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The work presented in this report does not represent 
performance of any product relative to regulated 
minimum efficiency requirements. 

The laboratory and/or field sites used for this work are 
not certified rating test facilities. The conditions and 
methods under which products were characterized for 
this work differ from standard rating conditions, as 
described. 

Because the methods and conditions differ, the reported 
results are not comparable to rated product performance 
and should only be used to estimate performance under 
the measured conditions. 
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Executive Summary 

This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak 
Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system 
experimental database to enable others to validate hygrothermal simulation codes. NREL focused 
on testing the moisture durability of practical basement wall interior insulation retrofit solutions for 
cold climates. The project has produced a physically credible and reliable long-term hygrothermal 
performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that 
are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data 
currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be 
extended through November 2014. The experimental data were configured into a standard format 
that can be published online and that is compatible with standard commercially available 
spreadsheet and database software. 

The main objectives of the project were to: 

• Develop physically credible and reliable long-term hygrothermal performance data for 
retrofit foundation wall insulation systems that are fully compliant with the performance 
criteria in the Minnesota Energy Code. 

• Generate public experimental data sets to validate and calibrate building foundation 
hygrothermal simulation codes that can be used to quantitatively assess compliance with 
the performance criteria. 

• Test retrofit foundation wall systems with interior and exterior insulation placements. 

• Determine experimentally whether the full basement foundation insulation retrofit 
systems tested are in compliance with the Minnesota Energy Code performance criteria. 

• Use the heat flux, temperature, wall, and soil moisture content experimental data to 
investigate the validity of the Building Foundation Energy Transport Simulation 
(BUFETS) earth contact energy simulation program (as an example of a thermal 
diffusion transport-only program) when applied to the test bay wall systems under field 
conditions with imprecise (or fuzzy) material properties. 

• Use the experimental data to ascertain whether the Wärme und Feuchte Instationär 
(WUFI)-2D hygrothermal simulation code can be applied to basement foundation 
systems. 

• Ascertain whether the test wall systems meet the Minnesota Energy Code performance 
criteria in the presence of a severe internal humidity load during the heating season. 

• Measure the vapor coupling between hollow masonry block wall cores and a sealed rim-
joist cavity. Determine whether this coupling results in elevated moisture contents on the 
sill plate, rim board, and floor joist webs. 

• Determine the impact of exterior rim board insulation with a class II permeance rating on 
reducing the condensation on the rim board interior surface. 

• Configure the experimental data into a standard format that can be published online. 
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Interior full-wall and exterior partial wall insulation retrofits were tested. No particular advantage 
was found for the partial wall exterior insulation system unless the insulation extends at least to the 
top of the rim joist, in which case the interior rim board surface relative humidity (RH) was 
lowered substantially over the uninsulated case. However, the exterior insulation had no impact on 
the moisture contents of the sealed rim-joist cavity wood components that were the same as the 
uninsulated case under the experimental conditions. The heat flux performance of the partial wall 
exterior insulation was equivalent to that of full-wall interior insulation at the vertical center of the 
insulation only. It deteriorated as the top and bottom edges were approached. The experimental 
data showed that full-wall interior foundation insulation retrofits tested using adhered and 
nonadhered water separation planes (WSPs) were shown to be in compliance with the 2009 
Minnesota Energy Code performance criteria.  

The experimental thermal data were used to investigate the validity of the three-dimensional 
Building Foundation Energy Transport Simulation (BUFETS) earth contact energy simulation 
code when applied to the test bay walls under field conditions. The agreement between the 
experimental and simulation heat flux data was acceptable for calculating the seasonally integrated 
wall heat flows that are necessary to accurately simulate foundation envelope energy transport. 
Agreement between the measured and simulated wall and soil temperatures was better in the 
heating season and worse in the cooling season; the discrepancy in the wall temperatures decreased 
with height above the slab. Two omissions in the BUFETS program were recognized as being the 
likely causes for the discrepancies: (1) its inability to model buoyant cavity flow loops in hollow 
masonry block walls; and (2) its inability to model a water table with a seasonally varying height 
and temperature. Secondary omissions were also recognized; for example, the absence of a soil 
moisture transport model enabling the calculation of seasonally varying thermal conductivities as a 
function of soil moisture content.  

The WUFI-2D hygrothermal simulation program in its current standard form was unable to model 
the basement foundation systems tested. The program failed to yield a solution to the moisture 
transport equation included in its algorithm. The team tried unsuccessfully to resolve the problems 
with the program developers. The thermal component of the simulation did yield results that were 
compared to the experimental data. In almost every comparison case, the magnitudes of the 
experiment/simulation temperature differences obtained with WUFI-2D were greater than those 
obtained with BUFETS, particularly during the heating season.  

The test wall systems were exposed to conditions of high basement interior humidity (50% RH for 
2 weeks) during January and February 2014. The experimental data tentatively show that the wall 
systems did meet the Minnesota Energy Code performance criteria for this period, but final 
confirmation will require dismantling of the wall system, which can be accomplished only after the 
part of the experiment not funded by NREL has been completed.  

The data reveal that neither adhered nor nonadhered interior WSPs produced perpetually wet walls 
during the experiment. The data show that the RH/temperature/time profile in the drainage cavity 
between the nonadhered WSP and the wall during the experiment is sufficient to grow mold if 
enough nutrients are available.  

The vapor coupling between hollow masonry block walls and a sealed rim-joist cavity with and 
without exterior rim board insulation was measured. The experimental data revealed no coupling 
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between moisture-saturated (100% RH) cores and the moisture content of any rim-joist cavity 
wooden boundary components with and without exterior insulation. No coupling was revealed 
between a wall top course face shell elevated moisture content and the wooden cavity boundary 
components. This was ascribed to the top course of the wall being a solid bond beam block that 
yields an adequate class II vapor retarder, which effectively isolates the rim-joist cavity from the 
masonry block wall cores and from elevated basement interior humidity conditions. A solid top 
course is adequate to isolate the rim-joist cavity from the vapor-saturated cores of a hollow 
masonry block wall, provided that the top course is not wetted by exterior bulk water. 

Exterior rim board thermal insulation with a class II permeance rating did not reduce the 
condensation on the rim board interior surface under the experimental conditions. This arose 
because the vapor transport from all sources (including the masonry block cores and the basement 
interior) was so low that the potential for condensation was severely restricted. Further, even 
without exterior insulation, the RH on the rim board interior face never reached vapor saturation 
conditions. 

Calibrated instrumentation was developed to continuously measure the exterior and interior 
masonry block face shell moisture contents. These data are essential for evaluating the accuracy of 
hygrothermal simulation programs and for determining the moisture status of basement walls 
before the interior insulation systems tested are installed.  

The project has contributed to the understanding of long-term hygrothermal transport in foundation 
walls and has generated specific guidance on how to install durable basement wall insulation 
systems in cold climates. This contribution has been quantified in the form of a public domain 
experimental database that currently spans a period of about 1-½ years. Whether this database will 
be made available to the public over the long term is beyond the scope of this project and will 
ultimately be at the discretion of the sponsors. 
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1 Introduction 

The full basement foundation insulation retrofit experimental program described in this report was 
funded jointly by the National Renewable Energy Laboratory (NREL) as part of the NorthernSTAR 
Building America program and by Oak Ridge National Laboratory (ORNL) as part of the US 
Climate Zone Specific Foundation Insulation Recommendations program. 

The NREL and ORNL parts of the project commenced in February and July 2012, respectively. 
Data acquisition commenced in November 2012 and continued through March 31, 2014 for the 
NREL part of the project. Data will continue to be collected on the ORNL part of the project 
through November 2014. This report is devoted to the NREL part of the project, which focused on 
the experimentally measured hygrothermal phenomenology of retrofit foundation insulation 
systems. ORNL focused on collecting experimental data to enable others to validate and test 
hygrothermal simulation programs. 

1.1 University of Minnesota Foundations Technical Background 
The 2012 International Energy Conservation Code (IECC) stipulates, for climate zones 6 and 7, 
foundation wall insulation resistance values of Rus-19 for interior cavity insulation and Rus-15 for 
interior, integral, or exterior continuous insulation (usually rigid or semirigid board or spray-
applied) to increase the energy conservation of residential buildings. However, the IECC provides 
no guidance on the hygrothermal and moisture durability requirements for the installation of this 
amount of insulation thermal resistance. 

The state of Minnesota requires by statute (326B.115) that the commissioner “may not adopt all or 
part of a model energy code relating to the construction of residential buildings without research 
and analysis that addresses [sic], at a minimum, air quality, building durability, moisture, 
enforcement, enforcement cost benefit, and liability.” The Energy Systems Design Program 
(ESDP) at the University of Minnesota was the lead in conducting the due diligence building 
science research for residential building foundation wall and slab insulation systems that were 
incorporated into the 2009 Minnesota Energy Code. This research (Goldberg and Huelman 2005) 
provided the physics basis for the code language in section N1102.2.6 (Basement Walls) in chapter 
1322 of the 2009 Minnesota Rules. This chapter is essentially devoted to a recitation of the 
requirements for installing hygrothermally durable foundation wall insulation systems in cold 
climates (zones 6 and 7). The chapter is further divided into two main sections: a prescriptive 
option and a performance option. The performance option stipulates a set of criteria necessary for 
all foundation systems to meet in order to achieve sustainable moisture durability and thus 
provides, theoretically at least, the basis for the prescriptive rules. These criteria are completely 
generalized. They are independent of the type, thermal resistance, placement of the foundation wall 
insulation, and climate. Subsequently, these criteria were generalized to the entire building 
envelope for all climates (Goldberg et al. 2010). 

The performance criteria were based on 17 years (1988–2005) of experimental hygrothermal 
foundation research at the University of Minnesota’s Foundation Test Facility (FTF). This facility 
was originally established in 1987–1988 with funding from the U.S. Department of Energy. This 
research was supplemented with additional experimental work conducted at the University’s 
Cloquet Residential Research Facility (CRRF). The FTF was closed in 2009 because the lease on 
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the land on which it was built could no longer be renewed. Experimental research has continued at 
the CRRF. 

This experience of inculcating physically sound durability rules for foundations into the Minnesota 
Building Code has demonstrated conclusively that there is no substitute for full-scale testing of the 
long-term durability of foundation envelope insulation systems to prove their durability under 
worst-case boundary conditions. This testing is of particular value when the results are useful for 
validating numerical models that can be used to extend the results to other cases and boundary 
conditions. This is very relevant to retrofit foundation insulation systems in older residential 
buildings that often have foundation walls with no waterproofing, damp-proofing, or drainage 
systems and very high interior humidities, particularly in the cooling season. Test protocols such as 
the “IEA BESTEST: In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to 
Slab-on-Grade Construction” (Neymark and Judkoff 2008) can be used to assess the thermal 
modeling accuracy of numerical models1, but these do not address hygrothermal modeling or 
nonlinear heat transport. 

From a foundation energy modeling perspective, the cost effectiveness of installing durable retrofit 
foundation insulation systems is difficult to quantify because most whole-building energy 
simulation programs (including Building Energy Optimization E+ [BEoptE+™]) do not 
adequately model latent loads. Determining such latent loads requires modeling the ground-to-
basement vapor and bulk water flows so that the energy impact of reducing or eliminating these 
flows can be calculated. 

One current key issue with the ability to design moisture durable foundation systems in general, 
and in meeting the performance criteria in the Minnesota Energy Code in particular, is the lack of a 
validated hygrothermal simulation program that can be used to quantitatively assess whether a 
given foundation insulation system design can meet the performance criteria. Again, the ESDP was 
tasked by the state of Minnesota to perform the due diligence building science durability analysis 
for incorporating the 2012 IECC foundation insulation thermal resistance requirements into the 
2012 Minnesota Energy Code. This required that insulation systems be evaluated for which cold 
climate experimental hygrothermal performance data are not available. This posed a particular 
challenge in using a hygrothermal simulation program2 to generate adequate—even if highly 
approximate—supporting data (Goldberg 2012). The major issue in the lack of such simulation 
programs is the absence of appropriate, experimental data with which to validate the hygrothermal 
results. This test program seeks to remedy this problem as part of the ORNL-funded part of the 
project. 

1.2 Moisture Considerations for Retrofit Foundation Insulation 
The critical issue in installing retrofit foundation wall insulation is the moisture status of the wall. 
The status generally falls into one of three cases: 

  

                                                 
 
1 Linear models based on Fourier’s law only. 
2 Wärme und Feuchte Instationär (WUFI)-2D version 3.3. 
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• The wall is dry. In this case no bulk water is leaking through the wall at the time of 
inspection and there is no historical record of leakage. Further, when covered with a 
sealed nonadhered water separation plane (WSP) on test sections around the foundation 
wall, no condensation appears on the exterior (or wall-side) surface of the WSP at any 
time during the cooling season. 

• The wall is wet. There is historical or present evidence of bulk water seepage through the 
wall. 

• The wall is intrinsically wet. In this case there is no evidence of bulk water seepage; 
however, vapor movement (either by diffusion or advection or both) produces 
condensation on the exterior surface of a test section WSP in the cooling season. 

In the case of a dry wall in dry soil conditions, an interior WSP may not be necessary, even though 
it is required by the performance criteria in the 2009 Minnesota Energy Code.3 Nevertheless, 
installing an interior WSP under these conditions need not have any durability impacts (depending 
on the design of the interior insulation system, if any) and allows the benefits of this practice (such 
as a reduction in heating, ventilation, and air conditioning [HVAC] latent loads) to be realized. 

With an intrinsically wet wall, an adhered WSP may be the best solution, assuming that the wall 
does not become wet enough for the WSP to de-adhere or for freeze/thaw cycling structural 
damage to occur. The chief advantage of an adhered WSP is that it eliminates the potential for a 
perpetually moist drainage cavity between the WSP and the wall that generally experiences 
temperature and relative humidity (RH) conditions favorable for mold growth (Goldberg 2012). 

For a wet wall with active bulk water seepage, a nonadhered WSP may be the only practical 
choice. However, adhered spray-applied WSPs may be effective, assuming there is sufficient 
drainage within the structural wall system to effectively remove the water from the wall cores (in 
masonry block walls) and to keep the moisture content low enough to prevent freeze/thaw cycle 
structural damage. In the case of poured concrete walls, the adhered WSP would have to be robust 
enough to withstand hydrostatic pressure without blistering or peeling from the wall. The issue 
with a nonadhered WSP is the potential for a perpetually wet drainage cavity and the consequences 
such as possible mold growth and freeze/thaw cycle structural damage. 

Usually, retrofit foundation insulation applications rely on interior insulation placement. As 
alluded to above, if the interior insulation system has an adequately sealed warm-side air barrier (to 
avoid vapor bypass through gaps in the insulation system) and the net vapor permeance of the 
insulation is in the class II range,4 a continuously wet interior WSP surface can be avoided (winter 
wetting dries out during the summer). 

