 23 °C Relative Humidity: 35 %

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instrument procedures. These procedures are designed to assure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument and standards. The measurement standards and instruments used during the calibration of this product are traceable to NIST and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact National Instruments Technical Support.

NI Hungary Software és Hardware Gyártó Kft. 4031 Debrecen, Határ út 1/A. HUNGARY Signed,

2Km

Andrew Krupp Vice President, Quality and Continuous Improvement

* Recommended calibration due date is based on a combination of calibration interval and, when applicable, calibration shelf life. This date may vary depending on your

Figure 274. Calibration sheet for signal conditioning module 158B4F4

Board Information: Serial Number: 158B478 NI Part Number: 198857A-01L Description: NI 9239 Certificate Information: Certificate Number: 1981879 Date Printed: 16-MAR-11

Calibration Date: 10-JAN-11 Recommended Calibration Due Date: 10-JAN-12*

Ambient Temperature: 23 °C Relative Humidity: 35 %

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instrument procedures. These procedures are designed to assure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument and standards. The measurement standards and instruments used during the calibration of this product are traceable to NIST and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact National Instruments Technical Support.

NI Hungary Software és Hardware Gyártó Kft. 4031 Debrecen, Határ út 1/A. HUNGARY Signed,

2Km

Andrew Krupp Vice President, Quality and Continuous Improvement

* Recommended calibration due date is based on a combination of calibration interval and, when applicable, calibration shelf life. This date may vary depending on your

Figure 275. Calibration sheet for signal conditioning module 158B478

Certificate Page 1 of 1

Instrument Identification

PO Number: CC-BEVERLY KAY

Model Number: NI 9217

Serial Number: 12BD192

Company ID: 120205 NATIONAL RENEWABLE ENERGY LAB BEV KAY/SRRL 16253 DENVER WEST PARKWAY GOLDEN, CO 80401

Instrument ID: 03889C Manufacturer: NATIONAL INSTRUMENTS Description: 4-CH 100 OHM 24-BIT RTD ANALOG INPUT

Accuracy: Mfr. Specifications

Certificate Information Technician: COREY CLAXTON Reason For Service: CALIBRATION Type of Cal: ACCREDITED 17025 WITH UNCERTAINTIES Cal Date 21Aug2010 Cal Due Date: 21Aug2011 As Found Condition: IN TOLERANCE Interval: 12 MONTHS As Left Condition: LEFT AS FOUND Temperature: 23.0 C Procedure: NATIONAL INSTRUMENTS CAL EXECUTIVE 3.4 Humidity: 55.0 % Remarks: CALIBRATED WITH DATA, REFER TO ATTACHED DATA FOR BEFORE AND AFTER READINGS. The instrument on this certification has been calibrated against standards traceable to the National Institute of Standards and Technology (NIST) or other recognized mal metrology institutes, derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards A test uncertainty ratio (T.U.R.) of 4:1 [K=2, approx. 95% Confidence Level] was maintained unless otherwise stated Davis Calibration Laboratory is certified to ISO 9001:2008 by Eagle Registrations (certificate # 3046). Lab Operations meet the requirements of ANSI/NCSL Z540-1-1994 (R2002), ISO 10012:2003, 10CFR50 AppxB, and 10CFR21. 180/IEC 17025-2005 accredited calibrations are per ACLASS certificate # AC-1187 within the scope for which the lab is accredited. When uncertainty measurement calculations have been calculated per customer request, reported comilition statements do not take into account uncertainty of measure All results contained within this certification relate only to item(s) calibrated. Any number of factors may cause the calibration item to drift out of calibration before the instrument's calibration interval has expired This certificate shall not be reproduced except in full, without written consent of Davis Calibration Laboratory. Approved By: COREY CLAXTON Service Representative Calibration Standards NIST Traceable# Inst. ID# Description Model Cal Date Date Due REFERENCE MULTIMETER 8508A 02Dec2009 02Dec2010 3730238 15-0247

Davis Calibration • 2324 Ridgepoint Drive, Suite D • Austin, TX 78754 • Phone: 800-365-0147 • Fax: 512-926-8450

Figure 276. Calibration sheet for signal conditioning module 12BD192

DOE 1.5 ML Test Report 140904.doc

Certificate Page 1 of 1

Instrument Identification

PO Number: CC-BEVERLY KAY

Company ID: 120205 NATIONAL RENEWABLE ENERGY LAB BEV KAY/SRRL 16253 DENVER WEST PARKWAY GOLDEN, CO 80401

 Instrument ID:
 03886C
 Model Number: NI 9205

 Manufacturer:
 NATIONAL INSTRUMENTS
 Serial Number: 12E9CD3

 Description:
 32-CH ±200 MV TO ±10 V, 16-BIT, 250 KS/S ANALOG INPUT MODULE

Accuracy: Mfr Specifications

		Certificat	e Information			
Reason For Service:	CALIBRATI	ON		Technician	COREY CI	AXTON
Type of Cal:	ACCREDITI	ED 17025 WITH UNCERTA	INTIES	Cal Date	21Aug2010)
As Found Condition:	IN TOLERA	NCE		Cal Due Date	21Aug201	1
As Left Condition:	LEFT AS FO	DUND		Interval	12 MON	THS
Procedure:	NATIONAL	INSTRUMENTS CAL EXEC	CUTIVE 3.4	Temperature	23.0 C	
				Humidity	: 55.0 %	
Remarks:	CALIBRATED	WITH DATA, REFER TO ATTACI	HED DATA FOR BEFORE	AND AFTER READI	NGS.	
The instrument on t	the contification have	have collocated an incidence tracked records	a to the Verland Institute of Street	lands and Technolous ANN	the set of second second	
ratio	nal metrology institu	ites, derived from ratio type measurements	or compared to nationally or in	ernationally recognized co	ry or other recogni, osensus standards.	204
	A test uncer	$ttainty\ ratio\ (T.U.R.)\ of\ 4:I\ [K=2,\ approx.$	95% Confidence Levelf was main	tained unless otherwise sta	ted.	
Davis Calibra	tion Laboratory is co	ertified to ISO 9001:2008 by Eagle Registry	ations (certificate # 3046), Lab Oj	perations meet the requiren	ients of	
		ANSI/NCSI, Z540-1-1994 (R200)), ISO 10012:2003, 10CFR\$0 Apj	txB, and 10CFR21.		
When uncertainty n All results conta	ISO/IEC 17025-20 seasurement calcula ined within this certi	05 accredited calibrations are per ACLAS tions have been calculated per customer re fication relate only to item(s) calibrated. A instrument's calib	S certificate # AC-1187 within the quest, reported condition stateme ny number of factors may cause t ration interval has expired.	scope for which the lab is a nts do not take into accoun he calibration item to drift	uccredited. t uncertainty of mea out of calibration b	isurement. cfore the
	This certificate s	hall not be reproduced except in full, with	nt written consent of Davis Calib	ration Laboratory.		
		Approved By: (COREY CLAXTON			
		Service Represe	entative			
		Calibrat	ion Standards			
NIST Traceable#	Inst. ID#	Description		Model	Cal Date	Date Due
4291519	15-0271	MULTIFUNCTION CALIBRA	TOR	5700A	07Jul2010	05Oct2010

