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Quantifying and Reducing Curve-Fitting Uncertainty in Isc 

Mark Campanelli∗, Benjamin Duck†, Keith Emery∗ 

∗National Renewable Energy Laboratory, Golden, CO, 80401, USA 
†CSIRO Energy Flagship, Mayfield West NSW, 2304, Australia 

Abstract—Current-voltage (I-V) curve measurements of pho
tovoltaic (PV) devices are used to determine performance param
eters and to establish traceable calibration chains. Measurement 
standards specify localized curve fitting methods, e.g., straight-
line interpolation/extrapolation of the I-V curve points near 
short-circuit current, Isc. By considering such fits as statistical 
linear regressions, uncertainties in the performance parame
ters are readily quantified. However, the legitimacy of such 
a computed uncertainty requires that the model be a valid 
(local) representation of the I-V curve and that the noise be 
sufficiently well characterized. Using more data points often has 
the advantage of lowering the uncertainty. However, more data 
points can make the uncertainty in the fit arbitrarily small, and 
this fit uncertainty misses the dominant residual uncertainty due 
to so-called model discrepancy. Using objective Bayesian linear 
regression for straight-line fits for Isc, we investigate an evidence-
based method to automatically choose data windows of I-V 
points with reduced model discrepancy. We also investigate noise 
effects. Uncertainties, aligned with the Guide to the Expression of 
Uncertainty in Measurement (GUM), are quantified throughout. 

Index Terms—Bayesian inference, data window selection, ev
idence, linear regression, measurement uncertainty analysis, 
model discrepancy, noise model, uncertainty quantification. 

I. IN T RO D U C T I O N 

Short-circuit current, denoted as Isc, is a key performance 
parameter for photovoltaic (PV) devices and is also commonly 
used in PV measurement calibration chains. This practice 
imparts importance to the proper quantification of uncertainty 
in Isc, which is often inferred from a measured current-
voltage (I-V) curve. Measurement standards (e.g., [1]) suggest 
straight-line fitting methods for determining Isc. Furthermore, 
the slope of this fitted line is often used to assess shunt 
resistance issues. 

The problem of model discrepancy—e.g., a statistical 
model with an inadequate functional relationship or poor 
noise representation—can invalidate an uncertainty computa
tion based on a statistical linear regression [2]. Even with 
significant model discrepancy, more data points can make 
the fit uncertainty arbitrarily small, in which case the fit 
uncertainty misses the dominant residual uncertainty due to 
model discrepancy [2]. In the metrology field, this is often 
called dark uncertainty [3]. Expanding upon earlier work [4], 
we investigate a method for reducing model discrepancy and 
the associated dark uncertainty. Here, we do not consider all 
possible uncertainty sources, only those due to fitting a straight 
line to data with noise in the ordinate.1 

The uncertainty analysis we develop aligns with the Guide 
to the Expression of Uncertainty in Measurement (GUM) [5]. 
In the probabilistic GUM framework, a state-of-knowledge 
distribution (SoKD) is the fundamental description of an 
uncertain quantity of interest [6]. A quantity of interest is thus 
viewed as a random variable that typically is described fully 
by a probability density function (PDF), with a summary given 
by its expected value (or mean), called the measured value, 
and its standard deviation, called the standard uncertainty. If 
these summary values do not exist for the distribution, then 
alternatives such as a mode and a 95% coverage interval can 
summarize the SoKD. 

There can be numerous benefits of using local linear models 
instead of global non-linear physical models. For example, 
considerable cell mismatch in a PV module may suggest using 
a local straight-line fit at Isc instead of a non-linear single- or 
double-diode model, which may poorly represent the entire 
I-V curve in this situation. In general, linear models allow 
computationally straightforward and efficient regressions to 
data (e.g., using linear algebra to compute a least-squares fit). 
Herein, we work within the framework of objective Bayesian 
linear regression (o-BLR), which yields SoKDs with analytic 
forms that do not require a sampling algorithm to compute and 
for which the so-called model evidence is readily computable. 

II. EV I D E N C E -BA S E D FI T T I N G F O R IS C 

In this section, we describe an automated computational 
workflow that aims to reduce model discrepancy in a straight-
line fit of an I-V curve at Isc. The purpose is to estimate 
Isc with reliably quantified uncertainty. This uncertainty is 
reduced by attempting to take a maximal window of I-V 
data points about Isc within the limits of validity of a local 
straight-line model to the I-V curve at Isc. Because the 
valid quantification of uncertainty requires a sufficiently valid 
model, we attempt to reduce the dark uncertainty from model 
discrepancy by maximizing the model evidence, which is also 
known as the marginal likelihood [7]. 