                                                 
 
3 The principal investigator has witnessed examples of this in a cold climate with well-drained sandy soil backfills 
with moderate levels of interior insulation (R-11 or lower). 
4 Permeance of 0.1–1 US-perms. The recommendation proposed for spray-applied foam insulation in Goldberg 
(2012), for example, is “a permeance not greater than 0.8 in accordance with ASTM E96 procedure A and not less 
than 0.3 in accordance with ASTM E96 procedure B” (both limits in US-perms). 
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When partial wall exterior insulation is contemplated as a retrofit solution, thermal effectiveness5 
and the extent to which the exterior location improves the hygrothermal performance of an 
uninsulated wall need to be considered. If the effectiveness is the same as or better than full wall 
insulation (either exterior or interior) and the hygrothermal performance improvements are 
measurable, deployment of partial wall exterior insulation using hydro-vacuum excavation or other 
potentially less expensive techniques may be a cost-effective foundation wall insulation retrofit 
solution. 

Installing a retrofit interior insulation system with an interior WSP can have hygrothermal impacts 
on the rim-joist cavity. Previous research at the CRRF (Goldberg and Huelman 2001) concluded 
that (1) there is vapor coupling between the cores of masonry block walls and the condensation on 
the interior face of the rim board; and (2) exterior rim-joist insulation does reduce the amount of 
condensation on the rim board interior face. However, these results were based on an experimental 
configuration that did not fully isolate the rim-joist cavity from the basement interior vapor source; 
thus, the conclusion with regard to the core/rim-joist cavity moisture coupling can only be regarded 
as speculative. Rim-joist treatments in foundation wall insulation retrofits are important because 
the rim joist is a prime target for mold and rot. The core/cavity moisture coupling phenomenology 
needs to be experimentally clarified and strengthened so that retrofit rim-joist cavity insulation 
strategies can be devised and implemented cost effectively. In particular, installing a WSP beneath 
the sill plate in a retrofit application can be very expensive (because the house may need to be 
jacked off the foundation to insert the WSP). The need for vapor isolation between the hollow core 
of a masonry block wall and the wood components of a rim-joist cavity (sill plate and rim board in 
particular) thus needs to be experimentally justified. 

The experiments conducted during this project enable a comprehensive assessment of these issues. 

1.3 Objectives 
The key long-term objectives of the cold climate foundation wall insulation hygrothermal test 
program focused on retrofitted basement wall systems in this project are: 

• Develop physically credible and reliable long-term hygrothermal performance data for 
retrofit foundation wall insulation systems that are fully compliant with the performance 
criteria in the Minnesota Energy Code. 

• Generate public experimental data sets to validate and calibrate building foundation 
hygrothermal simulation codes that can be used to quantitatively assess compliance with 
the performance criteria. 

• Test retrofitted foundation wall systems with interior and exterior insulation placements. 

• Determine experimentally whether the full basement foundation insulation retrofitted 
systems tested are in compliance with the Minnesota Energy Code performance criteria. 

                                                 
 
5 Thermal effectiveness is defined as the ratio: one-dimensional heat flux/three-dimensional heat flux for the same 
thermal resistance. 
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• Use the heat flux, temperature, wall, and soil moisture content experimental data to 
investigate the validity of the BUFETS6 earth contact energy simulation program (as an 
example of a thermal diffusion transport-only program) when applied to the test bay wall 
systems under field conditions with imprecise (or fuzzy) material properties. 

• Use the experimental data to ascertain whether the WUFI-2D hygrothermal simulation 
code can be applied to basement foundation systems. 

• Ascertain whether the test wall systems meet the Minnesota Energy Code performance 
criteria in the presence of a severe7 internal humidity load during the heating season. 

• Measure the vapor coupling between hollow masonry block wall cores and a sealed rim-
joist cavity. Show whether this coupling results in elevated moisture contents on the sill 
plate, rim board, and floor joist webs. 

• Determine the impact of exterior rim board insulation with a class II permeance rating on 
reducing the condensation on the rim board interior surface. 

• Configure the experimental data into a standard format that can be published online. 

Additional objectives include: 

• Test whether an adhered WSP is susceptible to delamination. 

• Investigate whether adhered or nonadhered WSPs result in perpetually wet walls. If so, 
determine whether the moisture content/temperature profile is sufficient to produce 
freeze/thaw cycle structural damage. 

• Determine whether the RH/temperature/time profile within the drainage cavity between 
the nonadhered WSP and the wall is sufficient to grow mold and, if so, the severity of the 
potential. 

• Measure the thermal effectiveness of exterior partial wall insulation. Compare this with 
that of full-wall interior insulation. 

• Continuously measure the exterior and interior masonry block face shell moisture 
contents. 

1.4 Cost Effectiveness and Other Benefits 
Previous research has shown that the likely total site energy savings (aggregate of utility metered 
electricity and natural gas usage) based on sensible energy considerations only that can be 
expected from foundation insulation are fairly modest. For example, continuous R-15 interior 
insulation (compliant with 2012 IECC) installed on bare, full-basement foundation walls in a cold 
                                                 
 
6 BUFETS is strictly an energy simulation code that does not include any moisture transport. 
7 What constitutes a “severe” heating season internal humidity load in a cold climate basement is a matter of 
considerable dispute. Ultimately, this reduces to an assessment of liability; that is, what is the minimum test 
condition necessary to ensure that the foundation wall systems will be durable in 99% of imposed field moisture 
conditions (for example, typical Minnesota basements operate at no higher than 40% RH at 68°F, but humidification 
for occupant health reasons or a failed clothes dryer vent can easily increase this beyond 50%). In this project, the 
interior basement humidity was ramped up to 50% in January 2014 and held at that level for about 2 weeks before 
being ramped down again. 
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climate yielded simulated savings of 10% or less8 (Goldberg and Steigauf 2011). A well-insulated 
and airtight, single-story, 400-ft2 building with a monolithic, shallow, slab-on-grade foundation 
yielded experimental site energy savings of less than 15% with R-10 vertical and wing insulation 
(Goldberg 2011). The savings realized depend on a host of building parameters, such as: 

• Size of the conditioned space 

• Above-grade/below-grade enclosure surface area ratio 

• Thermal integrity (R-value and infiltration flow rate) of the above-grade enclosure 

• Whether the basement has independent temperature control 

• Interior air movement, particularly buoyant, convective flows (stack effect) 

• Occupant lifestyle. 

The site energy savings from foundation insulation in zone 6 and 7 climates may not exceed 15%, 
especially for full basement insulation when the basement is not separately zoned. Thus, achieving 
simple payback periods of 10 years or shorter is unlikely, making the justification of foundation 
insulation by this metric alone (sensible energy savings) questionable. 

When considering other metrics in combination with site energy savings, foundation insulation 
becomes a more financially attractive proposition. Installing retrofit foundation insulation systems 
that are fully compliant with the Minnesota Energy Code performance criteria has several 
additional advantages that are more important than the energy cost savings for the homeowner. A 
key feature of a compliant retrofit insulation system is that it has an intact WSP that isolates the 
foundation interior from the surrounding soil. This adds significant value in improving occupant 
comfort and indoor environmental quality as follows: 

• Occupant comfort improvement. Foundation wall insulation yields warmer interior wall 
surfaces in winter and cooler above-grade wall surfaces in summer, thus reducing the 
radiant heat transfer between the occupants and the walls. In basements with floating 
temperatures, the insulation also increases the interior stagnation temperature 
(accompanied by the modest energy savings noted above). Both effects promote occupant 
comfort. 

• Reduction of water vapor and bulk water transport through the foundation walls to a 
negligible amount. This also promotes occupant comfort by yielding a dry and odor-free 
basement, particularly in the cooling season. The soil surrounding basements in cold 
climates typically is saturated or close to saturated throughout the year, particularly 
during the cooling season (99% or greater RH, Rasmussen and Rhodes 1995). 
Consequently, the reduction in latent (dehumidification) load could yield a substantial 
reduction in cooling costs. Nevertheless, if ambient summer temperatures and humidities 
continue their increasing trend in zones 6 and 7, these latent load reductions, which are 

                                                 
 
8 Site energy savings for a two-story home with about 4000 ft2 of conditioned space meeting the 2009 IECC: 
Madison, Wisconsin = 6%; Minneapolis, Minnesota = 8%; Bemidji, Minnesota = 9%. 
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almost always met by equipment powered by increasingly expensive electricity, could 
become substantial. 

• Enhanced efficacy of subslab depressurization radon mitigation. Radon mitigation is 
required in certain cold climate urban areas for existing homes on resale and is a code 
requirement for new construction. Having a foundation wall system with a continuous 
WSP that provides a full air seal between the foundation interior and the surrounding soil 
improves the suction pressure on the surrounding soil by substantially reducing short-
circuit leaks across the foundation envelope. 

This project does not address the cost of installing foundation insulation, because the systems were 
built for research purposes based on quality considerations alone. No attempts were made to 
deploy the most cost-effective materials or minimize the installation time. Thus, the cost 
effectiveness of foundation insulation cannot be directly addressed. However, in demonstrating the 
durability of the retrofit insulation systems being tested, a consistent basis is provided upon which 
builders can develop installations that are compliant with the tested systems at the lowest life cycle 
cost. 
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2 Description of the Experiment 

Four retrofit basement foundation insulation wall systems (installed in test Bays 1–4) and two rim-
joist cavity hygrothermal test systems (installed on test Bay 5) have been constructed and 
instrumented at the CRRF in Cloquet, Minnesota. Cloquet is approximately 22 miles southwest of 
Duluth, Minnesota and is in climate zone 7. Because of its proximity to Lake Superior, the CRRF 
experiences lake-microclimatic conditions, especially lake-effect precipitation. Two of the 
experimental wall systems were built in collaboration with ORNL and thus fulfill a dual purpose: 
to demonstrate a particular retrofit foundation insulation design and to provide archival-grade 
experimental data for hygrothermal simulation code purposes. 

The set of data collected as discussed below for Bays 1 and 2 was designed specifically to meet 
ORNL’s requirements for validating the WUFI-2D hygrothermal simulation program.9 A key issue 
is the number of soil temperature and moisture content measurements and the locations of the 
ambient boundary condition measurements. Fewer than the ideal number of soil sensors may have 
been deployed in this experiment because of constraints imposed by ORNL. 

The instrumentation for Bays 3–5 was designed to capture the key experimental metrics of 
foundation hygrothermal performance. The selection of this instrumentation was based on more 
than a decade of experimental experience at the University of Minnesota’s FTF (Goldberg 2011). 

2.1 Experimental Configuration 
The experiment was built in five 10-ft wide bays, each with a north and south wall of identical 
construction. Figure 1 shows a plan of the layout of the test bays in the west basement of the 
CRRF. The design and instrumentation for each unique test bay configuration are discussed 
separately. The specification and manufacturer’s listed performance specifications of all the 
instrumentation purchased for use in the project at the CRRF are listed in Table 7 in Appendix A. 
Where provided (soil temperature and moisture content, RH and heat flux), the manufacturer’s 
calibrations for the individual sensors were used. The thermocouple temperatures were calibrated 
via the National Institute of Standards and Technology monograph 125 tabulations. Masonry block 
and wood moisture contents were measured with electrical conductance-based instrumentation 
developed and calibrated during the project as described in Appendix B. 

Figure 2 through Figure 6 show schematic drawings of the four wall and two rim-joist cavity 
systems. Appendix A provides a photographic record of the experiment’s construction. Each 
schematic shows the physical and instrumentation designs. The designs of the wall systems 
suitable for a retrofit application experiment were determined by the requirements discussed by 
Goldberg and Steigauf (2011). In summary, these requirements reduce to the need for the retrofit 
foundation wall systems to be in compliance with the performance requirements of the 2009 
Minnesota Energy Code.10 

                                                 
 
9 Bays 1 and 2 are the “validation” test bays; ORNL provided most of the funding for these bays and approved all 
the specific sensors and quantity of the instrumentation installed. 
10 Minnesota Statutes, Chapter 1322, Section N1102.2.6.12.1. 
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Figure 1. Plan view of test bay locations 
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Figure 2. Bays 1 and 2 test wall system characteristics, dimensions, and instrumentation 
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Figure 3. Bay 3 test wall system characteristics, dimensions, and instrumentation 
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Figure 4. Bay 4 test wall system characteristics, dimensions, and instrumentation 
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Figure 5. Bay 5A insulated test rim-joist cavity system characteristics, dimensions, and instrumentation 
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Figure 6. Bay 5B uninsulated test rim-joist cavity system characteristics, dimensions, and instrumentation 
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The basement walls are constructed of 12-in. wide masonry blocks that have a verified “stretcher” 
configuration. The blocks have reinforcing rod in filled cores nominally 4 ft on center. The top 
course consists of a solid bond beam block; the cores of the bottom course are mostly filled with 
excess grout. The blocks are covered on their exterior surfaces with a masonry parging and painted 
with a bituminous damp-proofing. A drain tile is located on the interior and exterior faces of the 
footing11 and connected to interior sumps at the east and west ends of the building. The drain tile is 
embedded in gravel and covered with a filter fabric. 

In general, with reference to Figure 2 through Figure 4, the following measurements were made on 
each test bay wall (the instrumentation for the rim-joist test cavities in Bay 5 is discussed in 
Section 2.1.4): 

• Soil moisture content and temperature principally on a vertical profile 5 in. from the 
foundation wall at 5-¼, 40-¼, 69-¼, and 86-¼ in. above the slab in Bays 1–3 and at 69-¼ 
in. only above the slab in Bay 4. Bays 1 and 2 also have a horizontal profile at 40-¼ in. 
above the floor slab with additional sensors 18-¾ and 36 in. from the wall. 

• Moisture content of the interior and exterior masonry block face shells at the four levels 
noted above 

• Surface and cavity temperatures  

• Absolute humidity (AH) (a combination of RH and temperature measured in very close 
proximity to each other in the same sensor body) 

• Heat flux. 

Appendix A provides the specifications of all the instrumentation used in the five test bays. 

 Description of Test Bays 1 and 2 2.1.1
Bays 1 and 2 (Figure 2) had the same configuration except that the Bay 1 wall exterior surface was 
in contact with a loam backfill and Bay 2 had a sand backfill.12 The backfilled soils were contained 
within 3-ft × 9-ft × 7-ft, 7-in. deep enclosures (termed soil “cribs”) that fit tight to the exterior of 
the basement wall and extend down to the top of the building footing. Each enclosure consisted of 
a polyvinyl chloride frame wrapped with Platon13 waterproofing membrane on three sides (the top 
and bottom were open) to separate the imported soil from the adjacent native soils and create a 
watertight perimeter (see Figure 82 and Figure 83 in Appendix A). 

Per the requirements of the ORNL research plan, the soils in Bays 1 and 2 were evaluated using 
ASTM test procedures C136 and D422 to ascertain their classification. This classification enabled 
the correct soil type to be selected for use with the manufacturer’s soil sensor calibrations and to 
provide ORNL with the necessary input data for its theoretical soil property determinations 
(Kehrer et al. 2012). 