Davis Calibration • 2324 Ridgepoint Drive, Suite D • Austin, TX 78754 • Phone: 800-365-0147 • Fax: 512-926-8450

Figure 277. Calibration sheet for signal conditioning module 12E9CD3

Certificate Number:	960930	Date:
Serial Number:	1342666	Part Number:
Description:	CCA,NI 9237,4 CHANNEL BRIDGE INPUT	
Calibration Date:	19-FEB-2008	Shelf Life:
Calibration Due Date*:	-	Recommended Calibration Interval:
Temperature:	21 °C	Humidity:

Standards Used

Manufacturer	Model	Tracking Number	Calibration
VAISALA	HMP35E	5018	31-JUL-07
National Instruments	PXI-4110	6059	08-MAY-07
NATIONAL INSTRUMENTS	PXI-4070	6769	27-AUG-07
NATIONAL INSTRUMENTS	PXI-6120	6815	20-MAR-07

National Instruments certifies that at the time of test, the above product was calibrated in accordance with a procedures are designed to ensure that the product listed above meets or exceeds National Instruments specificatio

We further certify that the environment in which this product was calibrated is maintained within the operating spe measurement standards used during calibration are traceable to NIST and/or other International Measurement Instit Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may written consent of National Instruments.

*Optional field, *Calibration Due Date*, may be established by combining the *Recommended Calibration Interval*, *Ce Shelf Life*. Shelf life defines how long an instrument may be stored, after calibration, without impact to its specificatic

The instrument's Calibration Due Date can be calculated using the following methods:

a) If date placed in service is within Calibration Date + Shelf Life: Calibration Due Date = date placed in

b) If date placed in service is outside Calibration Date + Shelf Life: Calibration Due Date = Calibration D Interval

For questions or comments, please contact National Instruments Technical Support.

Figure 278. Calibration sheet for signal conditioning module 1342666

Certificate Number:	1004899	Date:
Serial Number:	1357162	Part Number:
Description:	CCA,NI 9237,4 CHANNEL BRIDGE INPUT	
Calibration Date:	26-MAR-2008	Shelf Life:
Calibration Due Date*:		Recommended Calibration Interval:
Temperature:	22 °C	Humidity:

Standards Used

Manufacturer	Model	Tracking Number	Calibration
VAISALA	HMP35E	5018	31-JUL-07
NATIONAL INSTRUMENTS	PXI-6120	6846	24-MAY-07
NATIONAL INSTRUMENTS	PXI-4110	6897	21-MAY-07
NATIONAL INSTRUMENTS	PXI-4070	7001	06-DEC-07

National Instruments certifies that at the time of test, the above product was calibrated in accordance with al procedures are designed to ensure that the product listed above meets or exceeds National Instruments specificatio

We further certify that the environment in which this product was calibrated is maintained within the operating spe measurement standards used during calibration are traceable to NIST and/or other International Measurement Instit Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may written consent of National Instruments.

*Optional field, *Calibration Due Date*, may be established by combining the *Recommended Calibration Interval*, *Ce Shelf Life*. Shelf life defines how long an instrument may be stored, after calibration, without impact to its specificatic

The instrument's Calibration Due Date can be calculated using the following methods:

a) If date placed in service is within Calibration Date + Shelf Life: Calibration Due Date = date placed in

b) If date placed in service is outside Calibration Date + Shelf Life: Calibration Due Date = Calibration D Interval

For questions or comments, please contact National Instruments Technical Support.

Figure 279. Calibration sheet for signal conditioning module 1357162

Certificate Number:	1004852	Date:
Serial Number:	1357177	Part Number:
Description:	CCA,NI 9237,4 CHANNEL BRIDGE INPUT	
Calibration Date:	26-MAR-2008	Shelf Life:
Calibration Due Date*:	-1	Recommended Calibration Interval:
Temperature:	22 °C	Humidity:

Standards Used

Manufacturer	Model	Tracking Number	Calibration
VAISALA	HMP35E	5018	31-JUL-07
NATIONAL INSTRUMENTS	PXI-6120	6846	24-MAY-07
NATIONAL INSTRUMENTS	PXI-4110	6897	21-MAY-07
NATIONAL INSTRUMENTS	PXI-4070	7001	06-DEC-07

National Instruments certifies that at the time of test, the above product was calibrated in accordance with a procedures are designed to ensure that the product listed above meets or exceeds National Instruments specificatio

We further certify that the environment in which this product was calibrated is maintained within the operating spe measurement standards used during calibration are traceable to NIST and/or other International Measurement Instit Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may written consent of National Instruments.

*Optional field, *Calibration Due Date*, may be established by combining the *Recommended Calibration Interval*, *Ce Shelf Life*. Shelf life defines how long an instrument may be stored, after calibration, without impact to its specificatic

The instrument's Calibration Due Date can be calculated using the following methods:

a) If date placed in service is within Calibration Date + Shelf Life: Calibration Due Date = date placed in

b) If date placed in service is outside Calibration Date + Shelf Life: Calibration Due Date = Calibration D Interval

For questions or comments, please contact National Instruments Technical Support.

Figure 280. Calibration sheet for signal conditioning module 1357177

Certificate Number:	1039322	Date:
Serial Number:	136D7A2	Part Number:
Description:	CCA,NI 9237,4 CHANNEL BRIDGE INPUT	
Calibration Date:	14-MAY-2008	Shelf Life:
Calibration Due Date*:	-	Recommended Calibration Interval:
Temperature:	23 °C	Humidity:

Standards Used

Manufacturer	Model	Tracking Number	Calibration
VAISALA	HMP35E	5018	31-JUL-07
National Instruments	PXI-4110	6059	08-APR-08
NATIONAL INSTRUMENTS	PXI-4070	6769	27-AUG-07
NATIONAL INSTRUMENTS	PXI-6120	6815	20-MAR-08

National Instruments certifies that at the time of test, the above product was calibrated in accordance with a procedures are designed to ensure that the product listed above meets or exceeds National Instruments specificatio

We further certify that the environment in which this product was calibrated is maintained within the operating spe measurement standards used during calibration are traceable to NIST and/or other International Measurement Instit Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may written consent of National Instruments.