The evidence is readily computed in the context of o-BLR, 
and o-BLR also naturally provides SoKDs that quantify the 
uncertainty in the model parameters. The case for Isc is partic
ularly straightforward because the intercept of the straight-line 
model is Isc. After reviewing the relevant theory of o-BLR, 
we discuss how the window of I-V data points taken near 
Isc is selected so as to maximize the evidence. In general, 
larger data windows reduce the computed uncertainty in Isc,
but the evidence is used to avoid including data points for 
which a straight-line model is clearly inadequate. Lastly,
 

1We distinguish the more specific term straight-line fit from the more 
general term linear regression. The latter refers to any model that is linear
 
with respect to the fitting parameters, such as the coefficients in a polynomial. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
1



examples show the workflow applied to different I-V curves 
with particular characteristics that affect window selection. 

A. Objective Bayesian Linear Regression (o-BLR) 

o-BLR shares many common mathematical features with 
linear least squares (LLS) and maximum likelihood (ML) es
timation. However, one should recognize that the fundamental 
result of o-BLR is a posterior joint SoKD for the model 
parameters. In this case, the straight-line parameters are the 
intercept a0 and slope a1 of the statistical model relating 
current to voltage, i.e.,   

Ik = a0 + a1 Vk + EIk σ2 , k = 1, . . . , K, (1) 

where K is the total number of I-V curve data pairs (Vk, Ik) 
used to estimate the straight-line parameters. In particular, the 
I-intercept a0 is the short-circuit current Isc (where V = 0). 

The statistical parameter σ2 in (1) specifies the variance for 
the distribution from which the additive noise EIk is realized 
in the kth observed current value Ik. In this work, we also 
take σ2 as unknown and to be inferred from the I-V data, 
which reflects the state of affairs for many I-V measurement 
systems that are under statistical process control but that are 
measuring a significant variety of PV devices. In the absence 
of system-specific information, this noise is assumed to be 
independent and identically distributed (i.i.d.) between data 
points according to a zero-mean normal distribution, i.e.,     i.i.d.{EIk σ2 ∼ N µh = 0, Σh = σ2 , k = 1, . . . , K,  Ik  Ik 

where µh denotes the mean and Σh denotes the variance Ik  Ik 

covariance matrix.2 (Here, both are scalars.) This assumption 
is typically reasonable for measurements using Xenon-arc
lamp based solar simulation in which an imperfect light-level 
correction is applied to each current value [8]. The error in 
the voltage data (potentially non-random) is assumed to be 
negligible by comparison, which for many PV devices is a 
reasonable assumption sufficiently far away from Voc and when 
the light-level corrections are sufficiently small [9]. 

For notational purposes, model (1) is rewritten in matrix-
vector form. Specifically,   

I = X β + EI, {EI ∼ N µh = 0, Σh I = σ2 IK , (2) I 

where I = (I1, . . . , IK )
T is the vector of current data points, 

V = (V1, . . . , VK )
T is the vector of voltage data points, ⎡ ⎤ 

1 V1  ⎢ . . ⎥X = 1 V = ⎣ . . ⎦. . 
1 VK 

is the so-called design matrix, β = (a0, a1)T is the vector of 
straight-line parameters, and IK is the K-dimensional identity 
matrix used to specify the covariance matrix Σh I under 
the i.i.d. assumption. We denote a vector of realized model 
parameter values as θ = (a0, a1, σ2)T = (βT, σ2)T , with 

T 3corresponding random vector θ{ = ({a0, {a1, σ{2)T = (β{ , σ{2)T . 

2We distinguish random variables/vectors by using tilde notation -·.
 
3The transpose operator T is often omitted for better readability.
 

As a point of reference, we recall the standard LLS (equiv
alently, ML) estimate of β given the data, namely, 

βa := (XTX)−1XT I. (3) 

In addition, the degrees-of-freedom (DoF) adjusted residual 
sum of squares is an estimate of σ2 in model (2), namely,  

σa2 := (I − X βa)T(I − X βa) ν, (4) 

where ν := K − P is the DoF and P is the number of model 
parameters to estimate, excluding σ2 . Clearly, the number 
of data points K must exceed the number of straight-line 
parameters P = 2, so that ν = K − P ≥ 1. In addition, the 
matrix inverse in definition (3) requires that X have full rank, 
which happens when at least two I-V data points have distinct 
voltages. θa = (aa0, aa1, σa2) = (βa, σa2) denotes the combined 
model parameters estimate. 