                                                 
 
11 “Form-A-Drain” manufactured by the CertainTeed Corporation that creates the form into which the concrete for 
the footing is poured. 
12 In terms of the U.S. Department of Agriculture soil triangle classification. 
13 A dimpled foundation waterproofing membrane was provided by the CertainTeed Corporation. 
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Given that the soil material properties are a function of the soil density, soil compaction is a critical 
issue. In this project the approach adopted was to manipulate the soil backfilling process to arrive 
at a natural field compaction state in which the soil density profile can be determined by scaling 
models relating soil density to moisture content (for example, Bird and Perrier 2003). Thus, the 
Bay 1 and 2 experiments are being conducted for a period of 2 years. The soil was initially 
backfilled to achieve an uncompacted condition. During the first year, soil was added to the tops of 
the cribs to maintain a constant soil height as settlement occurred. Bay 2 (sand) and Bays 3 and 4 
(backfilled with the native silty sand) showed little settlement. Bay 1 (loam) showed significant 
settlement as expected, but a steady-state fully naturally compacted state was achieved after about 
10 months. It would be highly desirable to collect core samples at the end of the experiment to 
measure the final compacted vertical density profiles. However, whether these tests will be 
performed is at ORNL’s budgetary discretion. 

On the inside face of the basement wall, Carlisle Coatings and Waterproofing (CCW) Miradri 
860/861 waterproofing membrane (forming the 2009 Minnesota Energy Code performance option 
required WSP) was adhered to the concrete block wall with CCW 702 quick-dry sheet membrane 
adhesive. Three inches of Styrofoam extruded polystyrene (XPS) insulation14 (per 2012 IECC) 
was fitted tight to the waterproofing membrane and the top, bottom, and vertical joints were sealed 
with PL 300 foam board construction adhesive. A 2 × 3 stud frame with studs at 24 in. on center 
was constructed against the insulation and ½-in. gypsum board was attached to the stud frame. 

Figure 2 also describes the instrumentation layout for Bays 1 and 2. All the instruments were 
placed using the top of the wall as a reference. 

On the interior face of the block wall, the temperature sensors were placed at the horizontal 
midpoint of the concrete block core nearest the centerline of the 10-ft bay (see Figure 83 in 
Appendix A). The concrete blocks that comprise the wall are not perfectly aligned; therefore, the 
temperature sensors are not perfectly aligned vertically. On the exterior face of the wall, the 
existing damp-proofing covered the concrete block from the top of the footing to 8 in. below the 
top of the wall. The top exterior block wall temperature sensor was placed via the same method 
used on the interior. The remaining exterior block wall temperature sensors were aligned with the 
top exterior block wall temperature sensor; therefore, they were not precisely aligned with the 
midpoint of the concrete block core because the parging/damp-proofing rendered the exterior 
surfaces of the masonry blocks invisible (see Figure 81 and Figure 84 in Appendix A). On the 
interior of the wall system, the horizontal difference between the locations of the temperature 
sensors on the interior face of the block wall was averaged and the temperature sensors on the face 
of the insulation, on the back of the gypsum board, and in the room were placed along this line (see 
Figure 81 and Figure 82 in Appendix A). 

The combined soil moisture content and temperature sensor has four prongs (each 2-¼ in. long) 
that were positioned vertically in the soil. The midpoint of the prongs was aligned with the 
elevation of the exterior concrete block wall temperature sensors. This provides for at least 1 in. of 
settlement before the sensor becomes vertically misaligned. 

                                                 
 
14 Provided by the Dow Chemical Company. 
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The concrete block moisture sensors were placed in the same concrete block as the temperature 
sensor at the corresponding elevation. A concrete block moisture sensor consists of two probes 
spaced horizontally approximately 10-1/16 in. apart. The midpoint between the probes corresponds 
with the midpoint of the concrete block and the probes were placed at the block midheight. 
Because the concrete block moisture sensors were always placed at midheight of the concrete 
block, there is an offset between the block moisture sensor and the corresponding temperature 
sensor (see Figure 83 in Appendix A). On the exterior face, the moisture sensors were placed the 
same distance from the top of wall as they were on the interior; again, this was done because the 
damp-proofing system prevented visual confirmation that the sensors were at the midheight of the 
block (see Figure 84 in Appendix A). 

The AH sensors in the block wall cores were usually placed in the same concrete block as the 
temperature sensor, but in the adjacent core. A hole was drilled at a 15-degree downward angle 
from the horizontal in the interior face of the concrete block wall 1-½ in. above the midpoint of the 
block where the humidity sensor was installed so that the sensor port was at the concrete block 
midheight (see Figure 83 in Appendix A). The sensors were installed at an angle to prevent 
condensate accumulation within the sensor, centered horizontally in the core of the concrete block. 
The top humidity sensor was moved down one course and the bottom humidity sensor was moved 
up one course from the locations of the corresponding temperature sensors, because the top course 
is a bond beam and the second masonry block course (from the bottom) (Figure 2) was filled with 
grout in at least one location. For consistency, the bottom AH sensor was placed in the third course 
above the footing in all the test bays. 

The AH sensors on the interior face of the WSP were installed by cutting a pocket into the back of 
the insulation and fitting the sensor into it (see Figure 86 in Appendix A). The edge of the sensor 
was flush with the back face of the insulation with an open port facing the WSP. This allowed the 
insulation to fit tight to the wall; otherwise, air gaps would form around the humidity sensors. The 
sensors were offset 1 in. horizontally from the centerline of the temperature sensors on the face of 
the insulation. This was done so the temperature sensors and heat flux plates would be under a full 
3 in. of insulation, not beneath a humidity sensor pocket. The humidity sensors on the interior face 
of the insulation were aligned with those on the face of the WSP and mounted on the surface of the 
insulation. 

The heat flux plates were placed on the interior face of the WSP (see Figure 87 in Appendix A). 
The plates were not embedded in the insulation, which produces a small air gap (approximately ⅛ 
in.) around the plate because the insulation is not flush with the WSP at the heat flux plate 
location.15 The plates are 2 in.2 × 2 in. 2 and were offset 1-½ in. horizontally from the centerline of 
the temperature sensors on the face of the masonry block on the side opposite the humidity sensors. 
This was done because the temperature sensor behind the waterproofing membrane created a small 
bump that would have prevented the plate from fitting tight to the membrane, and as noted above, 
it permits the heat flux plates to be covered by a full 3 in. of insulation. However, at one location in 
Bay 1-south at approximately 40 in. above the floor, the bump in the WSP produced by the 

                                                 
 
15 Because the thermal conductivity of the sensor is much greater than that of the insulation, embedding the sensor in 
the insulation produces an insulation-WSP interface heat flux error that is larger than the error resulting from a ⅛-in. 
air gap around the sensor. 
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temperature sensor behind the waterproofing material was small enough to permit the heat flux 
plate to be mounted flush against the WSP. Thus, at this location, the heat flux plate was not offset 
from the centerline of the temperature sensor and the humidity sensor was still only offset 1 in. as 
noted above. This means that at this location, the humidity sensor was placed on top of the heat 
flux plate and the insulation thickness was reduced (to approximately 2-½ in.). 

A temperature sensor was installed on the upper surface of the insulation adjacent to the wall sill 
plate to provide a boundary condition at that surface to validate simulation programs. Similarly, a 
humidity sensor was placed on the interior face of the rim board to provide a wall-top RH 
boundary condition. The rim-joist cavities above the instrumented wall test sections were 
uninsulated and without an interior vapor retarder or air barrier allowing them to be essentially in 
equilibrium with the interior conditions. This condition is the same for all the instrumented test 
sections, allowing all the test walls to experience substantially the same rim-joist boundary 
conditions. 

The interior air temperature and humidity boundary conditions were measured approximately 12 
in. from the gypsum wallboard interior surface. These measurements consisted of humidity and 
temperature at the midwall position with additional air temperatures above the slab and below the 
floor joists. In this configuration, the air temperature sensors were partially shielded from infrared 
radiation. This arrangement allowed the interior vertical temperature stratification to be measured. 

 Description of Test Bay 3 2.1.2
Figure 3 shows the design of the Bay 3 insulation system. For the initial heating season (2012–
2013) the ground was left undisturbed to provide an uninsulated thermal reference for Bays 1 and 
2. The soil was the native sandy silt with properties fairly close to those of the sand adjacent to Bay 
2. 

The principal difference in comparison with the design of Bays 1 and 2 (Figure 2) was that an 
adhered WSP was replaced with a nonadhered WSP on the interior face of the foundation wall. 
The nonadhered WSP was formed from a Platon dimpled waterproofing membrane with the 
dimples facing the masonry block wall (Figure 88 in Appendix A), creating a drainage cavity 
between the wall and the WSP. The WSP was fitted into a drainage trough at the base of the wall, 
allowing any bulk water in the drainage cavity to be removed from the system via a drainage tube 
(Figure 89 in Appendix A). A spray bar was mounted onto the wall surface just below grade height 
that allowed bulk water to be introduced into the drainage cavity during the cooling season (Figure 
90 in Appendix A). This enabled the effect of a bulk water leak in an actual wall system to be 
simulated during the cooling season (because the CRRF foundation walls do not have any bulk 
water leaks). The 3-in. interior XPS was fitted flush to the plain side of the WSP and its interior 
seam on the top of the collection trough air and water sealed as shown in Figure 91 (Appendix A). 
The wall was completed with a 2 × 3 24 in. on center stud frame and ½-in. gypsum wallboard in 
the same manner as for Bays 1 and 2. 

The instrumentation installed on Bay 3 (Figure 2) was the same as that installed on Bays 1 and 2 
(Figure 1), with the following exceptions: 
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• The heat flux plates were moved from the surface of the wall to the plain (interior) 
surface of the WSP (Figure 91) at the same vertical levels so that heat fluxes were 
measured consistently on the exterior surface of the insulation. 

• Additional temperature sensors were mounted on the plain (interior) surface of the WSP 
adjacent to the heat flux plates (Figure 91) at the three upper horizontal sensor levels to 
measure the temperature difference across the WSP drainage cavity. 

• Humidity sensors were installed on the dimpled side of the WSP at the upper three 
horizontal sensor levels to measure the RH and vapor pressure within the WSP drainage 
cavity. 

• An additional humidity sensor was installed on the exterior side of the insulation at the 
bottom sensor level for a total of four humidity sensors on this plane to quantify the 
humidity gradient across the full height of the drainage gap. 

• Only three soil moisture content sensors were placed (at the end of May 2013) about 5 in. 
from the wall in comparison with the five sensors deployed in Bays 1 and 2 because the 
horizontal sensor arrays deployed in these bays were not necessary for measuring the 
moisture transport phenomenology across the wall system. 

Because the ground was undisturbed during the 2012–2013 heating season, none of the external 
wall sensors (masonry block shell moisture content and external temperature) or soil moisture 
content sensors were installed on Bay 3. They were all installed toward the end of May 2013.  

 Description of Test Bay 4 2.1.3
The Bay 4 wall design is shown in Figure 4. This wall had the least complex design and consisted 
simply of an adhered interior WSP (as in Bays 1 and 2) with 3-in. exterior XPS insulation. The 
exterior insulation extends nominally from the top of the wall (in reality, from the underside of the 
above-grade vinyl siding “J”-channel) to about 38 in. below grade. During the initial 2012–2013 
heating season, the soil was not excavated but was left in its natural state. Thus, no exterior 
insulation was present, allowing Bay 4 to serve as an uninsulated control for Bays 1–3. This 
permitted a direct measurement of the major effect of interior insulation on wall heat flux for Bays 
1–3. A 2-ft × 3-ft, 24-in. on center stud wall was fitted flush against the adhered WSP and covered 
with ½-in. gypsum wallboard on its interior face (Figure 92 in Appendix A) in compliance with the 
other test walls. The resulting finished interior wall surface for all the test walls in Bays 1–4 is 
shown in Figure 93 (Appendix A). All the vertical seams between the gypsum wallboards were 
sealed with caulk. 

Figure 4 also shows the instrumentation for the Bay 4 walls. In this case, the instrumentation on the 
masonry block walls (interior and exterior shell moisture content and surface temperatures and 
core humidities) was the same as in Bays 1–3. However, the instrumentation on the interior side of 
the adhered WSP was considerably simplified compared to Bays 1 and 2 because it has no interior 
condensing surfaces (because of the exterior insulation placement). The interior instrumentation 
was thus limited to heat flux plates on the interior surface of the WSP at the upper three 
instrumentation levels (Figure 92), a humidity sensor at the midwall below-grade height, and a 
temperature sensor at the corresponding height on the cavity side of the gypsum wallboard.  
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Because the ground was undisturbed during the 2012–2013 heating season, none of the exterior 
wall sensors were deployed in Bay 4. As with Bay 3, these sensors were installed toward the end of 
May 2013. In this case, however, only a single soil moisture sensor was placed about 5 in. from the 
exterior surface of the insulation. 

 Description of Test Bay 5 2.1.4
Bay 5 focused on the performance of the rim-joist cavity with and without exterior insulation. 
Because the bay was 10 ft wide with floor joists at 24 in. on center, the two systems were placed in 
the rim-joist cavity at the one-third points on the wall that allowed an open rim-joist cavity 
between the test cavities to act as a buffer. The existing basement wall system was left in place and 
only the rim-joist cavities were altered. This masonry block wall was covered on the interior with a 
6-mil polyethylene vapor barrier. A 2 × 4 stud wall filled with kraft-faced fiberglass insulation that 
extended to the top of the block wall was placed flush against the vapor retarder. There was no 
interior gypsum. 

Figure 5 shows the insulated rim-joist cavity (Bay 5A) configuration. Figure 6 shows the 
configuration of the uninsulated rim-joist cavity (Bay 5B). The insulated system left the existing 
oriented strand board (OSB) rim board, OSB exterior sheathing, and building paper weather barrier 
in place and added a layer of 3-in. XPS insulation between the building paper and the vinyl siding. 
The vinyl siding was reinstalled over the insulation. The 3-in. insulation was 4 ft. wide, centered on 
the rim-joist cavity, and extended from the bottom of the floor deck (top of the rim-joist cavity) to 
the bottom of the exterior sheathing (approximately 15-½ in.). A 1-½-in. thick XPS insulation 
board was installed at the base of the 3-in. insulation, tight to the exterior face of the concrete block 
wall. 

The 1-½-in. insulation was 4 ft wide, centered on the rim-joist cavity, and extended to just below 
the top of the grade (10-½  and 7-¼ in. high on the south and north walls, respectively). The 
insulation was installed using screws and washers to prevent the screws from penetrating the 
insulation face and the insulation pulling out. Metal flashing was installed over the face of the 1-½-
in. insulation and across the top edge of the 3-in. insulation to protect it from ultraviolet damage 
(the rest of the insulation was covered with vinyl siding). 

The construction on the interior of the Bay 5A and 5B cavities was the same. An existing 2-in. 
thick foil-faced polyisocyanurate board was left in place on the top of the cavity (attached to the 
bottom of the floor deck). A 1-½-in. XPS insulation board that extended from the face of the wall 
to the face of the sill plate over the entire length of the bay was placed on the top of the concrete 
block wall. In the test cavities, the 1-½-in. insulation board was removed between the floor I-joist 
flanges. The insulation was left in place under the I-joist flanges and in the adjacent rim-joist 
cavity. This acted as a thermal barrier between the rim-joist cavity and the surrounding 
environment.  

Flush with the interior face of the concrete block wall, a separation plane was constructed to isolate 
the rim-joist cavity from the surrounding environment. A wood frame was constructed around the 
perimeter of the cavity and the top plate of the frame was set into the floor insulation board. The 
joints between the frame and block wall, I-joists, and floor sheathing were caulked with 
polyurethane sealant to eliminate air leakage. A layer of 6-mil polyethylene was attached to the 
framing using construction adhesive and then a second layer of 6-mil polyethylene was attached to 
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the first layer using a bead of caulk around the perimeter of the first layer. The joint between the 
polyethylene layers and the frame was further sealed with a waterproof, foil-faced, butyl rubber 
tape. 