*Optional field, *Calibration Due Date*, may be established by combining the *Recommended Calibration Interval*, Ce Shelf Life. Shelf life defines how long an instrument may be stored, after calibration, without impact to its specificatic

The instrument's Calibration Due Date can be calculated using the following methods:

a) If date placed in service is within Calibration Date + Shelf Life: Calibration Due Date = date placed in

b) If date placed in service is outside Calibration Date + Shelf Life: Calibration Due Date = Calibration D Interval

For questions or comments, please contact National Instruments Technical Support.

Figure 281. Calibration sheet for signal conditioning module 136D7A2

Appendix H. Coordinate System Blade Coordinate System

The blade coordinate system has its origin at the center of the blade flange and is fixed to the blade, in essence, it rotates with both the azimuth and the pitching of the blade. The z-axis points towards the blade tip, the y-axis points along the zero pitch line toward the trailing edge, and the x-axis is perpendicular in accordance with the right-hand rule, as shown in Figure 282.

Figure 282. Blade coordinate system [1]

Rotor Coordinate System

The rotor coordinate system has its origin in the center of the rotor plane and rotates with the rotor. The x-axis points in the direction along the main shaft in the downwind direction, the z-axis is perpendicular in the direction of the reference blade (blade 1), and the y-axis is perpendicular in accordance with the right-hand rule (see Figure 283).

Nacelle Coordinate System

The nacelle coordinate system has its origin at the intersection of the tower axis and the center of the main shaft. The x-axis points horizontally downwind, the z-axis vertically upwards, and the y-axis is perpendicular in accordance with the right-hand rule (see Figure 283).

Tower Coordinate System

The tower coordinate system has its origin at the tower center at ground level. The z-axis points upward, the x-axis points downwind, and the y-axis is perpendicular in accordance with the right-hand rule. Downwind and crosswind are determined by the nacelle yaw position (see Figure 283).

Figure 283. Rotor, nacelle, and tower coordinate systems [1]

Yaw Error

The yaw error, which is the direction of the wind and the direction of waves, is considered positive with the right-hand screw of the tower z-axis as shown in Figure 284.