For model (2), we now perform the standard o-BLR with 
non-informative, improper prior SoKD for the parameters [7], 
namely, 

πh(θ) = 1/σ2 . (5)θ 

Conditional on the current data I taken at voltages V, the 
PDF for the posterior joint SoKD is given by the following 
factorized and analytical form 

fh (θ) = fh (β) fhσ|I,V(σ2), (6)θ|I,V β|σ2 ,I,V 

with posterior joint normal distribution for the straight-line 
parameters given conditionally on σ{2 = σ2 and the data by   { aβ|σ2 , I, V ∼ N µh = β, Σh = σ2(XTX)−1 ,β|σ2 ,I,V β|σ2 ,I,V 

and marginal posterior distribution for the noise variance given 
by   

σ{2 ∼ I G α1 = ν /2, α2 = σa2 ν /2 , 

where I G specifies the inverse-gamma distribution with shape 
parameter α1 and scale parameter α2. 

One can show that marginalizing out σ{2 gives a shifted and 
scaled multivariate t-distribution for β{ with ν DoF [7], [10], 
namely,   

β{ ∼ tν µh = βa, Σh = σa2(XTX)−1 ,β β 

4with scale matrix Σh . Further marginalizing out {a1 gives β 
a shifted and scaled univariate t-distribution for {a0 with ν 
DoF [7], [10], namely,     {a0 ∼ tν µha0 = βa1, Σha0 = σa2(XTX)−1 , (7)

1,1

where the [·]1,1 notation denotes the 1, 1 entry in Σh [10]. β 
The slope parameter {a1 has an analogous marginal posterior 
distribution. In general, parameters β{ = (aa0, aa1) are jointly 
distributed in their posterior SoKD and thus not independent. 

Importantly, the marginal distribution for {a0 is a GUM-
compatible SoKD for Isc that provides an estimate for, and 
quantifies the uncertainty of, Isc. If the DoF ν = K − P ≥ 2, 

4Σh is not the covariance matrix for the straight-line parameters [10]. 
β 
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then the expected value of this SoKD is well-defined as µh .a0 

Otherwise, if ν = K − P = 1, then µh is still the wella0 

defined mode of the SoKD. In either case, µh can be taken a0 

as the measured value for Isc. If ν = K − P ≥ 3, then 
the standard uncertainty for Isc is well-defined and given by d 

νσha0 = Σh . Thus, at least five data points (K = 5)a0ν−2 

are needed for the straight-line model (P = 2) in order for 
the standard uncertainty to be well defined. Otherwise, if ν = 
K −P = 1 or ν = K −P = 2, then I95 = [I95,min, I95,max], the 
95% coverage interval (centered about µh for the symmetric a0 

shifted and scaled t-distribution), can still be computed as the 
expanded uncertainty from the SoKD.5 In all cases we take 
the relative expanded uncertainty to be 

(I95,max − I95,min)/2 I95,max − I95,min
U95 = = . 

µha0 I95,max + I95,min 

The SoKD for {a0 is a shifted and scaled univariate t-
distribution with ν DoF and with positive scale parameter 

6Σh = σa2(XTX)−1 . A reduction in the magnitude of a0 1,1 
this scale parameter gives a reduction in the uncertainty in 
Isc. Recalling (4), the magnitude of σa2 depends directly on the 
sum of squared residuals (I−X βa)T(I−X βa) and inversely on 
the DoF ν. Because the factor ν appears in the denominator 
of (4), a reduction in uncertainty can result from increasing 
the number of data points, as long as the sum of squares 
of the residuals and the 1,1-component of the inverse design 
matrix are bounded or do not grow too quickly with additional 
data points. As a secondary effect, ν also acts as a shape 
parameter, so that increasing the number of data points reduces 
uncertainty by reducing the heavy tails of the t-distribution to 
the limiting tails of a Gaussian distribution as ν → ∞. 