The instrumentation on Bays 5A and 5B was identical. On the interior and exterior of the concrete 
block wall, a moisture content sensor was installed in the top course. The sensor was placed in the 
concrete block nearest the centerline of the rim-joist cavity. The centerline of the concrete block 
was offset from the centerline of the cavity by ½ in. on Bay 5S-A, ⅞ in. on Bay 5S-B, 3-½ in. on 
5N-A, and 3-⅝ in. on 5N-B. A core humidity sensor was in the second course from the top of the 
wall because the top course masonry block was a solid bond beam block. The humidity sensor was 
placed in the core nearest the centerline of the cavity. The block moisture content and core 
humidity sensors were installed using the same method used for Bays 1 and 2 (see Section 2.1.1 
above). 

The wood moisture content sensors consisted of two epoxy-coated stainless steel probes spaced 1 
in. apart and nailed into the wood. The probes in the sill plate and rim board were inset ¾ in. into 
the wood. The moisture content probes in the OSB webs of the floor I-joists were inset ¼ in. The 
part of the probe protruding out of the wood was then coated with marine epoxy to protect it from 
moisture (see Section B.2 in Appendix B for details about the wood moisture sensors). 

Figure 5 shows the sensor layouts on the interior of the rim joist and on the exterior sheathing for 
Bay 5A. Beginning with the sensors on the interior face of the rim joist, the temperature sensor was 
placed on the horizontal centerline of the rim-joist cavity and at approximately midheight of the 
cavity (between the top of the concrete block wall and the bottom of the polyisocyanurate board). 
The 2 in. × 2 in. heat flux plate was placed at midheight of the cavity and offset horizontally from 
the temperature sensor by 1-¾ in. The humidity sensor was placed at midheight and offset ¾ in. 
from the temperature sensor to the opposite side of the heat flux plate. The moisture content probes 
were placed at the horizontal midpoint of the cavity and the centerline of the probes was offset 1 in. 
down from the centerline of the temperature sensor.  

On the exterior face of the wall, the sensors were installed on the face of the OSB sheathing and 
the building paper was reinstalled over the top of the sensors. The exterior temperature sensor and 
humidity sensor were aligned with the temperature and humidity sensor on the interior face of the 
rim board. The probes of the moisture content sensor were placed ½ in. below the centerline of the 
temperature sensor and the centerline of the probes was aligned with the horizontal centerline of 
the cavity (and temperature sensor).  

A moisture content sensor was placed in the web of each joist enclosing the cavity. The probes of 
the sensors were placed at approximately midheight of the cavity (same height as the temperature 
sensors on the rim joist). The centerline of the probes was at approximately middepth of the cavity 
(between the face of the interior polyethylene membranes and the face of the OSB rim board). The 
moisture sensor in the sill plate was placed at the horizontal midpoint of the cavity. 

The humidity sensor at midheight and middepth of the cavity was fastened to two spring-loaded 
horizontal strings that attached to the joists. The temperature and humidity sensors at the cavity-
side face of the polyethylene barrier were installed using the same method as the humidity sensor 
in the middle of the cavity and aligned with this sensor. The interior boundary condition humidity 
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sensor was aligned with the humidity sensor in the middle of the cavity and approximately 4-5/16 
in. from the face of the wood stud wall frame. This humidity sensor was installed on a vertical 
string that extended from the floor deck to a horizontal cross-member between the bottom flanges 
of the joists. 

All the cables from the exterior instrumentation for each test cavity were routed to the interior 
through a hole in the rim board in the buffer cavity between the test cavities. The hole was then 
caulked and the building paper was reinstalled over the wires. On the interior, the wires for the 
sensors within the rim-joist cavities were routed through close-fitting holes in the bottom member 
of the sealing frames and the holes were then filled with caulk. An interior view of the completed 
rim-joist test cavities is given in Figure 94 (Appendix A). 

2.2 Ambient Boundary Conditions 
The following ambient condition/weather data were collected continuously at the CRRF weather 
station: 

• RH 

• Temperature 

• Barometric pressure 

• Wind direction 

• Wind speed 

• Horizontal solar radiation flux (pyranometer) 

• Horizontal long-wave radiation flux in the far infrared range (pyrgeometer) 

• Precipitation (unheated tipping-bucket gauge). 

The following additional ambient data were collected at the CRRF building: 

• Snow depth adjacent to the north and south faces (ultrasonic snow depth gauge) 

• Temperature and RH above the soil cribs in Bays 1 and 2 (added prior to the second 
heating season in mid-October 2014) 

• Precipitation (heated tipping bucket precipitation gauge) 

• Horizontal solar radiation flux (pyranometer).16 

2.3 Interior Boundary Conditions 
The basement interior temperature and humidity were controlled during the heating season by an 
electric furnace and a steam humidifier respectively. During the first heating season (2012–2013) 
only the interior temperature was controlled digitally from the beginning of February 2013 to a 
                                                 
 
16 A second pyranometer was added at the end of July 2013 after it was discovered that the calibration of the 
pyranometer at the weather station was inaccurate (it had been deployed atop a 65-ft mast for at least 20 years 
without inspection). The second pyranometer was used to develop a new calibration for the old pyranometer, 
allowing the weather station solar radiation data to be recalibrated to yield accurate data. 
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nominal set point temperature of 20°C with a nominal variability of ±1°C at the process 
temperature measurement location (an average of the north and south wall interior temperature 
measured at 46 in. above the slab in the center of Bay 3; see Figure 3). The interior boundary 
temperature conditions were measured at three locations on the interior side of the wall test bays 
(see Figure 2 through Figure 4) and at one location on the interior side of the rim-joist test cavities 
(Figure 5 and Figure 6). 

The RH was measured at a single midwall location in front of each wall test bay (Figure 2 through 
Figure 4) and in front of the rim-joist test cavities (Figure 5 and Figure 6). The interior barometric 
pressure was measured in the center of the basement space containing all the test bays. 

During the 2013–2014 heating season, the humidity was controlled as well to reach a maximum 
value of 50% to stress the insulation systems to determine their response to high levels of interior 
humidity. During the 2013 cooling season, the humidity did not need to be controlled via a 
standalone dehumidifier. Because no air conditioning was installed in the CRRF during the 
experiment, the temperatures during the cooling season were not controlled. 

2.4 Data Acquisition and Control System 
The details of the data acquisition and control system hardware are listed in Table 1. A PCI-MIO-
16XE50 16-bit A/D converter was used to digitize the voltage signals from all the sensors except 
the masonry block moisture content transducers. These were digitized by the NI 9219 24-bit A/D 
converter to obtain adequate resolution for the very small voltages generated in the conductance 
sensor half-bridges of order nano-Volts. The PCI-6220 16-bit A/D converter was used exclusively 
to capture the temperature and voltage signal used in the HVAC plant control system. 

Uncalibrated raw data were captured at no more than 12-minute intervals (5-minute intervals were 
used initially for approximately the first week of data capture for diagnostic purposes). These data 
were stored in duplicate on the CRRF data acquisition and control server and on a secure cloud 
server managed by the University of Minnesota’s Office of Information Technology. The cloud 
server is backed up frequently. The raw data were converted into calibrated engineering units and 
stored in a set of flat-form ASCII databases (termed the Intermediate Archival Format) by post-
processing secondary software with one database per instrumentation controller (four 
instrumentation controllers were used in the experiment at the CRRF). The Intermediate Archival 
Format databases also are stored on the secure Office of Information Technology cloud server. 
This arrangement allows the calibrations to be updated and modified as necessary and provides a 
record of exactly how the raw data have been manipulated. A second processing step integrates the 
separate controller databases into a single database with a unified time stamp (termed the Final 
Archival Format, FAF), which is also stored on the secure Office of Information Technology cloud 
server. Finally, tertiary software recovers the data from the FAF for analysis, graphing, and custom 
data channel extraction. This three-step data management process establishes the necessary 
provenance for the FAF database that allows it to be designated as archival.  
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Table 1. Data Acquisition Equipment 

Component Manufacturer Qty. Model No. Listed Performance 

A/D Converter 
(16 Bit) 

National 
Instruments 1 PCI-MIO-

16XE50 

Accuracy: ±5 4 μV at 
0 to ±100 mV range;  

±1.443 mV at 0 to ±10 V range 

A/D Converter 
(16 Bit) 

National 
Instruments 1 PCI-6220 

Accuracy: ±112 μV at 
0 to ±200 mV range; 

±3.1 mV at 0 to ±10 V range 

A/D Converter 
(24 Bit) 

National 
Instruments 1 NI 9219 

Accuracy: ±0.3% at 
0 to ±60 V range; 

±0.1% at 0 to ±1 V range 
RS485 Serial 

Interface 
National 

Instruments 1 PCI-485/2 Max baud: 115.2 kbits/s 

Digital Signal Input National 
Instruments 1 NI 9421 Channels: 8 

Mode: 5 V sinking 

Digital Signal Output National 
Instruments 1 NI 9475 

Channels: 8 
Mode: 60 V maximum 

sourcing 

Digital Signal Output National 
Instruments 2 

SCXI-
1163R/ 

SCXI-1326 

Channels: 8 
Mode: optically isolated 

solid-state relay 

Thermocouple/ 
Voltage Signal 
Conditioning: 

National 
Instruments 11 SCXI-1100/ 

SCXI-1303 

Channels: 32 
Maximum gain: 2000 
Accuracy: 0.006% at 

30 μs settling time 
Thermocouple/ 
Voltage Signal 
Conditioning 

National 
Instruments 2 SCXI-1102/ 

SCXI-1303 

Channels: 32 
Accuracy: 0.0061% at 

10 μs settling time 

Voltage Signal 
Conditioning 

National 
Instruments 4 SCXI-1100/ 

SCXI-1300 

Channels: 32 
Maximum gain: 2000 
Accuracy: 0.006% at 

30 μs settling time 

Relay Multiplexer Campbell 
Scientific 6 AM16/32B Channels: 32 differential 

Signal Conditioning 
Chassis 

National 
Instruments 2 SCXI-1001 No. of slots: 12 

Signal Conditioning 
Chassis 

National 
Instruments 1 SCXI-1000 No. of slots: 4 

Signal Conditioning 
Chassis 

National 
Instruments 1 cDAQ-9188 No. of slots: 8 

Weather Station 
Controller 

Campbell 
Scientific 1 CR10X Analog channels: 12 single-

ended or 6 differential 
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2.5 Test Protocol 
Data collection commenced on November 2, 2012. The period from November 2, 2012 through 
November 9, 2012 was used for debugging the system so that even though data were collected, the 
FAF archival data commenced on November 10, 2012, after the weather station came online. The 
data collection and control schedule through March 31, 2014 (data freeze date for this report) 
proceeded according to the schedule in Table 2. As shown, the number of data points archived 
increased from 246 on November 10, 2012 to 607 on March 31, 2014 (the end of the reporting 
period). 

Initially, the furnace was controlled by the backup mechanical thermostat in the HVAC control 
circuit. The resulting interior boundary temperature condition on Bay 1S (most remote from the 
thermostat) was a rather poor 21.1 +3.0/–1.6°C for a typical day. The digital HVAC control was 
activated on January 28, 2013 using an average of the Bay 3S and 3N interior air temperature 
sensors 46 in. above the floor height as the process control temperature. Under these conditions, 
the daily interior temperatures at the Bay 3 midwall locations were 19.7 ±0.5 and 20.3 +0.4/–0.3°C 
for the north and south walls, respectively, with the nominal control set point at 20°C. Interior 
heating was terminated for the 2012–2013 heating season on May 1, 2013. 

The soil adjacent to Bays 3 and 4 was excavated in late May 2013 and all the exterior sensors for 
these bays began generating data on June 6, 2013. Construction of the Bay 5 rim-joist cavity 
experiments was completed by mid-July 2013 and the complete data set from these experiments 
was collected from July 19, 2013 onward.  

Bulk water injection between the wall and the WSP in Bay 3 commenced on September 4, 2013 
and terminated on October 11, 2013, yielding a full month of wetted conditions. Heating for the 
2013–2014 heating season commenced on November 5, 2013 and continued through March 31, 
2014, when the data were frozen for this report. To understand the temperature results of the 
simulations and to glean additional insight to the mechanics of the heat transfer around the base of 
the walls, the investigators placed 4-ft × 8-ft sheets of R-15 rigid XPS insulation on the slab 
adjacent to Bays 3S and 3N on December 13, 2013 and removed them on January 22, 2014. 
Interior humidification began on January 10, 2014. The humidity was ramped up at the rate of 5% 
per week until it reached a maximum of 50% that was held for 2 weeks. The RH set point was then 
ramped down in 5% steps in response to the interior RH decrease; the set point reached 35% by 
March 31, 2014. 
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Table 2. Data Collection and Control Schedule Through March 31, 2014 

Data 
Status Activity 

Total No. of 
FAF Data 
Channels 

Date 

Debug Commence data collection for Bays 1 and 2 (excluding 
masonry block moisture content sensors) – 11/2/2012 

Debug 
Heating only with furnace controlled by backup 

mechanical thermostat. Bay 1S midheight daily interior 
temperature range= 21.1 +3.0/-1.6°C 

– 11/2/2012 

Debug Add remaining channels to Bays 1 and 2 data collection 
(excluding masonry block moisture content sensors) – 11/8/2012 

Debug Commence data collection from CRRF weather station – 11/9/2012 
Archive Commence data archival 246 11/10/2012 
Archive Add pyrgeometer to CRRF weather station 250 11/29/2012 
Archive Add snow depth gauges 252 11/30/2012 
Archive Add heated precipitation gauge adjacent to CRRF 253 12/8/2012 

Archive Commence data collection from Bays 3 and 4 
(excluding wall exterior and soil sensors) 368 1/18/2013 

Archive Add masonry block moisture content 
sensors to Bays 1 and 2 436 1/18/2013 

Archive Change to digital furnace control 436 1/28/2013 

Archive Terminate interior heating for 2012–2013 heating 
season 436 5/1/2013 

Archive Add exterior wall sensors on Bays 3 and 4 452 5/31/2013 
Archive Add exterior soil sensors on Bays 3 and 4 469 6/6/2013 
Archive Add Bay 5 rim-joist cavity experiment sensors 573 7/19/2013 
Archive Add pyranometer to CRRF roof peak 574 7/31/2013 
Archive Add bulk water injection system behind WSP on Bay 3 574 8/28/2013 
Archive Commence wetting Bay 3 interior drainage cavities 577 9/4/2013 

Archive Add ambient temperature and RH sensors above 
Bay 1 and 2 soil cribs 586 10/11/2013 

Archive Terminate wetting Bay 3 interior drainage cavities 586 10/11/2013 
Archive Begin interior heating for 2013–2014 season 586 11/5/2013 
Archive Add temporary floor insulation to Bay 3S and 3N  12/13/2013 
Archive Remove temporary floor insulation from Bay 3S and 3N 587 1/22/2014 

Archive Begin interior humidification for 
2013–2014 heating season 587 1/10/2014 

Archive Freeze data set for this report 607 3/31/2014 
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3 Experimental Results 

At the time of writing this report, the archived experimental database covered the period from 
November 10, 2012 through May 3, 2014 when  more than 600 calibrated data points were 
generated every 12 minutes. This constitutes a vast trove of information that will take a significant 
amount of time and effort to mine. The project scope/plan therefore only allowed for the 
preparation of a summary overview of the main findings gleaned at the time of writing. All the 
results discussed below were extracted from Harmon (2014). 