Appendix I. Post-Test Calibration Sheets

Service Sol	utions		ACCREDIT			5	051265
				21P4 21		Certificate	e Page 1 of 1
Company ID: 12 NATIONAL RE BEV KAY/SRR 16253 DENVE GOLDEN, CO	20205 NEWABLE L R WEST P. 80401	ENERGY LAB ARKWAY	instrument (Ger	PO Number: (CC-BEVERL	Y KAY	
Instrument ID Manufacturer Description	: 04179C : NATIONA : 4-CHANN	AL INSTRUMENTS	S BIT SIMULTANE	Model Numl Serial Numl OUS BRIDGE MOI	ber: NI-9237 ber: 136D7A DULE	2	
Accuracy: Mfr. S	pecification	าร					
	now coast done printing		Certificate Info	ormation		6011031103220000000000000000000000000000	ess ty cont theachter
			Continue mite		Technicia	n: WAYNE GE	TCHELL
eason For Service	: CALIBRA	TION					
eason For Service Type of Cal	: CALIBRA : ACCRED	TION ITED 17025 WITH	UNCERTAINTIE	S	Cal Dat	te 15Apr2011	
eason For Service Type of Cal s Found Condition	CALIBRA ACCRED IN TOLE	TION ITED 17025 WITH RANCE	UNCERTAINTIE	s	Cal Dat Cal Due Date	te 15Apr2011 e: 15Apr2012	
Reason For Service Type of Cal as Found Condition As Left Condition	: Calibra : Accred : In Tolei : Left As	ITION ITED 17025 WITH RANCE FOUND	UNCERTAINTIE	s	Cal Dat Cal Due Date Interva	te 15Apr2011 e: 15Apr2012 al: 12 MONT	HS
Reason For Service Type of Cal As Found Condition As Left Condition Procedure Remarks	CALIBRA ACCRED IN TOLEI LEFT AS NATIONA	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement	S E 3.4 Uncertainties.	Cal Dat Cal Due Date Interva Temperatur Humidit	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
Reason For Service Type of Cal as Found Condition As Left Condition Procedure Remarks	CALIBRA ACCRED IN TOLE LEFT AS NATIONA Reference	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da	HUNCERTAINTIE	S E 3.4 Uncertainties.	Cal Dat Cal Due Date Interva Temperatur Humidit	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
Reason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on main	CALIBRA ACCRED IN TOLEI LEFT AS NATIONA Reference a this certification and metrology in	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da has been calibrated against i stitutes, derived from ratio (H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards inceable to the No spe measurements, or compo	S E 3.4 Uncertainties. ational Institute of Standards a ared to nationally or internati	Cal Da Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
teason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on nati	CALIBRA ACCRED IN TOLE LEFT AS NATIONA Reference a this certification onel metrology is A test in	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da attached Calibration Da bas been calibrated against isstitutes, derived from ratio (moertainty ratio (T.U.R.) of	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne type measurements, or compa 4:1 [K-2, approx. 95% Conf.	S E 3.4 Uncertainties. ational Institute of Standards ared to nationally or internati fidence Level] was maintained	Cal Dat Cal Due Date Interva Temperatur Humidit and Technology (Ni onally recognized of t unless otherwise s	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
teason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on nati	CALIBRA ACCRED IN TOLE LEFT AS NATIONA Reference a this certification onal metrology in A test in	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da bas been calibrated against stitutes, derived from ratio (mcertainty ratio (T.U.R.) of 'ektronic solutions is ANSI/VCSL 2:	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne systements or comper- 4:1 [K-2, approx. 95% Conf registered to ISO 9001-200 \$40-1-1994 (R2002). [SO 100	S E 3.4 Uncortaintios. ational hastitute of Standards ared to nationally or internati fidence LevelJ was maintained & Lab Operations meet the re 01:22003.10CrES10 Aprests.	Cal Dat Cal Due Date Interva Temperatur Humidit and Technology (N), onally recognized of tunkess otherwise s requirements of and 10CFR21.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
Reason For Service Type of Cal as Found Condition As Left Condition Procedure Remarks The instrument on nation	: CALIBRA ACCRED IN TOLEI LEFT AS NATIONA Reference : this certification ional metrology in A test w 1 SO/IEC 17022	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da has been calibrated against i stitutes, derived from ratio (mcertainty ratio (T.U.R.) of "ektronix Service Solutions is ANSU/NCSL 2: 5-2005 accredited calibration	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne ype measurements, or compo 4:1 [K-2, approx. 95% Conf tregistered to ISO 9001:200 540-1-1994 (R2002), ISO 100 ns are per ACLASS certifical	S E 3.4 Uncortaintios. ational Institute of Standards ared to nationally or internati fidence LevelJ was mointained & Lab Operations meet the re 012:2003, 10CFR50 AppxB, a te # AC-1187 within the scope	Cal Da Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of unless otherwise s rquirements of nd 10CFR21.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS
eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on national When uncertainty	CALIBRA ACCRED IN TOLEI LEFT AS NATIONA Reference a this certification onal metrology in A test in ISO/IEC 1702: measurement cal	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da attached Calibration Da bas been calibrated against is stitutes, derived from ratio (mcertainty: ratio (T.U.R.) of - "ektronix Service Solutions is ANSL/NCSL 2: 5-2005 accredited calibration culations have been calculat	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the No spe measurements, or compo 4:1 [K-2, approx. 95% Conf registered to ISO 9001:200 540:1-1994 (R2002), ISO 100 ns are per ACLASS certificat ed per customer request, rep	S E 3.4 Uncertainties. ational Institute of Standards ared to nationally or internati fidence Level] was maintained & Lab Operations meet the re 012:22003, 10CFR50 AppxB, a te # AC-1187 within the scope ported condition statements do	Cal Da Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of unless otherwise s equirements of nd 10CFR21. for which the lab is not take into accom	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 % IST) or other recognized onsensus standards. tated.	HS 1 arement.
eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on national When uncertainty All results cont	CALIBRA ACCRED IN TOLEI LEFT AS NATIONA Reference a this certification onal metrology in A test in 1 SO/IEC 17022 measurement cal aimed within this	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da attached Calibration Da bas been calibrated against stitutes, derived from ratio (moertainty ratio (T.U.R.) of "ektronix Service Solutions is ANSI/NCSL 2: 5-2005 accredited calibration culations have been calculat certification relate only to in	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne systemets and the second systemets of the second tractice of the Second second to the second to the second to the second second to the second to the sec	S E 3.4 Uncertainties. ational Institute of Standards ared to nationally or internati fidence Level] was maintained & Lab Operations meet the re 012:2003, 10CFR50 AppxB, a te # AC-1187 within the scope vorted condition statements do r of factors may cause the col eval has expired.	Cal Dat Cal Due Datu Interva Temperatur Humidit and Technology (N. onally recognized of tunless otherwise s equirements of nd 10CFR21. for which the lab it not take into accor ibration hem to drij	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS t arement. sre the
Reason For Service Type of Cal as Found Condition As Left Condition Procedure Remarks The instrument on nation When uncertainty All results cont	 CALIBRA ACCRED IN TOLE IN TOLE LEFT AS NATIONA Reference a this certification a onal metrology in A test in A test in ISO/IEC 1702; measurement cal aimed within this is This certification 	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da base been calibrated against i stitutes, derived from ratio stitutes, derived from ratio stitutes, derived from ratio accertainty ratio (T. U.R.) of - "ektronick Service Solutions is ANSINCSL 2: 5-2005 accredited calibration culations have been calculat certification relate only to ito cate shall not be reproduced	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the No ype measurements, or compo- ter (1K=2, approx. 95% Conf tracities of the SO 9001-200 statistic of the SO 9001	S E 3.4 Uncortaintios. ational hustitute of Standards, ared to nationally or internati fidence LevelJ was mointained & Lab Operations meet the re 012:2003, 10CFR50 AppxB, a te # AC-1187 within the scope vorted condition statements do r of factors may cause the cal erval has expired. m consent of Tektronix Service	Cal Dat Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of unless otherwise s requirements of md 10CFR21. for which the lab i o not take into accou- libration item to drij e Solutions.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 % IST) or other recognized onsensus standards. tated. s accredited. ant uncertainty of measu ft out of calibration befo	HS d arement. sre the