In the examples presented here, the 1, 1-component of the 
inverse design matrix strictly decreases with additional data 
points from larger data windows, so that an increase in the 
sum of squared residuals must grow sufficiently quickly with 
increasing data windows to cause larger uncertainty in {a0. 
In some cases, the sum of squared residuals could grow 
sufficiently slowly with additional data so that the uncertainty 
is reduced with more data, regardless of the validity of the 
straight-line fit [2]. Taking all these considerations into ac
count for a given measured I-V curve, it may be advantageous 
to take larger data windows with more points in order to reduce 
the parameter uncertainty in the fit, as long as the straight-line 
model remains valid over the larger window. 

Finally, we note that these o-BLR results readily extend to 
polynomial regressions of arbitrarily higher degree, with the 
caveat that the choice of polynomial basis can become quite 
important for the stability of numerical computations. 

B. Evidence-Based Data Windowing 

The previous results for o-BLM derive from the application 
of Bayes’ theorem using an improper prior SoKD. Succinctly 

5In this application, µh and I95,min are typically positive. a0 
6Some univariate t-distribution definitions equivalently refer to the positive 

square root of Σh as the scale parameter. a0 

and intuitively, Bayes’ theorem transforms the prior SoKD 
of the model parameters into the posterior SoKD of the 
parameters by a probabilistic “re-weighting” according to the 
likelihood function. The likelihood is derived from model (2) 
and quantifies the likelihood of a particular parameter being 
the true value, given a particular realization of the data. 

The likelihood function is determined by considering the 
probability (density) of observing current data I at voltages 
V, given any valid choice for the parameter θ in the model 
parameter space Θ. For model (2), we have 

L(θ; I, V) = f˜ (I). (8)I|θ,V 

where f˜ is the PDF for the joint normal distribution of I|θ,V 

the current data I conditional on θ{ = θ and on V, namely, 

Ĩ|θ, V ∼ N µĨ|θ,V = X β, ΣĨ|θ,V = σ2 IK . 

Given likelihood (8), prior (5), and posterior (6), applying 
Bayes’ theorem gives 

L(θ; I, V) πh(θ) L(θ; I, V) πh(θ)θ θfh (θ) = = . (9)θ|I,V πh (I) MI|V 

For realized current values I at voltages V, integration of (9) 
allows the model evidence M to be computed as  

M = πh (I) = L(θ; I, V) πh(θ) dθ.I|V θ 
θ∈Θ 

Numerically, M is a positive number that provides the 
necessary re-scaling so that the posterior distribution inte
grates to a total probability of one. However, the evidence 
derives its name from the fact that it quantifies how well the 
chosen model (with the specified prior SoKD on the model 
parameters) explains the observed data [7]. Larger evidence 
indicates a more adequate model, and it is often used for model 
comparison, model selection, or model averaging [7]. 

Conveniently, the evidence can be computed in o-BLR 
without integration. Solving (9) for the constant M gives 

M = L(θ; I, V) πh(θ) fh (θ), (10)θ θ|I,V 

which can be evaluated at any θ to compute M . For conve
nience, we evaluate the evidence at θ = θa. Because of poten
tially large values, we log-transform (10) in computations. 

By maximizing the evidence, we investigate the selection 
of I-V data windows that reduce model discrepancy in the 
straight-line fit at Isc. Starting with an I-V dataset ordered by 
voltage, a core window of I-V points is selected by taking the 
three I-V points with voltages closest to zero, including po
tentially negative voltages. We then grow the window in both 
positive and negative directions, one point at a time. Consid
ering all combinations of such windows creates a 2-D discrete 
optimization space. To reduce the computational burden, data 
points with voltage above the voltage at the maximum power 
data point can be eliminated from consideration. This also 
avoids portions of the I-V curve with the highest propensity for 
systematic voltage errors from I-V curve corrections [8]. After 
choosing the appropriate data window that maximizes ln M , 
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we then directly compute using (7) the measured value of, and 
the uncertainty in, Isc. This procedure can be automated, and 
the following examples suggest that the procedure is effective, 
although perhaps not fully optimal. 

C. First Isc Fitting Example 

Figure 1 shows the results of applying this fitting procedure 
to I-V curve data that were synthetically generated with a 
non-ideal single-diode model for two cells in series, each 
with a bypass-diode and with a photocurrent mismatch that 
appears in forward-bias. This example has 51 equally spaced 
voltages and current values more common to PV devices 
with larger area cells. We see that maximizing the evidence 
properly excludes the two “knees” in the curve closest to Isc 

that deviate from a straight line. This example shows that 
the window that corresponds to the maximum evidence is not 
necessarily the same window that corresponds to the minimum 
uncertainty. However, for this dataset, larger evidence does 
generally correspond to lower uncertainty. 