The results are presented in five main sections as follows: 

• Thermal results (temperature and heat flux) from Bays 1–4 (Sections 3.1.1 and 3.1.2) 

• Moisture transport through the walls on the exterior of the WSP for Bays 1–4  
(Section 3.2) 

• Results from the rim-joist cavity hygrothermal experiments (Section 3.3). 

• Assessment of the thermal compliance of the retrofitted insulation systems with the 
performance requirements of the 2009 Minnesota Energy Code currently in force 
(Section 3.4) 

• Results of the basement humidification experiment in which the interior RH was ramped 
up to and down from 50% (Section 3.5). 

Processing the raw experimental data to extract the graphical results discussed below was a 
complex task and required substantial software development, as described by Harmon (2014) as 
part of the ORNL part of the project. In most cases, the results are presented with the time 
increment of the data collected by the governing instrumentation host computer; that is, at a 
nominal 12-minute time increment. On occasions (such as a host computer failure), the time 
increment was longer or shorter, depending on the established hierarchy of host computers. 

3.1 Wall Thermal 
The wall and immediately adjacent soil temperatures and the wall heat fluxes are discussed for the 
full monitoring period through May 3, 2014. A more detailed discussion of the soil temperatures 
for the 2013 calendar year is presented in Section 4.1 as part of the experiment/ simulation 
comparison where the simulation results provide a contextual reference for understanding the 
measured soil temperatures. 

 Temperature 3.1.1
Figure 7 through Figure 10 depict the boundary conditions. Figure 7 shows the furnace 
temperature set point and process control values for the duration of the experiment (see Table 2). 
The set point was maintained at 20°C during the heating seasons and at 15.6°C during the 
cooling season. The temperature was controlled by a backup mechanical thermostat through 
January 28, 2013, which yielded the very wide temperature band shown. Thereafter, the real-
time digital control system assumed control, but the system did not store the process 
temperatures until October. Hence, the process temperatures reported from January 28, 2013 
through October 1, 2013 are the average of the temperature sensors nearest to the process 
sensors. 
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Figure 7. Basement interior temperature control 

Backup mechanical 
thermostat control 
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Figure 8. Exterior temperature boundary conditions 
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Figure 9. Test panel interior temperature boundary conditions most remote from temperature control sensor 
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Figure 10. Terrestrial horizontal plane solar and long-wave irradiance 
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Figure 8 shows the exterior ambient temperatures. It also shows the temperature profile recorded at 
the CRRF weather station, located about 1000 yards from the building, together with the profiles 
recorded above the soil cribs in Bays 1 and 2 from mid-October onward. As expected, the ambient 
temperatures on the south side of the building were warmer than those on the north side, with a 
greater diurnal variation. The north side temperatures adjacent to the building were also slightly 
warmer than those recorded at the weather station by, on average, 1°–2°C because of the building’s 
sheltering effect. The weather station temperature was measured in an exposed, unsheltered, and 
windswept location with higher convective heat transfer (all these sensors were equipped with 
radiation shields). 

Figure 9 depicts the interior temperatures adjacent to the gypsum wallboard and in the rim joist at a 
location most remote from the heating process temperature locations. 

The temperature amplitudes on the interior of Bay 1N were much larger than the process 
temperature amplitudes because of internal air movement within the basement. Rather than attempt 
to equalize the interior temperature distribution, it was determined at the outset of operations at the 
CRRF that it was preferable to measure the interior temperature vertical profile for each test bay 
panel separately. These profiles can then be used to normalize the results where appropriate; they 
are also suitable for establishing computer simulation boundary conditions. 

Figure 10 shows the horizontal plane terrestrial solar irradiance and net long-wave radiation 
exchange with the sky. At the end of July, a new pyranometer was installed at the roof peak on the 
CRRF, because the calibration of the pyranometer on the weather station mast had lost validity 
after more than 17 years of service. The new pyranometer was used to recalibrate the weather 
station pyranometer. The resulting accurately calibrated composite solar irradiance from both 
pyranometers is shown. The net long-wave irradiance collected from a pyrgeometer at the weather 
station shows zero readings during December 2013 and January 2014. This was a result of the 
failure of the Cloquet Forestry Center (CFC) maintenance staff to keep the pyrgeometer clear of 
snow during the holiday season. 

Figure 11 through Figure 15 show the above- and below-grade masonry block wall temperatures 
for Bay 2S. At the top of the wall (Figure 11), the interior and exterior face shell temperatures were 
measured on the above-grade bond beam block. However, the core temperature was measured in 
the hollow core of the block immediately below the bond beam block, right at grade level. The 
core temperatures are plotted separately in Figure 12 and Figure 13. In this context, ignoring the 
elevated exterior face shell temperatures produced by the solar gain on the above-grade part of the 
south-facing wall, during the heating seasons, the interior face shell temperature was on average 
higher than the exterior face shell temperature. This is consistent with diffusion heat transport 
through the bond beam block. However, the core temperature one block below was roughly equal 
to the interior face shell during the first heating season and higher than the interior face shell 
temperature during the second heating season (mid-November to about mid-April; see Figure 12). 
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Figure 11. Bay 2S above-grade masonry block wall temperature profiles
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Figure 12. Bay 2S heating season masonry block wall and soil 

temperature profiles 40 to 79 in. above the slab 

With reference to Figure 12, at 40 and 69 in. above the slab (wall vertical center section) the 
heating season below-grade temperature profiles reveal phenomenology consistent with buoyant 
cavity flows in the hollow cores of the masonry block cores. This is particularly noticeable in the 
second heating season after mid-November, but was present during the first heating season as well, 
from the end of February to the end of April. In particular: 
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• The exterior face shell temperature was colder than the soil temperature that, in turn, was 
comparable to the interior face shell and core temperatures. This is not possible with 
diffusive thermal transport and indicates a buoyant cavity flow loop transporting cold air 
from the above-grade part of the wall downward along the exterior face shell. 

• During the second heating season, the core temperature was marginally warmer than the 
interior face shell temperature, indicating a warmed air plume that increased in width 
from the base of the wall upward. Hence, at the center of the block, the measured air 
temperature reflected the warmer interior face shell temperatures from below. This also is 
a feature of buoyant cavity flow loops. 

• The impact of the flow loop decreased with depth (downward flow was warmed by the 
soil). This also is shown in the data, because at 69 in. above the slab, the soil temperature 
was cooler than the interior face shell temperature, whereas at 40 in. above the slab it was 
warmer or equal to the face shell temperature. 

• At the top of the core cavity in the center of the wall at approximately grade level, the 
core temperature had the same magnitude as the core and face shell temperatures below 
grade. Again, this would not be possible with diffusion-only heat transport. This yields 
colder core air at the top of the wall relative to the below-grade core air temperatures 
because of diffusion heat transfer from the cold exterior face shell in contact with the 
ambient air. 

Figure 13 does not reveal any cavity flow loops during the cooling season (Harmon 2014), so at 
the resolution of the graph, the temperatures across the wall were very similar at 40 and 69 in. 
above the slab. Further, the core air temperature at 79 in. above the slab was warmer than that 
below grade. For example, at the peak temperatures recorded toward the end of August, the core 
air temperature was about 4° and 9°C warmer than the temperatures 69 and 40 in. above the slab, 
respectively. Of interest is that the soil temperatures were consistently warmer than the wall 
temperatures during the cooling season, an effect that indicates the wall was being cooled by 
greater diffusion heat transport in the wall downward to the cool footing relative to the soil (wall 
thermal conductivity greater than soil conductivity). 

At 5-½ in. above the slab during the heating season (Figure 14), again the soil temperature was 
warmer than the exterior face shell temperature through the end of March during the first heating 
season, as well as during the second heating season from mid-November through about mid-
March. However, the soil temperature was within 1°C of the interior face shell temperature during 
the first heating season but much warmer during the second heating season. This increase provides 
significant evidence of a heat source beneath the footing during the cooling season.  

Figure 15 shows soil temperatures that were consistently warmer than the face shell temperatures 
(by about 2°C at 5-½ in. above the slab) during the cooling season. This will be addressed below in 
the context of a comparison between Bays 2N and 3N. 
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Figure 13. Bay 2S cooling season masonry block wall and soil 

temperature profiles 40 to 79 in. above the slab 
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Figure 14. Bay 2S heating season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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Figure 15. Bay 2S cooling season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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These Bay 2S data suggest that during the heating season, the cores of the masonry block wall had 
a buoyant cavity flow loop, but did not have the loop during the cooling season as expected 
(Harmon 2014) when the top of the wall is warmer than its base owing to heat gain from the 
ambient environment (the insulation shields the wall from increased interior cooling season 
temperatures). The data also suggest a heat source beneath the foundation during the cooling 
season. This is consistent with a higher and warmer water table during the cooling season, which is 
possible with the ground hydrology and topography around the CRRF (Harmon 2014). 

The same patterns prevail on the north side for Bay 2N (Figure 110 through Figure 114 in 
Appendix C). The only appreciable difference is in Figure 110 at the top of the wall where the 
asymmetric diurnal variations of the external face shell temperature shown in Figure 11 were 
absent because the north side above-grade walls were always shaded (except during the early 
mornings in June and July around the summer solstice—the walls are shaded by the surrounding 
forest in the late afternoon). Of note, though, is a comparison of the heating season temperatures 40 
and 69 in. above the slab in Figure 111 (Bay 2N) and Figure 12 (Bay 2S). These figures show that 
the exterior face shell temperatures at these locations were clearly colder than the core, interior 
face shell and soil temperatures during the first heating season in Bay 2N, unlike the corresponding 
case in Bay 2S. This is because colder above-grade wall temperatures on the north side were 
advected to the below-grade exterior face shell by the cavity flow loop. 

Appendix C provides the wall temperature data for Bay 1S (Figure 101 through Figure 105). The 
Bay 1S data show very similar phenomenology to Bay 2S discussed above and no further comment 
is warranted. However, a comparison of the Bay 3N and 2N below-grade wall and soil temperature 
data is very instructive (the Bay 2N and 3N above-grade wall temperatures again are very 
similar—the above-grade Bay 3N data are reported in Figure 106 in Appendix C). This arises 
because the masonry block wall core at the Bay 3N instrumentation plane is grouted solid (Figure 
58), so the instrumentation plane in Bay 3N has no buoyant cavity flow loop. In other words, the 
heat flow in the Bay 3N core is by diffusion only, while that in Bay 2N is by advection and long-
wave radiation. Thus, a comparison of the Bay 2N and 3N below-grade horizontal temperature 
profiles should demonstrate the presence of a convective loop in Bay 2N and its absence (that is, 
diffusive heat flow only) in Bay 3N. 

A comparison of the temperature profiles in Figure 111 (Appendix C; Bay 2N) and Figure 16 (Bay 
3N) during the heating season confirm that this is the case. At 69 in. above the slab during the 
second heating season,17 in Bay 3N the soil was colder than the exterior face shell temperature, 
while as noted above, it was warmer than the exterior face shell in Bay 2N 40 in. above the slab. In 
Bay 3N, the soil and exterior face shell temperatures were essentially the same (at the scale of 
Figure 16) while the interior face shell temperature was warmer than the exterior face shell 
temperature. In contrast, the Bay 2N exterior face shell temperature was clearly colder than the soil 
temperature that, in turn, was slightly warmer than the interior face shell temperature. A similar 
pattern holds at 5-½ in. above the slab during the heating season. In Bay 2N (Figure 113) during 
the second heating season, the soil temperature is warmer than the interior face shell temperature, 
while in Bay 3N (Figure 16), the interior face shell temperature is warmer than the soil temperature 
that, in turn, is approximately equal to the exterior face shell temperature. 

                                                 
 
17 Exterior face shell and soil sensors were installed in Bay 3N after the first heating season ended. 
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A comparison of Figure 112 (Bay 2N) with Figure 17 (Bay 3N) shows that while the soil 
temperature was higher than the exterior face shell temperature at both 69 and 40 in. above grade 
during the cooling season, the difference was significantly smaller in Bay 3N. The same applies 5-
½ in. above grade, as shown in Figure 114 and Figure 17 for Bays 2N and 3N, respectively. The 
fact that the solid block core significantly reduced the difference between the soil and exterior face 
shell temperatures compared with the hollow core suggests that the solid wall acts as a far better 
conductor of heat from the warm above-grade wall, thus increasing the wall temperature relative to 
the soil temperature. In turn, the hollow core in Bay 2N is a better insulator that inhibits the wall 
from warming up as quickly or as much from its cooler heating season temperatures that were 
chilled below those of Bay 3N by the cavity flow loop. Further, the insulating effect of the air core 
demonstrates the absence of a flow loop in the cooling season, because any such loop would 
largely negate the insulating impact of still core air. The heat flux profiles reported in Figure 22 do 
not show this effect because, generally, the Bay 2N heat fluxes were larger in magnitude than those 
of Bay 3N. This was caused by the air gap created by the nonadhered WSP on the interior face of 
the Bay 3N wall, which added sufficient insulation to cancel out the effect of the higher diffusive 
heat transport through the solid core.  
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Figure 16. Bay 3N heating season below-grade masonry block wall and soil temperature profiles 



 

42 

 
Figure 17. Bay 3N cooling season below-grade masonry block wall and soil temperature profiles 
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Additional insight to the buoyant cavity flow phenomenology may be gleaned from a comparison 
of the wall temperature profiles between Bays 2S and 4S shown in Figure 18 and Figure 19, 
respectively. The upper half-wall exterior insulation was installed on Bay 4S at the end of May 
2013; Bay 2S had interior insulation for the duration of the experiment. Therefore, there were 
different upper half wall exterior boundary conditions on Bay 4S during the first and second 
heating seasons that would affect the buoyant cavity flows in this wall. 

Generally, full wall exterior insulation suppresses buoyant cavity flows in hollow masonry block 
walls because the face shell temperature difference is too small (Grashof number too low), but the 
extent to which this suppression occurs in partially insulated walls has not been reported in the 
literature (see Huelman et al. 2013 for a discussion). The upper panel of Figure 18 shows that 
before the exterior insulation was installed on Bay 4S, the temperatures at 40 in. above the slab (3 
in. below the insulation; see Figure 4) were significantly warmer than those in Bay 2S and that the 
interior/exterior face shell temperature difference was greater in Bay 4S because of the absence of 
insulation. After the insulation was installed, through the beginning of November, both bays 
showed the same phenomenology of the exterior face shell temperature being sometimes just 
slightly warmer than the interior face shell temperature until the beginning of October. The 
maximum exterior face shell temperatures in Bays 2S and 4S of about 24° and 20°C, respectively, 
occurred at the end of August, indicating that the diurnal average temperature reduction caused by 
the top of the wall being insulated in Bay 4S was about 4°C just below the insulation. This is also 
reflected in the upper wall Bay 4S heat flux profiles given in Figure 24. The upper half-wall heat 
fluxes were smaller in magnitude during the second heating season compared with the first after 
the exterior insulation was added.  