Reason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on national When uncertainty All results cont	: CALIBRA ACCRED IN TOLEI LEFT AS NATION/ Reference a this certification onal metrology in A test in ISO/IEC 1702. measurement cal atined within this This certific	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da has been calibrated against is stitutes, derived from rate o moertainty ratio (T.U.R.) of - "ektronix Service Solutions is ANSU/NCSL 2: 5-2005 accredited calibration culations have been calculat certification relate only to its cate shall not be reproduced A S	H UNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Na spe measurements, or compa 4:1 [K=2, approx. 95% Conf tregistered to ISO 9001:200 540-1-1994 (R2002), ISO 100 ns are per ACLASS certificat del per customer request, rep em(s) calibrated. Any number instrument's calibration line 'except in full, without written except in full, without written pproved By: WAYNE ervice Representative	S E 3.4 Uncortaintios. ational Institute of Standards, ared to nationally or internati fidence LevelJ was maintained & Lab Operations meet the re 012:2003, 10CFR50 AppxB, a te # AC-1187 within the scope ported condition statements do r of factors may cause the cal erval has expired. m consent of Tektronix Service GETCHELL	Cal Da Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of and 10CFR21. for which the lab i not take into accon ibration item to drij e Solutions.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS d wrement. ore the
eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on national When uncertainty All results cond	: CALIBRA ACCRED IN TOLEI LEFT AS NATION/ Reference a this certification onal metrology in A test in 1 ISO/IEC 1702. measurement cal aimed within this This certification	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da base been calibrated against i stitutes, derived from ratio of meertainty ratio (T. U.R.) of - "ektronics Service Solutions is ANSI/NCSL 22 5-3005 accredited calibration culations have been calculat cortification relate only to itwo cate shall not be reproduced A S	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Na spe measurements, or compo 4:1 [K=2, approx. 95% Conf tregistered to ISO 9001-200 540-1-1994 (R2002), ISO 100 ns are per ACLASS certificat ed per customer request, rep em(s) calibrated. Any number instrument's calibration inte 'except in full, without writte except in full, without writte envice Representative Calibration St	S E 3.4 Uncortaintios. ational Institute of Standards, ared to nationally or internati fidence LevelJ was maintained & Lab Operations meet the re 012:2003, 10CFR50 AppxB, a te # AC-1187 within the scope ported condition statements do r of factors may cause the cal erval has expired. m consent of Tektronix Service GETCHELL tandards	Cal Da Cal Due Data Interva Temperatur Humidit and Technology (N onally recognized of and 10CFR21. for which the lab i not take into accon ibration item to drij e Solutions.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS d wrement. ore the
An eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on nation When uncertainty All results cont NIST Traceable#	CALIBRA ACCRED IN TOLEI LEFT AS NATION/ Reference in this certification onal metrology in A test in 1 ISO/IEC 1702; measurement cal almed within this This certific	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da tatached Calibration base been calibrated against Strints, derived from ratio t moertainty ratio (T. U.R.) of -4 textronix Service Solutions is ANSU/NCSL 2: 5-2005 accredited calibratio culations have been calculat cortification relate only to its cate shall not be reproduced Description	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne hype measurements, or compo 4:1 [K=2, approx. 95% Conf tregistered to ISO 9001:200 540-1-1994 (R2002), ISO 100 ms are per ACLASS certificat ed per customer request, rep ensity calibrated. Any numbe instrument's calibration inte except in full, without written pproved By: WAYNE ervice Representative Calibration St	S E 3.4 Uncortainties. ational institute of Standards ared to nationally or internati fidence LevelJ was mointained & Lab Operations meet the re 012:2003, 10CFR50 Apprs, a te # AC-1187 within the scope ororled condition statements do r of factors may cause the cal erval has expired. m consent of Tektronix Service GETCHELL tandards	Cal Dat Cal Due Data Interva Temperatur Humidit and Technology (N onally recognized of tunless otherwise s requirements of nd 10CFR21. for which the lab it not take into accor ibration hem to drij e Sobutions.	Le 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 %	HS t arement. see the Date Due
eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on nation When uncertainty All results cont NIST Traceable# 4881917	CALIBRA ACCRED IN TOLEI IN TOLEI LEFT AS NATION/ Reference this certification onal metrology in A test in ISO/IEC 1702: measurement cal athed within this This certific Inst. ID# 15-0271	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Da has been calibrated against stitutes, derived from ratio (f cutations have been calculat certification relate only to its cate shall not be reproduced A S Description MULTIFUNCTION CAL	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne type measurements, or compe 4:1 [K-2, approx. 95% Conf registered to ISO 9001:200 540-1-194 (R2002), ISO 100 ns are per ACLASS certificat ept (scalibrated. Any number instrument's calibration inte except in field, without written pproved By: WAYNE ervice Representative Calibration St JBRATOR	S E 3.4 Uncortainties. ational Institute of Standards of ared to nationally or internati fidence LevelJ was maintained & Lab Operations meet the re 012:2003, 10CFR50 Appr.8, a te # AC-1187 within the scope or of factors may cause the cal erval has expired. In consent of Tektronits Service GETCHELL Candards Manufacturer FLUKE	Cal Da Cal Due Data Interva Temperatur Humidit and Technology (N. onally recognized I nuless otherwise s spatrements of ad 10CFR21. for which the lab i o not take into accor libration item to drij e Solutions.	te 15Apr2011 e: 15Apr2012 il: 12 MONT e: 23.0 C y: 44.0 % IST) or other recognized outsensus standards. nated. s accredited. unt uncertainty of measu ft out of calibration befor <u>Cal Date</u> 20Jan2011	HS arement. see the Date Due 20Apr201
eason For Service Type of Cal s Found Condition As Left Condition Procedure Remarks The instrument on nation When uncertainty All results cont NIST Traceable# 4881917 4176293	: CALIBRA ACCRED IN TOLEI LEFT AS NATION/ Reference this certification and metrology in A test in ISO/IEC 1702: measurement cal atmed within this This certification in the context of the context atmed within this This certification atmed within this This certification atmed within this This certification atmed within this This certification atmed within this atmed within the atmed within this atmed within the atmed	ITION ITED 17025 WITH RANCE FOUND AL INSTRUMENTS attached Calibration Data has been calibrated against i stitutes, derived from ratio q mcertainty ratio (T.U.R.) of -4 ektronix Service Solutions is ANSI/NCSL 2: 5-2005 accredited calibratio cutations have been calculat certification relate only to it cate shall not be reproduced A S Description MULTIFUNCTION CAL DMM	HUNCERTAINTIE S CAL EXECUTIVE ata with Measurement standards traceable to the Ne type measurements, or compet 4:1 [K-2, approx. 95% Conf tregistered to ISO 9001:200 540-1-1994 (R2002), ISO 100 ns are per ACLASS certificat de per customer request, rep em(s) calibrated. Any number instrument's calibration inte except in full, without writtee pproved By: WAYNE ervice Representative Calibration St JBRATOR	S E 3.4 Uncortainties. ational institute of Standards of ared to nationally or internati fidence Levelj was maintained & Lab Operations meet the re 01:2:003, 10CFR50 Appr8, a te # AC-1187 within the scope orred condition statements da r of factors may cause the cal erval has expired. m consent of Tektronits Service GETCHELL tandards FLUKE HEWLETT PACKARE	Cal Dat Cal Due Date Interva Temperatur Humidit and Technology (N onally recognized of unless otherwise s requirements of and 10CFR21. for which the lab i o not take into accou- libration item to drip e Solutions.	te 15Apr2011 e: 15Apr2012 al: 12 MONT e: 23.0 C y: 44.0 % IST) or other recognized onsensus standards. nated. s accredited. ant uncertainty of measu ft out of calibration befor Cal Date 20Jan2011 24May2010	HS arement. are the Date Due 20Apr201 24May201