For the data window that maximizes the evidence, θ = 
(aa0, aa1, σa2) = (5.984 A, −0.1272 A/V, 0.003720 A2). Thus, 
the measured value of Isc is µIsc = 5.984 A, whereas the true 
value is known to be 5.995 A, a relative error of −0.1778%. 
The relative expanded uncertainty U95 = 0.6408% corre
sponds to the interval I95 = [5.946, 6.023], which covers the 
true value. Here, the minimum relative expanded uncertainty 
over all data windows is 0.5313% < 0.6408%. Figure 2 shows 
the posterior SoKD for Isc, a shifted and scaled univariate t-
distribution with ν = 18 DoF. The slope a1 could be analyzed 
similarly. Relative to Isc, the estimated standard deviation of 
the noise is 100 · σ; = 1.019%a0

, whereas the true value is|; |
known to be 1%. 

Figure 1 also shows that the uncertainty in the core window 
is significantly larger, even though this small window can 
be argued, a priori, to have minimal model discrepancy. 
Furthermore, the uncertainty is increased by taking data points 
in reverse-bias where a bypass diode is active or in forward 
bias into the mismatch feature. This is because the resulting 
increase in the sum of squared residuals dominates any un
certainty reduction due to the larger DoF. We also note the 
somewhat erratic structure of the graph of the coefficient of 
determination goodness-of-fit metric for LLS, denoted by R2 , 
as compared to the more smoothly structured log evidence 
graph. In general, the value of R2 can be quite sensitive when 
fitting data that describe a nearly horizontal line. In this case, 
the maximal R2 corresponds to a window that includes the 
non-straight-line mismatch feature. The core data window has 
a similarly large R2 , and is observed to be the global maximum 
for some synthetic data realizations. 

The results above are merely one snapshot of a stochastic 
process that generates I-V curve data. Because synthetic data 
are used in this example, we can further consider various 
aspects of the statistical performance of the procedure using 
Monte Carlo (MC) simulation. The MC sampling enables 
many realizations of the random current noise in the I-V curve 
data. We consider two extreme window selections: (1) the 
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smallest core window vs. (2) the larger maximum-evidence 
window. 

We compare the average U95 for Isc for the two windows 
by taking 100 realizations of the I-V curve data with the 
same voltages each time. The average U95 for the core 
window is 6.109%, while the average U95 for the maximum-
evidence window is 0.6861%. Thus, a significant reduction in 
uncertainty is achieved, on average, by taking a larger window. 
However, for this sampling the proportion of times that the 
I95 coverage interval contains the true Isc is 0.96 for the 
core window and 0.80 for the maximum-evidence window.7 

7Here, a frequentist metric judges the coverage interval, which is technically 
a Bayesian credible interval. In this o-BLR setting, one anticipates commen
surate frequentist performance in the absence of model discrepancy [11]. 
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This suggests that the maximum-evidence windows may be 
somewhat too large and therefore include I-V points where 
model curvature is non-negligible. This is further supported 
by the average positive (negative) bias in the residuals at 
the leftmost (rightmost) data point of the maximum-evidence 
window, which is not present in the core window. Here, 
the residuals are defined as the observed current minus the 
straight-line fit current using the mode of the joint posterior 
SoKD for {a0 and {a1. Thus, we hypothesize that an opti
mal window, which minimizes uncertainty with negligible 
model discrepancy, lies somewhere in between the core and 
maximum-evidence windows. 

We also use synthetic data to examine the effect of current 
scaling. Figure 3 shows the analogous results for an I-V curve 
with about 2% of the short-circuit current, which is more 
typical of a 4 cm2 reference cell. Here, the magnitude of the 
additive noise is scaled so that it is still 1% of the true Isc. 8 

This figure shows a maximum-evidence data window that is 
clearly too large, with the effect of lowering the measured 
value for Isc. The error in this value is −2.506%, which is 
considerably outside the coverage interval corresponding to 
U95 = 1.928%. As the current is scaled lower, we observe 
that the global maximum evidence corresponding to a better 
window becomes a local maximum. We currently cannot 
explain this phenomenon. However, this suggests that using 
the local maximum evidence closest to the core window may 
be effective when selecting or constraining the data window. 