After mid-October, the temperature profile just below the insulation in Bay 4S was strictly 
monotonic on the horizontal plane, decreasing from the interior to the exterior consistent with 
diffusion-only heat flow; that is, a complete absence of any buoyant cavity flow loop as expected. 
In contrast, with reference to Figure 12, Bay 2S shows a temperature inversion (core temperature 
warmer than face shell temperatures) that is consistent with a flow loop. 

Figure 19 shows that 12 in. below grade, after mid-November during the second heating season, 
the temperatures were again consistent with diffusion-only heat flow in Bay 4S as expected, while 
in Bay 2S the core temperature was warmer than the interior face shell temperature and the soil 
temperature was warmer than the exterior face shell temperature (with reference to Figure 12) 
through mid-March. Further, the insulation in Bay 4S yielded a minimum soil temperature below 
zero in mid-February compared with 4°C in Bay 2S. During the cooling season, toward the end of 
August, the soil temperatures 12 in. below grade were about the same, again expected because the 
wall heat transfer phenomenology is purely diffusive during the cooling season and the soil 
temperatures are primarily influenced by ambient conditions. The insulation in Bay 4S yielded 
cooler face shell temperatures than measured on Bay 2S by about 8°C at the end of August. 

The Bay 4S and 2S wall temperature profile comparisons at the bottom and top of the wall are 
given in Appendix C (Figure 107 and Figure 108). These figures show thermal behavior consistent 
with the insulation placement; namely, warmer temperatures at the bottom of the wall in Bay 4S 
during the heating season (because of the absence of interior insulation) and cooler wall 
temperatures with less diurnal variation (because of exterior insulation in Bay 4S).
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Figure 18. Bay 2S (interior insulation)/Bay 4S (exterior half-wall insulation) wall temperature comparison 40 in. above the slab 

Soil excavated to 
install sensors and 
exterior insulation. 
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Figure 19. Bay 2S (interior insulation)/Bay 4S (exterior half-wall insulation) wall temperature comparison 69 in. above the slab 

Soil excavated to 
install sensors and 
exterior insulation. 
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The difference in temperature profiles between Bays 4S and 2S demonstrates a buoyant cavity 
flow loop in Bay 2S during the heating season that Bay 4S does not have. During the cooling 
season (June through October), the temperature profiles show no cavity flow loops in both bays. 

 Heat Flux 3.1.2
The heat fluxes measured on the interior face of the WSP at 40, 69, and 86 in. above the slab are 
shown in Figure 20 through Figure 26. In all the figures, positive values of heat flux indicate heat 
flow into the basement and negative values indicate heat flow out of the basement. 

Figure 20 shows very comparable heat fluxes on the Bay 1–3 south walls over the heating season. 
In general, Bay 1 shows the highest negative heat flux magnitude (highest heat flow out of the 
basement), while Bay 3 shows the lowest negative heat flux magnitude (lowest heat flow out of the 
basement) at the top of the wall (Bays 2 and 3 have almost identical heat fluxes 40 in. above the 
slab). This arises because of the air gap between the WSP and the wall in Bay 3 (to the exterior of 
the heat flux plate). The air gap provided some additional thermal insulation while the actual soil 
thermal conductivity (higher moisture content in a different soil) in Bay 1 evidently was greater 
than that in Bay 2 during the heating season (see Table 5). This yielded greater heat losses in Bay 1 
(contrary to the calculated thermal conductivities in Table 6 for the north side). 

Figure 21 fairly consistently shows the largest positive heat flux magnitudes during the cooling 
season (largest heat flow into the basement) for Bay 2S and the smallest for Bay 1S at all levels. 
This is somewhat consistent with the calculated soil thermal conductivities in Table 6, which 
reports Bay 1 as having the lowest thermal conductivity. Further, the heat flux decreases with 
height as the influence of the surface solar irradiance diminishes. 

Figure 22 reveals very similar patterns for Bays 1–3 on the north side during the heating season, 
absent the diurnal variations at the top of the wall caused by the solar irradiance. The heat transfer 
phenomenology essentially was congruent on the north and south walls, while the congruency 
supports the consistency of the heat flux measurements. In absolute terms, the heat flow negative 
magnitudes were slightly larger on the north elevation, with the largest difference measured at the 
top of the wall because the north side has no solar irradiance. The same observations apply to the 
cooling season heat fluxes shown in Figure 23. 

The key observations for Bays 4S and 4N shown in Figure 24 relate to the installation of the 
exterior wall half-height insulation at the beginning of June. During the first heating season until 
the end of May, the measured heat fluxes were 20–25 W/m2 larger in negative magnitude (greater 
heat flow out of the basement) above grade (86 in. above the slab) without exterior insulation 
compared to the heat fluxes with exterior insulation from the beginning of November onward. Of 
more interest, perhaps, is that during the first heating season, the negative heat flux magnitudes 
increased with height above the slab as expected, with the largest negative heat flux recorded at the 
top of the wall. However, during the second heating season, while the top of the wall heat flux still 
had the highest negative magnitude, the heat loss 69 in. above the slab was lower than that at 40 in. 
above the slab because the insulation terminated at 43 in. above the slab.  
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Figure 20. Bays 1–3 south wall heating season heat flux profiles 
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Figure 21. Bays 1–3 south wall cooling season heat flux profiles 
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Figure 22. Bays 1–3 north wall heating season heat flux profiles 
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Figure 23. Bays 1–3 north wall cooling season heat flux profiles 
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Figure 24. Bay 4 heat flux profiles 

Soil excavated to 
install sensors and 
exterior insulation. 
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A comparison of the heat flux profiles between Bay 4 (with no and half-wall height exterior 
insulation during the first and second heating seasons, respectively) and Bays 1–3 are shown for 
the south and north exposures in Figure 25 and Figure 26, respectively. Figure 25 shows very 
similar heat fluxes for Bays 1–3 during the first and second heating seasons on the south side, 
which always had a smaller negative magnitude than those for Bay 4 (smaller basement heat 
losses). During the cooling season, roughly from the beginning of May through the beginning of 
November) the heat fluxes for all the bays were very similar. Without any insulation during the 
first heating season, the Bay 4 fluxes had larger negative magnitudes than those of Bays 1–3 
(greater heat flow out of the basement) and the difference decreased with height above the slab as 
anticipated. 

During the second heating season, in the presence of half-wall height exterior insulation, the heat 
flux difference between Bay 4 and Bays 1–3 at the top of the wall (86 in. above the slab) is quite 
interesting. Because the same amount of insulation (R-15) was installed on both the interior and 
exterior, the heat flux difference might be expected to be smaller (about 10 W/m2 from mid-
December to mid-January). This is particularly noteworthy compared with the much smaller 
difference at 69 in. above the slab (1–2 W/m2), 26 in. above the below-grade insulation edge 
(approximately at the vertical center of the insulation). This was undoubtedly a result of a thermal 
bridge at the top of the wall in Bay 4, where the above-grade heat flux was measured just 4 in. 
below the top of the insulation. These data show that exterior wall insulation needs to extend as far 
above the top of the wall as possible and at least to the top of the rim-joist cavity. 

The heat flux measured 40 in. above the slab (3 in. below the edge of the insulation) in Figure 25 
was about double that measured in the middle of the insulation 69 in. above the slab. This 
illustrates the rapid increase in heat loss from the basement below the edge of the insulation and 
suggests that extending exterior below-grade insulation as close to the footing as possible is always 
a best practice. 

The results on the north side in Figure 26 mirror those discussed above for the south side. The only 
notable observation is a smaller difference between the Bays 1–3 and Bay 4 heat fluxes during the 
second heating season at the top of the wall (86 in. above the slab). This was a result of deeper 
above-grade snow on the north side reducing the impact of the thermal bridge at the top of the 
wall. 

Generally, the heat flux results confirm the results from previous research (Goldberg 2011). Half-
wall exterior retrofit insulation does reduce heat losses from the basement at the top of the wall but 
it is less effective than full-wall interior insulation, particularly if the exterior insulation does not 
extend above the top of the wall. Below the exterior insulation, the heat losses increase rapidly, so 
installing exterior insulation to the greatest depth possible is always preferable. 



 

53 

 
Figure 25. Bays 1–4 south wall heat flux profiles 
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Figure 26. Bays 1–4 north wall heat flux profiles 
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3.2 Wall Moisture Transport 
In addition to the thermal boundary conditions discussed in Section 3.1.1, RH and moisture source 
boundary conditions are depicted in Figure 27 through Figure 31. Figure 27 shows the interior 
humidification schedule. No interior humidification was applied from the beginning of the 
experiment in November 2012 until mid-January 2013 during the second heating season in order to 
assess the quantitative compliance of the interior insulation retrofit systems with the Minnesota 
Energy Code. Beginning in mid-January, the interior RH was increased to 50%; at the beginning of 
February it was ramped down again. After about the first week of March, no interior humidity was 
added mechanically and the basement interior RH started to increase in response to the walls 
drying to the interior (as a result of warmer above-grade temperatures). Although not shown, this 
drying trend continued through May yielding an RH of about 70% at an interior temperature of 
about 63°F at the end of May 2014. 

 
Figure 27. Basement interior RH control profile 

The ambient exterior RH profiles are depicted in Figure 28, both at the CRRF weather station and, 
after mid-October, above the soil cribs in Bays 1 and 2. The correspondence in the measured RH at 
the weather station and at the building is fairly consistent with the north side showing a higher RH 
as a result of the lower ambient temperature during the second heating season. 
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Figure 28. Exterior RH boundary conditions 
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The terrestrial precipitation measured automatically via the data acquisition system is shown in 
Figure 29. Two precipitation data series are plotted, the first at the CFC weather station using an 
unheated tipping bucket precipitation gauge and a second series measured next to the CRRF using 
a heated tipping bucket precipitation gauge. The daily precipitation measured manually at the 
CFC18 weather station is shown for comparison in Figure 30. The CFC staff collects these data 
once a day by at approximately the same time. During the heating season, the precipitation is 
measured by melting the collected snow column. The automatically and manually recorded data 
are in qualitative agreement, but the individual manual readings are higher than the automatic 
readings because one manual reading corresponds to the summation of about 24 hours of automatic 
readings. 

 

Figure 29  Terrestrial precipitation recorded by the data acquisition system 

Generally, more precipitation was recorded automatically adjacent to the CRRF than at the weather 
station during the heating season as expected, because the gauge is unheated. During the cooling 
season, more precipitation was recorded at the weather station on average than next to the CRRF. 

                                                 
 
18 These data are reported to the National Climatic Data Center and designated as a GHCN (Global Historical 
Climatology Network) data set for weather station GHCND:USC00211630. (http://www.ncdc.noaa.gov/cdo-
web/datasets/GHCND/stations/GHCND:USC00211630/detail). 
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Comparing these data to the manual data in Figure 30 recorded at the CFC weather station shows 
that data are missing from December 2013 through mid-February 2014. This occurred when the 
heated precipitation gauge adjacent to the CRRF froze solid because the ambient temperatures 
were consistently lower than the manufacturer’s specified minimum temperature of –20°C. The 
gauge adjacent to the CRRF also had the orifice at the base of the collection cone plugged with dirt 
on a couple of occasions. A composite precipitation profile will need to be built from all three data 
sets in future research.19 

 

Figure 30. Terrestrial precipitation recorded manually 

Figure 31 shows the snow depths measured on the north and south sides of the CRRF within 2-½ ft 
of the building. The recorded snow was consistently deeper on the north side because the building 
provides shading that significantly reduced the sublimation (decrease in south side snow depth 
relative to the north side) after mid-February in both heating seasons. The increase in snow depth 
during the heating season is correlated with the recorded precipitation (in Figure 29). 

                                                 
 
19 Automatic precipitation measurement is not trivial in a zone 7 climate. The complete methodology developed and 
the resulting composite precipitation graph are reported by Harmon (2014). 
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The fundamental moisture transport performance of the south walls for Bays 1–3 is reported in 
Figure 32 through Figure 34. The corresponding performance for the north side is reported in 
Appendix C (Figure 109 through Figure 116). For the below-grade parts of the wall, these figures 
report the volumetric moisture content (V-MC) in the soil adjacent to the wall as well as in the 
interior and exterior face shells on the left-hand side (LHS) ordinate access with the hollow core 
vapor pressure on the right-hand side (RHS) ordinate axis. Note that at 5-½ in. above the slab, the 
core vapor pressure was measured one course above this level, 16 in. above the slab (discussed in 
Section 4.1). 

 
Figure 31. Snow depths on north and south sides of the CRRF 

Figure 32 reports the moisture transport phenomenology for Bay 1S. The soil and face shell V-
MCs are plotted on the LHS ordinate axis and the resulting masonry block core vapor pressure is 
plotted on the RHS axis. Figure 32 shows that, for Bay 1S, the soil moisture content increased with 
depth below grade over the entire test period with increases at the upper two levels (69 and 40 in. 
above the slab), particularly after the snow melted around the beginning of March in both heating 
seasons. The melted snow percolated down to the bottom of the wall through April and May of the 
first heating season, but did not drain from the bottom of the wall as might be expected, yielding an 
elevated V-MC 5-½ in. above the slab throughout the cooling season. In contrast, the soil V-MC at 
40 and 69 in. above the slab did decrease during the cooling season after the snow melting period, 
indicating drainage of the melted snow. The higher soil V-MC at the base of the wall provides 
evidence of a high water table during the cooling season, throughout which the CRRF sump pumps 
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operated intermittently. This supports the argument of a water table heat source during the cooling 
season (see Section 3.1.1). 

The exterior wall V-MC sensors failed toward the end of March 2013 at 69 in. above the slab; in 
mid-April 2013, at 40 in. above the slab; and in mid-February at 5-½ in. above the slab (indicated 
by the initial sharp drop in the readings). These failures are speculated to be a result of the 
electrode conductive epoxy sealant failing under prolonged wetting. Prior to the failures, the 
exterior V-MC readings decreased with wall height in congruence with the soil V-MCs as 
expected.  
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Figure 32. Bay 1S moisture transport phenomenology 
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Figure 32 provides evidence of moisture migration from the exterior to the interior face shells, as 
shown by the higher interior face shell V-MCs during the cooling season (the interior wall V-MC 
sensors did not fail). This is most noticeable 69 in. above the slab starting in mid-June at 69 in., in 
mid-July at 40 in. and in mid-August at 5-½ in. above the slab. This was in response to the elevated 
vapor pressures produced by evaporation of the liquid from the wetter exterior face shell that 
reached a consistent staggered set of peaks (mid-August at 69 in., end of August at 40 in., and 
beginning of September at 5-½ in. above the slab). The vapor pressures also showed a fairly strong 
vertical gradient, from a maximum of 4100 Pa at 69 in. to 2800 Pa at 40 in. to 2300 Pa at 5-½ in. 
above the slab. This is strong evidence for the absence of any buoyant cavity flow loop during the 
cooling season that, if present, would have not produced the vapor pressure gradient. 