Figure 285. Post-test calibration sheet for signal conditioning module 136D7A2

Service So	lutions		ACCREDITE				051240
			CALIBRATIC			Certifica	te Pagelof1
		In	strument Iden	tification			
Company ID: 1 NATIONAL RI BEV KAY/SRF 16253 DENVE GOLDEN, CO	20205 ENEWABLE RL ER WEST P 80401	ENERGY LAB		PO Number:	CC-BEVERLY	'KAY	
Instrument ID	04180C			Model Num	her: NI-9237		
Manufacture	: NATION	AL INSTRUMENTS		Serial Num	ber: 1357177		
Description	: 4-CHAN	NEL, ±25 MV/V, 24-B	IT SIMULTANEC	OUS BRIDGE MO	DULE		
Accuracy: Mfr.	Specificatio	ns					
1.5.191.14140 States and	Sector and open	and the state of t			mage got content	RUSHAZARZ (HEBUZARA)	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	041100	C	ertificate Infor	rmation	Taskalalaa		TOURU
eason For Service	E: CALIBRA	ATION	NOCEDTAINITIES		Lechnician:	15Apr2011	TCHELL
s Found Condition	IN TOLE	RANCE	INCERTAINTIES		Cal Due Date:	15Apr2012	
As Left Condition	: LEFT AS	FOUND			Interval:	12 MON	THS
Procedure	: NATION	AL INSTRUMENTS (CAL EXECUTIVE	3.4	Temperature:	23.0 C	
	120 (1)	212 E 1895 MD 261 342 F			Humidity:	44.0 %	
Remarks	S. Nelelence	allacined Campration Dala	with weasurement o	ncenannes.			
The instrument or	this certification	has been calibrated against stan	dards traceable to the Nat	onal Institute of Standards	and Technology (NIS)	D or other recognize	n
na	tional metrology l	ustitutes, derived from ratio type	measurements, or compar-	ed to nationally or internati	anally recognized con	esensus standards.	
	A test i	uncertainty ratio (T.U.R.) of 4:1 [K=2, approx. 95% Confid	lence Level] was maintained	l unless otherwise stat	ed.	
		Tektronix Service Solutions is reg ANSU/NCSL 7540-	istered to ISO 9001:2008. 1-1094 (82002), ISO 1001	Lab Operations meet the re 2-2003 JOCFR50 Append a	equirements of nd 10CFR21.		
	ISO/IEC 1702	5-2005 accredited calibrations a	re per ACLASS certificate	# AC-1187 within the scope	for which the lab is a	ccredited.	
When uncertainty	measurement ca	culations have been calculated p	er customer request, repor	rted condition statements de	not take into account	uncertainty of meas	urement.
All results con	tained within this	certification relate only to item(s inst) calibrated. Any number o trument's calibration inter-	of factors may cause the cal val has expired.	ibration item to drift o	nut of calibration bej	fore the
	This certifi	cate shall not be reproduced exc	ept in full, without written	consent of Tektronix Servic	e Solutions.		
		Appr	mund Pur MAYNE (CETCHELL			
		Servi	ice Representative	BETCHELL			
C - HI LOR AND BACK BITSON & BREAD SHIFTING SHIFT	101-1068-011100-00	post of the set of the second s	Calibration Sta	andards	98 1982 B 1 1993 B 1 1993 B	en dae al Amerika Service	an a
NIST Traceable#	Inst. ID#	Description		Manufacturer	Model	Cal Date	Date Due
4001017	15-0271	MULTIFUNCTION CALIBR	ATOR	FLUKE	5700A	20Jan2011	20Apr2011
400/91/	A144598	DMM		HEWLETT PACKARE	3458A	24May2010	24May2011
4176293							
4176293				~			

Figure 286. Post-test calibration sheet for signal conditioning module 1357177

3 ⁴	
Toletwomin	
lektronix	
Service Solutions	

5051312 Certificate Page 1 of 1

Instrument Identification PO Number: CC-BEVERLY KAY

Company ID: 120205 NATIONAL RENEWABLE ENERGY LAB BEV KAY/SRRL 16253 DENVER WEST PARKWAY GOLDEN, CO 80401

Instrument ID: 04176C Model Number: NI-9237 Manufacturer: NATIONAL INSTRUMENTS Serial Number: 1357162 Description: 4-CHANNEL, ±25 MV/V, 24-BIT SIMULTANEOUS BRIDGE MODULE

Accuracy: Mfr. Specifications

Certificate Information

 Reason For Service:
 CALIBRATION
 Technician:
 WAYNE
 GETCHELL

 Type of Cal:
 ACCREDITED 17025 WITH UNCERTAINTIES
 Cal Date
 15Apr2011

 As Found Condition:
 IN TOLERANCE
 Cal Due Date:
 15Apr2012

 As Left Condition:
 LEFT AS FOUND
 Interval:
 12
 MONTHS

 Procedure:
 NATIONAL INSTRUMENTS CAL EXECUTIVE 3.4
 Temperature:
 23.0
 C

 Remarks:
 Reference attached Calibration Data with Measurement Uncertainties.
 Humidity:
 44.0
 %

The instrument on this certification has been calibrated against standards traceable to the National Institute of Standards and Technology (NIST) or other recognized national metrology institutes, derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards.

A test uncertainty ratio (T.U.R.) of 4:1 [K=2, approx. 95% Confidence Level] was maintained unless otherwise stated.

Tektronix Service Solutions is registered to ISO 9001:2008. Lab Operations meet the requirements of

ANSI/NCSL Z540-1-1994 (R2002), ISO 10012:2003, 10CFR50 AppxB, and 10CFR21.

ISO/IEC 17025-2005 accredited calibrations are per ACLASS certificate # AC-1187 within the scope for which the lab is accredited. When uncertainty measurement calculations have been calculated per customer request, reported condition statements do not take into account uncertainty of measurement.

All results contained within this certification relate only to item(x) calibrated. Any number of factors may cause the calibration item to drift out of calibration before the instrument's calibration interval has expired.

This certificate shall not be reproduced except in full, without written consent of Tektronix Service Solutions.

Approved By: WAYNE GETCHELL Service Representative

		Calibratio	m Standards			
NIST Traceable#	Inst. ID#	Description	Manufacturer	Model	Cal Date	Date Due
4881917	15-0271	MULTIFUNCTION CALIBRATOR	FLUKE	5700A	20Jan2011	20Apr201
4176293	A144598	DMM	HEWLETT PACKARE	3458A	24May2010	24May201