Lastly, we use synthetic data to examine the effect of the 
noise level in the current. Figure 4 shows the results of 
changing the noise level on the maximum-evidence window. 
For this particular realization of the random noise, we see 
that the maximum-evidence window grows slightly larger 
before decreasing. As one might expect for smaller noise 
levels, it appears that the evidence can better distinguish the 
onset of model discrepancy. However, larger (and potentially 
unrealistic) noise levels tend to decrease the window size in 
a conservative fashion. Further analysis will be required to 
better understand these effects over a wide variety of I-V curve 
datasets and noise realizations. We note that the density and 
spacing of the voltage points as well as the accuracy of the 
noise model (e.g., i.i.d. normal) can also affect such results. 

D. Second Isc Fitting Example 

Figure 5 shows the results of applying this fitting procedure 
to a measured I-V curve with lower current and a bypass-diode 
feature in reverse bias, in addition to the usual forward-bias 
diode feature. We see that maximizing the evidence includes 
a large portion of the flat part of the I-V curve, while properly 
excluding the two “knees” in the curve. Note that the window 
with maximum evidence is not the same window that gives 
the minimum uncertainty. However, for this dataset, larger 
evidence does generally correspond to lower uncertainty. 

For the data window that maximizes the evidence, θ = 
(a0, a1, σ2) = (0.01258 A, 2.044  10−4 A/V, 1.546  ×

8For comparison purposes, we continue to consider two mismatched cells 
wired in series with the same exact voltages. 
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Fig. 3. Results for the First Isc Fitting Example using synthetic I-V curve 
data with significantly lower current. Top: The maximum-evidence window 
is too large. Top-mid: ln M as a function of window size, notice the local 
maximum in evidence near the window with minimum uncertainty. Bot
mid: The corresponding relative expanded uncertainty U95 for the various 
windows. In the middle two plots, the diamond marks the window with the 
maximum evidence and the square marks the window with the minimum 
uncertainty. Bot: The coefficient of determination R2 for linear least squares 
fits for each data window. The triangle marks the window with maximum R2 . 

10−9 A2). Thus, the measured value of Isc is µIsc = 
0.01258 A. The relative expanded uncertainty U95 = 0.1441% 
corresponding to the interval I95 = [0.01256, 0.01260]. Here, 
the minimum relative uncertainty over all data windows is 
0.05319% < 0.1441%. When considering the evidence as 
a goodness-of-fit metric, the window giving the smallest 
uncertainty is not preferred to the window giving the maximal 
evidence. Figure 6 shows the posterior SoKD for Isc, a shifted 
and scaled univariate t-distribution with ν = 62 DoF. The 
slope a1 can be analyzed similarly. Relative to Isc, the esti

σ;mated standard deviation of the noise is 100 · = 0.3126%.|;a0|
Comparing evidence to R2 as goodness-of-fit metrics, one ob
serves agreement or disagreement, depending on the window. 

III. CONCLUSION 

We use model evidence in the o-BLR framework to in
vestigate an automated local straight-line regression to deter
mine Isc that reduces uncertainty while avoiding significant 
model discrepancy. The maximum-evidence approach appears 
promising and better than the R2 goodness-of-fit metric. How
ever, the diversity of PV devices, measurement systems, and 
measurement factors that affect the regression are challenging 
to explore exhaustively. Furthermore, model evidence is tradi
tionally used for model comparison/selection, and its use here 
might benefit from a more rigorous framing in these terms. 

a a a − ×

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 4. Results for the First Isc Fitting Example using synthetic I-V curve 
data with different noise levels. The standard deviation of current noise relative 
to Isc is— Top: 0.5%, Top-mid: 1%, Bot-mid: 2%, and Bot: 4%. For this 
particular realization of the random noise, the maximum-evidence window 
first increases and then decreases in size with increasing noise level. 

Intuitively, the method is comparing models for which data 
points outside the chosen window have no quantitative bearing 
on the likelihood function. This apparently corresponds to an 
“improper” likelihood function that would be susceptible to 
delicate mathematical issues. A more rigorous development 
may explain the current-scalability issue and suggest a more 
optimal window selection for minimal fit uncertainty with 
negligible model discrepancy. Finally, we have provided a 
rigorous framework for analyzing other measurements and 
approaches, such as local polynomial fits to maximum power 
and increased I-V curve sampling near points of interest. 
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