Other than the slightly increased cooling season interior face shell V-MC (about 1% higher than 
that in the heating season), the interior face shell V-MC remained at a low 3%, corresponding to a 
saturation ratio of about 0.26. Over the whole measurement period, the maximum saturation ratio 
did not exceed about 0.34, indicating that the interior wall surface remained dry to the touch; thus, 
the chance of the interior adhered WSP delaminating from the wall surface was slight.20 

The basic moisture transport phenomenology discussed for Bay 1S applies to Bay 2S, as depicted 
in Figure 33. Note that the V-MC scale on the LHS ordinate axis is three times lower than that in 
Figure 32, reflecting much lower levels of soil moisture in the well-draining sand adjacent to Bay 
2. In Bay 2S, the V-MC sensor 69 in. above the slab functioned until the end of September 2013 
before failing because of the fairly dry wall conditions near the grade in sand. Below grade, where 
the walls were much wetter, the sensor at 40 in. above the slab failed in early February 2013 and at 
5-½ in. above the slab, the failure occurred in the beginning of April 2013. Prior to the sensor 
failures, the exterior wall V-MCs at 5-½ and 40 in. above the slab were similar, unlike the case for 
Bay 1S (5-½ in. at V-MC greater than that at 40 in.). The exterior wall V-MC at 69 in. was lower 
than both. The magnitude and vertical gradient of the core vapor pressure profiles in Bays 1S and 
2S were essentially the same. The interior face shell volumetric moisture contents did not exceed 
3% anywhere, so de-adherence of the WSP was unlikely in Bay 2S as well. 

Figure 34 shows the moisture transport performance of Bay 3S and includes one additional data 
series; namely, the vapor pressure measured in the drainage gap between the WSP and the interior 
face shell. In this bay, the soil moisture content measurement commenced at the beginning of June. 
Again, the reported phenomenology is similar to that reported for Bays 2S and 3S in Figure 32 and 
Figure 33, respectively. The exterior wall V-MC sensors failed toward the end of July, at the end of 
June, and in early June 2013 at 69, 40, and 5-½ in. above the slab, respectively. The WSP drainage 
gap and masonry block core vapor pressures at 69 and 40 in. above the slab were essentially equal. 
Marginally lower pressures were recorded in the drainage gap during the first heating season with 
evidence of slightly greater vapor pressures at 40 in. above the slab during the second heating 
season. Water was sprayed into the drainage cavity from mid-September until mid-November from 
a spray bar located one half block course above the moisture content sensors 69 in. above the slab. 

                                                 
 
20 This will be determined only when the wall assemblies are disassembled. 
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Figure 33. Bay 2S moisture transport phenomenology 
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Figure 34. Bay 3S moisture transport phenomenology 
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This increased the interior face shell V-MC to a maximum of about 6% and 10% (saturation ratios 
of 0.5 and 0.9) at 69 and 40 in. above grade, respectively (top and middle panels of Figure 34). The 
injected water had a negligible impact on the interior face shell V-MC at 5-½ in. above the slab 
during the first half of October only. After the water injection terminated, the interior face shells 
dried rapidly, all reverting to their prewetting moisture contents by the end of the first week of 
December. 

Figure 34 shows that the nonadhered WSP effectively contained and drained the injected water and 
allowed the interior face shell to dry out before the onset of severe cold temperatures toward mid-
December. The drainage gap and block core vapor pressures revealed no major pressure 
differences, indicating a vapor pressure equilibrium between the core and the drainage gap. Based 
on these data, the effectiveness of an interior nonadhered WSP for containing bulk water leakage 
through the wall was demonstrated. 

The same phenomenology discussed above for the south side was replicated on the north side (see 
Figure 109 through Figure 116 in Appendix C). The only major difference was higher soil 
moisture contents on the north side, particularly in Bay 1N with the loam soil, because of the larger 
volume of surface snow melt on the north side. With regard to Bay 3, the north interior face shell 
V-MCs were lower than those measured on the south side (no doubt a result of the spray bar jets 
directing water at a higher upward angle in Bay 3N than in Bay 3S), so the latter provided a more 
strenuous test of the drying and draining performance of the adhered WSP. 

The effectiveness of the WSP is addressed in Figure 35 through Figure 38 for Bays 1 and 3 for the 
adhered and nonadhered WSPs; WSP effectiveness for Bay 2 (also an adhered WSP so essentially 
the same as Bay 1) is reported in Figure 117 and Figure 118 in Appendix C. 

For Bay 1 on both the south and north sides (Figure 37 and Figure 38, respectively), the block core 
RH at 86 and 69 in. above grade was uniformly saturated throughout the measurement period as 
expected (which motivates the use of vapor pressure for discussing moisture transport 
phenomenology in Figure 32 through Figure 34). At 40 in. above the slab, the RH was also mostly 
saturated with reductions to a minimum of 80% in the heating seasons (beginning of November 
through the end of March). Prior to the onset of interior humidification in mid-January of the 
second heating season, the RH on the WSP interior surface was below saturation everywhere on 
the south side (Figure 35) and reached 100% on the north side in November at the 86 and 69 in. 
above the slab locations. The RHs were higher on the north side because of the colder average wall 
temperatures in the absence of solar irradiation. Thus the data demonstrate that, prior to the onset 
of interior humidification, the WSP effectively isolated the interior from the exterior moisture 
environment in compliance with the foundation hygrothermal performance requirements of the 
Minnesota Energy Code. 

After humidification commenced in mid-January of the second heating season, the RH on the 
interior surface of the WSP rose until it reached saturation in mid-February on the south side and 
slightly earlier on the north side at 69 and 40 in. above the slab. Saturation was reached 
eventually 40 in. above the slab on the south side in mid-March but never on the north side. The 
RH on the warm surface of the insulation was measured at 40 in. above the slab only and the 
increase of this RH to 50% in mid-February is evident compared to the 30% RH prevalent during 
the first heating season without interior humidification. 
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Figure 35. Bay 1S WSP vapor retarding performance 
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Figure 36. Bay 1N WSP vapor retarding performance 
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Figure 37 and Figure 38 show the performance of the nonadhered WSP for Bay 3. These figures 
also record the RH in the drainage gap on the WSP exterior for completeness. The RH 
phenomenology across the WSP is very similar to that described above for Bay 1S, so from the 
perspective of WSP moisture separation performance, the adhered and nonadhered WSPs are 
equivalent.21 The RH profiles shown in the drainage gaps on the north and the south sides all 
reached saturation by September, except for the north side 86 in. above the slab, which never quite 
reached a steady 100% RH through the end of the measurement period. Intermittent freezing 
interior face shell temperatures above grade on the north side (see Figure 106 in Appendix C) may 
well have condensed and frozen the vapor on the wall surface in the drainage gap, reducing the AH 
at the top of the wall and yielding the lower measured RH there. On the south side above grade 
during the heating season, intermittent reductions of the drainage gap RH from saturation (Figure 
37) were a result of increased temperatures produced by solar irradiance on the exterior wall 
surface. Generally though, it must be concluded that drainage gaps between the wall and an interior 
WSP remain perpetually saturated and thus are susceptible to mold growth at some time during a 
year given the availability of nutrients. This is another reason for thoroughly air sealing the edges 
of nonadhered WSPs to prevent the transfer of mold spores from the drainage gap to the basement 
interior and the reverse movement of nutrients from the basement interior to the drainage gap. 

Figure 39 shows a comparison of the masonry block core RHs for Bays 4N and 3N to demonstrate 
the impact of exterior insulation on core humidity. During the first heating season, the Bay 4N core 
RHs were lower than those of Bay 3N because of the warmer prevailing core temperatures in the 
absence of interior insulation. During the second heating season, this was also the case for all 
levels except 16 in. above the slab. In other words, over the wall height covered or nearly covered 
(in the case of the 40 in. level, which was 3 in. below the edge of the insulation) by the exterior 
insulation, the core temperature was warm enough to keep the Bay 4N core temperatures warmer 
than those of Bay 3N, permitting lower RHs. 

However, at 16 in. above the slab, the absence of exterior insulation in Bay 4N yielded core 
temperatures too cold to reduce the RHs there below those of Bay 3N. To the contrary, the RH 
profiles were reversed—Bay 3N showed lower RHs than Bay 4N despite the colder core 
temperatures in Bay 3N caused by the interior insulation. In the absence of warmer temperatures 
to reduce Bay 4N RH at the base of the wall, the higher RH in Bay 4N indicates that the AH was 
greater in the cores of Bay 4N than in the cores of Bay 3N. This arises because, as explained by 
Harmon (2014), the exterior insulation acted as a vapor retarder in Bay 4N, preventing the core 
from drying to the exterior and resulting in higher core AHs in Bay 4N. The vapor-retarding 
action of the exterior insulation over the upper half of Bay 4N also prevented vapor transport into 
the cores from the soil and ambient air, but this was not significant because the vapor drive into the 
wall cavity occurred mainly below grade during the heating season. The ambient AH at the CRRF 
was close to zero and the ground was cold or frozen in the near surface region, so there was a small 
vapor source at the top of the wall. Hence during the heating season, the vapor drive was from the 
core to the exterior at the top of the wall in Bay 3N where the cores were continuously saturated 
and the ambient diurnal average RH was about 80% (see Figure 28) with very low AH. 

                                                 
 
21 Only true because the edges of the nonadhered WSPs in Bay 3 were very well vapor sealed. Inadequate 
nonadhered WSP edge seals rapidly degrade the moisture isolation performance of nonadhered WSPs. 
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Figure 37. Bay 3S WSP vapor retarding performance 
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Figure 38. Bay 3N WSP vapor retarding performance 
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Figure 39. Comparison of Bay 3N and 4N core RHs 

This effect can be reduced by extending the exterior insulation as deeply as possible below grade to 
provide a vapor retarder over as much of the exterior wall surface as possible in the absence of an 
exterior WSP. Nevertheless, the data reveal that partial exterior retrofit insulation can have 
deleterious impacts on the wall moisture performance. 
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Finally, the horizontal soil V-MC profiles are reported for Bays 1 and 2 in Figure 40 and Figure 41, 
respectively (they were not measured for the other bays). There is no consistent pattern to these V-
MC profiles, except that those in Bay 1 show higher moisture contents than those in Bay 2 because 
the sand adjacent to Bay 2— relative to the loam adjacent to Bay 1—affords good drainage. For 
example, in Figure 40, on the south side, the highest V-MC was measured 32 in. from the wall in 
Bay 1S and 5 in. from the wall in Bay 2S. On the north side, the highest soil moisture content was 
measured 18 in. from the wall in both Bays 1N and 2N, but the lowest soil moisture content 
occurred 5 in. from the wall in Bay 1N and 32 in. from the wall in Bay 2N, exactly the reverse. The 
data spikes during the cooling season (May through October) were a consequence of liquid 
precipitation (see Figure 29 and Figure 30). The spikes in March and April were produced by 
melted snow percolating into the soil. During the heating season, the soil surface crust was frozen, 
inhibiting the percolation of water into the soil. These data reveal the highly random and path-
contingent nature of water transport in soils under the influence of gravity, which is extremely 
difficult to model for any particular case. Generally, only average flows can be computed over an 
ensemble of cases, so attempting to validate simulated moisture transport in soils in the Vadose 
zone22 for any specific case (such as the four experimental cases discussed) is essentially hopeless 
in practice. 

Taken as a whole, the experimental moisture transport phenomenology discussed for Bays 1–4 
reveals that adhered and nonadhered interior WSPs are adequate to meet the foundation 
hygrothermal performance criteria of the Minnesota Energy Code. Nonadhered WSPs are 
satisfactory in cases where the wall interior face shell is quantitatively dry with a saturation ratio of 
25% or lower, based on a conservative interpretation of the experimental results. For all other 
cases, a nonadhered WSP is recommended at this stage. If all the adhered WSPs have not separated 
from the interior wall surface when the test bays eventually are dismantled, it may be possible to 
increase the saturation ratio threshold for adhered WSPs above 25% with confidence. 

                                                 
 
22 The region of the Earth’s crust between the surface and the position at which the water pressure in the soil pores is 
equal to atmospheric pressure (nominally the top of the water table). 
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Figure 40. Bay 1S and 2S soil moisture contents comparison 
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Figure 41. Bay 1N and 2N soil moisture contents comparison 
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3.3 Rim-Joist Cavity Hygrothermal Experiment 
As discussed in Section 1.2, the purpose of the rim-joist cavity hygrothermal experiment was to 
experimentally resolve the issue of whether water vapor in the hollow cores of masonry block 
walls produces high humidity in sealed rim-joist cavities. This humidity manifests as condensation 
on the rim board and wall sill plate surfaces in particular. This is of particular importance in 
interior foundation insulation retrofits where sealing the interior wall face, either with insulation 
only (if an exterior WSP is present) or with an interior WSP that inhibits or prevents drying of the 
wall to the interior, potentially increases the vapor drive to the rim-joist cavity. 

With reference to Figure 5 and Figure 6 (showing the experimental configuration and 
instrumentation), the experiment built in test Bays 5S and 5N was designed to enable the three 
primary vapor fluxes crossing the boundaries of a tightly air sealed rim-joist cavity to be measured, 
namely: 

• Across the rim board 

• Across the interior vapor retarder (consisting of a double layer of 6-mil polyethylene 
membrane with each layer separately air sealed) 

• Across the solid wall bond beam block between the hollow masonry block cores and the 
rim cavity. 

The top of the cavity was sealed with polyisocyanurate insulation board with foil-facing on both 
sides. The first floor space was unconditioned during the experiment, yielding close to ambient 
boundary conditions. The sides of the rim-joist cavity comprised the ½-in. thick OSB webs of 
engineered I-joist trusses exposed to basement interior conditions on their outer faces. The vapor 
pressures were measured on five sides of the rim-joist cavity (the vapor pressure above the floor 
was assumed to be the same as the ambient vapor pressure) and within the cavity at three locations 
(on the rim board face, on the vapor retarder face, and at the cavity center). Combining these vapor 
pressures with measurements of the moisture contents of the sill plate, rim board, and I-joist webs 
allowed empirical relationships to be developed between the boundary vapor fluxes and the 
moisture contents. This enabled the relative contribution of the masonry block wall core humidity 
to the rim-joist cavity bounding surface moisture contents to be measured. The potential for this 
contribution was maximized because the wall was covered with an interior 6-mil polyethylene 
membrane WSP. 

Two experiments were built on both the north and south walls. One had no exterior insulation; the 
other had exterior R-15 rigid insulation extending from the top of the rim-joist cavity to about 6 in. 
below grade. The intent was to determine whether a warmer rim board would reduce the amount of 
interior surface condensation. 

The experiment commenced in mid-July and data collection for this report was frozen at the end of 
April. The data span almost the entire 2013–2014 heating season and the latter half of the 2013 
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cooling season, giving adequate coverage of the seasonal impacts.23 The results are discussed in 
Sections 3.3.1 and 3.3.2. 