2324 Ridgepoint Drive, Suite D • Austin, TX 78754 • Phone: 800-365-0147 • Fax: 512-926-8450

Figure 287. Post-test calibration sheet for signal conditioning module 1357162

Service So	lutions		ACCREDITED			Certificat	051336 te Page 1 of 1
Company ID: 1 NATIONAL RI BEV KAY/SRF 16253 DENVE GOLDEN, CO	20205 ENEWABLE RL ER WEST P 80401	E ENERGY LAB	encut Identification PO	on Number: (CC-BEVERL	Y KAY	
Instrument IE Manufacture Descriptior): 04177C r: NATION n: 4-CHANI	AL INSTRUMENTS NEL, ±25 MV/V, 24-BIT S	Mo Se IMULTANEOUS BRI	odel Numb erial Numb IDGE MOI	oer: NI-9237 oer: 1342666 DULE		
Accuracy: Mfr.	Specificatio	ns					
		Certi	ificate Information	1			
Reason For Service	e: CALIBR	ATION			Technician	: WAYNE GE	TCHELL
Type of Ca	I: ACCREE	DITED 17025 WITH UNC	ERTAINTIES		Cal Date	e 15Apr2011	
s Found Condition	: IN TOLE	RANCE		(Cal Due Date	: 15Apr2012	
is round condition					Interval	I: 12 MONT	HS
As Left Condition	EEFT AS	FOUND			Tananatura		
As Left Condition Procedure	ELEFT AS	FOUND AL INSTRUMENTS CAL	EXECUTIVE 3.4		Temperature	23.0 C	
As Left Condition Procedure Remarks	: LEFT AS : NATION	S FOUND AL INSTRUMENTS CAL attached Calibration Data with	EXECUTIVE 3.4 Measurement Uncertaintie	95.	Temperature Humidity	e: 23.0 C 7: 44.0 %	
As Left Condition Procedure Remarks	: LEFT AS : NATION : Reference	S FOUND AL INSTRUMENTS CAL attached Calibration Data with	EXECUTIVE 3.4	95.	Temperature Humidity	e: 23.0 C 7: 44.0 %	
As Left Condition Procedure Remarks	1: LEFT AS 2: NATION 3: Reference 1 this certification tional metrology i	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national	98. Pe of Standards (ully or internation	Temperature Humidity and Technology (NIS onally recognized co	2: 23.0 C 7: 44.0 % ST) or other recognize meensus standards.	đ
As Left Condition Procedure Remarks The instrument on na	1: LEFT AS 2: NATION 3: Reference 1 this certification tional metrology i A test	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu wacertainty ratio (T.U.R.) of 4:1 [K=2.,	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level]	95. e of Standards ally or internation was maintained	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta	2: 23.0 C 7: 44.0 % ST) or other recognize materisms standards. uted.	đ
As Left Condition Procedure Remarks The instrument on nat	a: LEFT AS a: NATION a: Reference a this certification tional metrology i A test	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronix Service Solutions is registered	EXECUTIVE 3.4 Measurement Uncertaintie fraceable to the National Institut rements, or compared to national approx. 95% Confidence Level] d to ISO 9001:2008. Lab Operati	98. re of Standards illy or internation was maintained ions meet the re	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of	2: 23.0 C 7: 44.0 %	d
As Left Condition Procedure Remarks The instrument or not	a: LEFT AS a: NATION a: Reference a this certification inional metrology i A test	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards of nstitutes, derived from ratio type measu- wncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronis Service Solutions is registered ANSI/NCSL 2540-1-1994	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut venents, or compared to national approx. 93% Confidence Level] d to ISO 9001:2008. Lab Operati 4 (R2002), ISO 10012:2003, 10C	98, e of Standards ally or internativ was maintained ions meet the re FRS0 AppxB, au	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nd 10CFR21.	2: 23.0 C 7: 44.0 % 57) or other recognize msensus standards. ated.	d
As Left Condition Procedure Remarks The instrument on an	1: LEFT AS 2: NATION 3: Reference this certification tional metrology i A test ISO/IEC 1702 rmeasurement ca	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards in institutes, derived from ratio type measures uncertainty ratio (T.U.R.) of 4:1 [K=2, ANSLINCSL Z540-1-1994 5-2005 accredited calibrations are per leutations have been calculated per case	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level] d to ISO 9001:2008. Lab Operati 4 (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 v tomer request, reported conditio	95. e of Standards (ally or internation was maintained ions meet the re FR50 AppxB, a within the scope n statements do	Temperature Humidity and Technology (NIS onally recognized co nuless otherwise sta quirements of not lock into account out take into account	2: 23.0 C 7: 44.0 % ST) or other recognize meensus standards. need. accredited. nt uncertainty of meas	d urement.
As Left Condition Procedure Remarks The instrument on national When uncertainty All results con	1: LEFT AS 2: NATION 3: Reference 1 this certification tional metrology i A test ISO/IEC 1702 v measurement ca tained within this	S FOUND AL INSTRUMENTS CAL attached Calibration Data with attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronis Service Solutions is registered ANSI/NCSL Z540-1-1994 5-2005 accredited calibrations are per leulations have been calculated per cus certification relate only to item(s) calib	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level] d to ISO 9001:2008. Lab Operati & (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 v tomer request, reported condition wated. Any number of factors ma	95. te of Standards of illy or internation was maintained ions meet the re FR50 AppxB, au within the scope in statements do ty cause the cali	Temperature Humidity and Technology (NI3 onally recognized co unless otherwise sta quirements of ad 10CFR21. for which the lab is not take into accoun- ibration item to drift	2: 23.0 C 7: 44.0 % ST) or other recognize msensus standards. nued. accredited. nt uncertainty of meas out of calibratian befo	d urement. ore the
As Left Condition Procedure Remarks The instrument or nat When uncertainty All results con	1: LEFT AS 2: NATION 3: Reference 4: this certification itional metrology i A test ISO/IEC 1702 i measurement ca tained within this This certif	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronis Service Solutions is registeree ANSU/NCSL 2540-1-1994 5-2005 accredited calibrations are per leukations have been calculated per cus certification relate only to item(s) calib instrument icate shall not be reproduced except in,	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level] d to ISO 9001:2008. Lab Operati d (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 v tomer request, reported condition wated. Any number of factors ma t's calibration interval has espiri full, without written consent of Tr full, without written consent of Tr	98. Te of Standards i ully or internation was maintained ions meet the re FR50 AppxB, au within the scope in statements do y cause the call ed. ektronix Service	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nal 10CFR21. for which the lab is not take into accoun ibration item to drift Solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize msensus standards. sted. accredited. nt uncertainty of meas out of calibration befo	d urement. ore the
As Left Condition Procedure Remarks The instrument on national When uncertainty All results con	1: LEFT AS 2: NATION 3: Reference 1: this certification 1: this	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu- national and the second standards of the second uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronix Service Solutions is registered ANSI/NCSL Z540-1-1994 '5-2005 accredited calibrations are per leukations have been calculated per cus certification relate only to item(s) calib instrumen icate shall not be reproduced except in ;	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level] 4 to ISO 9001:2008. Lab Operati 4 (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 w toomer request, reported condition wated. Any number of factors ma u's calibration interval has expir full, without written consent of To	98, e of Standards ully or internation was maintained ions meet the re FR50 AppxB, au within the scope n statements do up cause the cali- ed. ektronix Service	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nd 10CFR21. for which the lab is not take into accou- ibration item to drift Solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize msensus standards. accredited. nt uncertainty of meas out of calibration befo	d urement. ore the
As Left Condition As Left Condition Procedure Remarks The instrument on national states of the instrument of national states of the instrument of the instru	1: LEFT AS 2: NATION 3: Reference 4 this certification itional metrology i A test ISO/IEC 1702 recosurement ca tained within this This certif	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronis Service Solutions is registered ANSI/NCSL 2540-1-1994 '5-2005 accredited calibrations are per leulations have been calculated per cus certification relate only to item(s) calib instrumen icate shall not be reproduced except in; Approved Service R	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut vements, or compared to national approx. 95% Confidence Level] of to ISO 9001:2008. Lab Operati 4 (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 w tomer request, reported condition vrated. Any number of factors ma u's calibration interval has expir full, without written consent of To By: WAYNE GETCHELL epresentative	98. Te of Standards i ully or internation was maintained ions meet the re FR50 AppxB, au within the scope in statements do ty cause the call ed. ektronix Service L	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nd 10CFR21. for which the lab is not take into accoun ibration item to drift Solutions.	2: 23.0 C 7: 44.0 % 57) or other recognize msensus standards. ated. accredited. nt uncertainty of meas out of calibration befo	d urement. ore the
As Left Condition Procedure Remarks The instrument or nat When uncertainty All results con	1: LEFT AS 2: NATION 3: Reference 1: this certification a this certification A test 1: SO/IEC 1700 1: measurement ca tained within this This certification	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu- national and the second standards of the second calibration start of the second standards of the second ANSI/NCSL Z540-1-1994 '5-2005 accredited calibrations are per leukations have been calculated per cus certification relate only to item(s) calib instrumen icate shall not be reproduced except in ; Approved Service R	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 93% Confidence Level] it to ISO 9001.2008. Lab Operati it (R2002), ISO 10012:2003, IOC ACLASS certificate # AC-1187 w toomer request, reported condition wrated. Any number of factors ma ut's calibration interval has expir full, without written consent of To By: WAYNE GETCHELL representative	98. e of Standards i ully or internation was maintained ions meet the re FR50 AppxB, a within the scope n statements do ty cause the cali ed. ektronix Service L	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nd 10CFR21. for which the lab is not take into accoun bration item to drift Solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize msensus standards. accredited. nt uncertainty of meas out of calibration befo	d urement.
As Left Condition Procedure Remarks The instrument on national When uncertainty All results con	1: LEFT AS 2: NATION 3: Reference 1: this certification tional metrology i A test 1SO/IEC 1702 measurement ca trained within this This certifi Inst. ID#	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards in institutes, derived from ratio type means uncertainty ratio (T.U.R.) of 4:1 [K=2. ANSLINCSL Z540-1-1994 5-2005 accredited calibrations are per Leadations have been calculated per cuss certification relate only to item(s) calib instrument icate shall not be reproduced except in; Approved Service R Calification	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 93% Confidence Level] 1 to ISO 9001:2008. Lab Operati 4 (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 (R2002), ISO 10012:2003, 10C (R2002), ISO 1000, ISO 1000	9S. te of Standards of ully or internation was maintained ions meet the re FR50 AppxB, at within the scope in statements do ty cause the cali- ed ektronix Service L S acturor_	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of not lock into accoun- bration item to drift solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize meensus standards. need. accredited. nt uncertainty of meas out of calibration beform <u>Cal Date</u>	d urement. fore the Date Due
As Left Condition As Left Condition Procedure Remarks The instrument on nation All results con NIST Traceable# 4881917	1: LEFT AS 2: NATION 3: Reference 4: this certification tional metrology i A test ISO/IEC 1702 weasurement ca tained within this This certif Inst. ID# 15-0271	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards institutes, derived from ratio type measu uncertainty ratio (T.U.R.) of 4:1 [K=2., Tektronix Service Solutions is registere ANSI/NCSL Z540-1-1994 5-2005 accredited calibrations are per Iculations have been calculated per cus certification relate only to item(s) calib instrumen icate shall not be reproduced except in ; Approved Service R Califi Description MULTIFUNCTION CALIBRATOF	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level] d to ISO 9001:2008. Lab Operati t (R2002), ISO 10012:2003, 10CI ACLASS certificate # AC-1187 v tomer request, reported condition wated. Any number of factors may traceable to intervol has expir- full, without written consent of To By: WAYNE GETCHELL representative ibration Standard Manufa R FLUKE	95. e of Standards i illy or internation was maintained ions meet the re FR50 AppxB, au within the scope in statements do ty cause the cali- ed. ektronix Service L S acturer_	Temperature Humidity and Technology (NIS onally recognized co nuless otherwise sta quirements of not lake into account bration item to drift Solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize meensus standards. accredited. In uncertainty of meas out of calibration beformed Cal Date 20Jan2011	d urement. ore the Date Due 20Apr2011
NIST Traceable# 4881917 4176293	I: LEFT AS I: NATION I: N	S FOUND AL INSTRUMENTS CAL attached Calibration Data with has been calibrated against standards notifutes, derived from ratio type measu- uncertainty ratio (T.U.R.) of 4:1 [K=2, Tektronis Service Solutions is registere ANSI/NCSL 2540-1-1994 '5-2005 accredited calibrations are per leulations have been calculated per cus certification relate only to item(s) calib instrumen icate shall not be reproduced except in j Approved Service R Calif Description MULTIFUNCTION CALIBRATOF DMM	EXECUTIVE 3.4 Measurement Uncertaintie traceable to the National Institut rements, or compared to national approx. 95% Confidence Level J to ISO 9001:2008. Lab Operati t (R2002), ISO 10012:2003, 10C ACLASS certificate # AC-1187 w tomer request, reported condition wated. Any number of factors many u's calibration interval has expir full, without written consent of To By: WAYNE GETCHELL representative ibration Standard R FLUKE HEWLET	e of Standards i lilly or internation was maintained ions meet the re FR50 AppxB, an within the scope in statements do y cause the call ed. ektronix Service L S acturer_ T PACKARE	Temperature Humidity and Technology (NIS onally recognized co unless otherwise sta quirements of nd 10CFR21. for which the lab is not take into accoun ibration item to drift Solutions.	2: 23.0 C 7: 44.0 % ST) or other recognize msensus standards. ated. accredited. at uncertainty of meas out of calibration before <u>Cal Date</u> 20Jan2011 24May2010	d urement. ore the Date Due 20Apr2011 24May2011

Figure 288. Post-test calibration sheet for signal conditioning module 1342666