 Thermal Performance 3.3.1
The thermal performance of the rim board bounding surface is shown in Figure 42 and Figure 43 
for the south and north exposures, respectively. On the south side, Figure 42 shows that the rim 
board insulation reduced the peak heating season heat loss by about 20 W/m2 on average while 
substantially reducing the diurnal swing produced by the solar irradiation. The effect on the 
temperature was less significant; the insulation increased the rim board surface temperature by 
about 6°C at the time of peak heat loss (early January).24 

On the north side, the results were similar (see Figure 43), except that the diurnal variations of heat 
flux and temperature were reduced because of the absence of solar gain. In this case, the rim board 
insulation reduced the maximum heat flux loss by about 25 W/m2 on average and increased the 
corresponding rim board interior surface temperature by about 9°C. The greater impacts on the 
north side were a result of the colder prevailing ambient temperatures. The rim board insulation 
effectively reduced both the heat loss through and the potential for condensation on the interior 
surface of the rim board as expected. 

 Moisture Transport Performance 3.3.2
The highest levels of surface moisture with the highest interior surface RHs were recorded for the 
north wall rim-joist cavities (Bay 5N). The results for the north wall are given in Figure 44 and 
Figure 45 for the uninsulated and insulated cases, respectively (the data for the south side are 
recorded in Figure 119 and Figure 120 in Appendix C). These figures show the following: 

• Top panel: Mass moisture content (M-MC) of the interior rim board face and the M-MC 
difference between the interior and exterior faces on the LHS ordinate axis and the rim 
board interior surface RH on the RHS ordinate axis 

• Center panel: East floor joist M-MC and the M-MC difference between the east and west 
joists on the LHS ordinate axis and the rim-joist cavity center RH on the RHS ordinate 
axis 

• Bottom panel: Sill plate M-MC on the LHS ordinate axis and the cavity center and rim 
board interior RHs on the RHS ordinate axis. 

These data reveal that, with or without insulation, no condensation occurred on any wood 
bounding components over the reported duration of the experiment. The measured moisture 
content of the sill plates did not exceed 8%, while that of the OSB components (rim board and 
joist webs) did not exceed 6% in the uninsulated cavity and 5% in the insulated cavity. The 
maximum RH of 91% was recorded on the interior face of the uninsulated rim board during mid-
February and had no impact on the M-MC on either side of the rim board. The measured interior 
                                                 
 
23 Data are scheduled to be collected through the end of November 2014, so more than an entire year of data will be 
available for analysis at a later date. 
24 A partial instrumentation failure occurred from mid-August through mid-November when a defective 
thermocouple multiplexer was replaced. During that period, the diurnal variation data were lost, but the mean 
diurnal temperature data were recovered. 
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surface RHs on the wood components in the insulated cavity was significantly lower than those 
in the uninsulated cavity (for example, a difference between maxima of 22% for the rim board). 
Rim board insulation does provide an increased margin of safety against condensation, but in this 
experiment provided no condensation reduction (because none was measured in the uninsulated 
cavity). 

The wetting/drying profiles for the worst-case north side cavity wood bounding components are 
shown in Figure 46 and Figure 47 for the uninsulated and insulated cases, respectively; the south 
side data are correspondingly reported in Figure 121 and Figure 122 in Appendix C. In all cases 
over the data reporting period, the dry bulb temperature (referred to as the sensible temperature in 
the figures) exceeds the dew point temperature; the difference is larger in the cavity with rim board 
insulation. These data perhaps give a better perspective on the margin of safety provided by 
exterior rim board insulation, particularly on the interior face of the rim board. 
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Figure 42. Bay 5S rim-joist cavity rim board thermal performance 

Partial instrumentation 
failure  
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Figure 43. Bay 5N rim-joist cavity rim board thermal performance 
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Figure 44. Moisture performance of Bay 5N rim-joist cavity with uninsulated rim board 
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Figure 45. Moisture performance of Bay 5N rim-joist cavity with insulated rim board 
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Figure 46. Wetting/drying profiles for Bay 5N rim-joist cavity with uninsulated rim board 
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Figure 47. Wetting/drying profiles for Bay 5N rim-joist cavity with insulated rim board 
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Figure 48 and Figure 49 show the worst-case moisture phenomenology recorded for the north side 
bond beam block (above the masonry block core RH measurement location at the top of the wall); 
the south side data are shown in Appendix C (Figure 123 and Figure 124). For the insulated and 
uninsulated cavities in Figure 48, the core humidity remained at 100% over the measurement 
period while rim-joist cavity center RH was significantly lower by at least 33% (worst case in the 
insulated cavity at the end of August). The vapor drive was nominally25 from the block cores to the 
rim-joist cavity over most of the measurement duration (substantiated in Figure 50 and Figure 51). 
The interior and exterior bond beam block face shell V-MCs did not exceed 4% (0.34 saturation 
ratio) at any point; the readings were mostly 3% or lower. The increase in interior face shell V-MC 
on the cavity bond beam blocks from mid-January onward corresponded to the onset of basement 
interior humidification and demonstrates that there were vapor bypasses across the interior WSP at 
the top of the wall adjacent to both the insulated and uninsulated cavities.  

No moisture condensing on the hollow core surface of the bond beam block diffused to either the 
interior or exterior face shell surfaces or to the rim-joist cavity surface. This latter diffusion would 
have manifested as either an increase in the sill plate moisture content or a saturated cavity RH or 
both, neither of which was measured. This is reinforced in Figure 49, which shows the sill plate M-
MC along with the bond beam face shell V-MCs. The data reveal that neither the insulated nor the 
uninsulated case showed a change in the sill plate M-MC (which remained below 8%) in response 
to the increased V-MC measured on the interior face shell during basement humidification after 
mid-January. Taken together, the data in Figure 48, Figure 49, Figure 123, and Figure 124 show 
that the permeance of the solid bond beam block was adequate to sufficiently retard vapor transport 
from both the hollow core and the interior face shell to the rim-joist cavity. This permeance is 
estimated to be approximately 0.4 US-perm at most between the hollow core and the rim-joist 
cavity interior based on a typical ASHRAE permeability value for concrete (ASHRAE 2001). The 
solid bond beam block functioned as an adequate class II vapor retarder (0.1 to 1.0 US-perm). 

The vapor pressure gradients across the bounding surfaces of the rim-joist cavity are shown for the 
north side cavities in Figure 50 and Figure 51 for the uninsulated and insulated cavities, 
respectively; the corresponding data for the south side are given in Appendix C (Figure 125 and 
Figure 126). For the insulated and uninsulated cavities, the following observations may be made: 

• The block core vapor pressure was stronger than the cavity pressure over the data 
reporting period with a greater difference in the insulated cavity. The vapor drive was 
predominantly from the core into the cavity. 

• Across the rim board, the vapor drive was from the exterior to the cavity through the first 
week of October, when it reversed for the duration of the measurements as the ambient 
AH declined. 

• The vapor pressure difference across the vapor retarder separating the cavity from the 
basement oscillated around zero through mid-January upon commencement of basement 
humidification. Thereafter, the pressure on the basement side was larger until the 
pressures equilibrated again after the beginning of March. The slow rate of equilibration 

                                                 
 
25 Using RH data to establish the vapor flux direction is not correct because of the different temperatures in the rim 
joist and block cores. 



 

85 

points to diffusive water vapor flow through the I-Joist OSB webs (permeance at 50% 
RH of about 2.2 US-perm) from the basement interior. 

• The vapor transport was from the hollow masonry block cores to the basement interior 
through the beginning of February, when the flow reversed for about a couple of weeks 
during the period of basement humidification (as a result of the vapor bypasses in the 
wall WSP discussed previously). 

In terms of the relevant magnitudes of the vapor pressure differences on the cavity boundaries, 
the largest persistent positive drive (vapor diffusion into the cavity) is from the block core and 
the most negative (although nonpersistent) drive (vapor diffusion out of the cavity) is through the 
rim board with the uninsulated rim board having a more negative drive. The same phenomena 
were present on the south side; vapor pressures were higher in the hollow block core because of 
solar irradiation on the exterior surface. The vapor pressure gradients across the rim-joist cavity 
from the vapor retarder interior face to the surface of the rim board oscillated around zero for all 
the cavities, showing that the vapor pressures in the cavities were uniform over the data reporting 
period (Figure 127 through Figure 130 in Appendix C). 

The overall conclusion from the rim-joist cavity experiments is unambiguous. A solid masonry 
block wall top course provides an adequate vapor retarder for preventing moisture in the hollow 
cores under saturated conditions from diffusing into the rim-joist cavity in great enough 
quantities to produce condensation on any of the wood boundary components. 
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Figure 48. Moisture performance of Bay 5N bond beam block below rim-joist cavity 
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Figure 49. Water diffusion through Bay 5N bond beam block below rim-joist cavity 
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Figure 50. Bay 5N rim-joist cavity bounding surface vapor pressure profiles 

with uninsulated rim board 
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Figure 51. Bay 5N rim-joist cavity bounding surface vapor pressure profiles 

with insulated rim board 
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3.4 Minnesota Energy Code Compliance 
The purpose of this section is to meet the following project objective (see Section 1.3): 

Determine experimentally whether the full basement foundation insulation retrofit 
systems tested are in compliance with the Minnesota Energy Code performance 
criteria. 

The experimental results are used to ascertain compliance with the Minnesota Energy Code 
requirements. The primary code requirements are underlined and the requirement subsections are 
listed in normal text. The compliance discussion is italicized. 

The performance option for foundation insulation systems in the Minnesota Energy Code currently 
in force (Minnesota Statutes Chapter 1322, 2009) is defined in section N1102.2.6.12. Each 
requirement will be addressed with reference to the data presented above and in this section. 

N1102.2.6.12.1 Water Separation Plane The foundation shell be designed and built to have a 
continuous water separation plane between the interior and the exterior. 

IN COMPLIANCE: Figure 2 for an adhered WSP, Figure 3 for a nonadhered 
WSP. 

The interior side of the WSP must: 

1. Have a stable annual wetting/drying cycle whereby foundation wall system water (solid, 
liquid, and vapor) transport processes produce no net accumulation of ice or water over a 
full calendar year. 

IN COMPLIANCE: Wetting/drying cycle stability is determined by comparing the 
moisture contents of condensing plane materials on the interior of the WSP at the 
beginning and end of the test year. Generally a tolerance of +5% of the beginning 
moisture content is allowed at the end of the year in practice (Goldberg et al. 
2010). In this case, as the adhered and nonadhered WSPs are nonsorptive (that is, 
they always have a zero installed moisture content), the wetting/drying stability 
moisture content is assessed on the wall-side surface of the XPS. This is 
calculated by relating the measured RH at the WSP/insulation interface to the 
insulation surface moisture content via a sorption isotherm. 
As shown in Figure 52 and Figure 131 for the adhered WSP in Bays 1 and 2 and 
as summarized in Table 3, the RH in the drainage gap at the end of the test 
calendar year was lower than that at the beginning of the calendar year, showing 
strict wetting/drying stability because a lower RH yields a lower moisture content 
on the insulation surface.  
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Table 3. Annual Wetting/Drying Stability Code Compliance 

Test 
Bay 

Location 
Above Slab 

(in.) 

12-Hour 
Average Start 

RH on 1/10/2013 
(%) 

12-Hour 
Average Start 

RH on 1/18/2013 
(%) 

12-Hour 
Average End 

RH on 1/9/2014 
(%) 

RH 
Change 

(%) 

1N 
40 81.6  58.5 –23.1 
69 88.2  66.0 –22.2 
86 89.7  82.9 –6.8 

1S 
40 73.7  56.7 –17.0 
69 80.5  60.6 –19.9 
86 70.8  69.1 –1.7 

2N 
40 72.4  56.6 –15.8 
69 82.8  68.8 –14.0 
86 80.2  79.7 –0.5 

2S 
40 66.0  52.1 –13.9 
69 66.2  55.2 –11.0 
86 62.6  62.3 –0.3 

3N 
40  66.8 57.5 –9.3 
69  78.8 70.6 –8.2 
86  64.4 66.5 2.1 

3S 
40  58.5 52.9 –5.6 
69  66.7 61.3 –5.4 
86  60.7 60.7 0.0 

 
For the nonadhered WSP in Bay 3, the test period was strictly 51 weeks because 
measurements commenced on January 18, 2013, even though Bay 3 fabrication 
was completed a week previously. However, there was no significant change in 
interior or exterior boundary conditions (Figure 8, Figure 9, Figure 28, and 
Figure 53) over the week of January 10 to January 18, 2013, yielding essentially 
the same WSP interior surface RH over that week as that recorded on January 18, 
2013. For practical purposes, a 1-year test period was achieved. The largest RH 
difference measured for the nonadhered WSP was in Bay 3N, 86 in. above the 
slab with a value of 2.1%. The beginning RH of 64.4% corresponds to a moisture 
content of 0.1816 kg/m3 and the ending RH of 66.5% yields a moisture content of 
0.18475 kg/m3, so the increase in moisture content over the year was 1.7%, well 
within the 5% tolerance. All the other Bay 3 RH differences were negative or zero 
and thus met the strict wetting/drying cycle stability requirement. 
and the foundation wall system is free of absorbed water for at least four months 
over a calendar year; 

IN COMPLIANCE: On the interior side of the WSP there was no condensation 
and no absorbed water during the test year that prevailed for more than 2 weeks 
cumulatively (in Bay 3N, 69 in. above the slab in Figure 53 and in Bay 1N, 86 in. 
above the slab in Figure 131, both events occurring in November 2013). 
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2. Prevent conditions of moisture and temperature to prevail for a time period favorable to 
mold growth for the materials used. 

IN COMPLIANCE: The materials bounding the condensation plane on the 
interior WSP (high density polyethylene and XPS) do not provide nutrients for 
mold growth and the minimal gap between them was air sealed from the basement 
interior. The moisture conditions on the condensation plane were too dry to 
support mold growth for the required period of time (Sedlbauer et al. 2003). 

3. Prevent liquid water from the foundation wall system from reaching the foundation floor 
system at any time during a full calendar year. 

IN COMPLIANCE: On the interior of the WSP, insufficient condensate was 
produced on the WSP interior surface drainage plane (Figure 52, Figure 53, and 
Figure 131) for Bays 1–3 to trickle down to the experimental frame base plate. No 
such leakage was observed over the test year. 

N1102.2.6.12.3 Installation. The water separation plane shall be designed and installed to prevent 
external liquid or capillary water flow across it after the foundation is backfilled. 

IN COMPLIANCE: All the WSPs were installed on the interior of the foundation 
wall and thus were isolated from backfilling against the exterior wall surface. 

N1102.2.6.12.4 Foundation air barrier. The foundation insulation system shall be designed and 
installed to have a foundation air barrier system between the interior and the exterior. The 
foundation air barrier system must be a material or combination of materials that is continuous 
with all joints sealed and is durable for the intended application. Material used for the foundation 
air barrier system must have an air permeability not to exceed 0.004 ft3/min.ft2 under a pressure 
differential of 0.3 in. water (1.57 psf) (0.02 L/s.m2

 at 75 Pa) as determined by either commonly 
accepted engineering tables or by being labeled by the manufacturer as having these values when 
tested in accordance with ASTM E2178. 

IN COMPLIANCE: The high density polyethylene dimple sheet used for the 
nonadhered WSP and the rubberized asphalt laminated to 4-mil polyethylene used 
for the adhered WSP have lower air permeability than ⅜-in. thick plywood that is 
in compliance with the cited ASTM E2178 test limits (Washington State Statutes 
Title 51, Chapter 51-11C, section C402.4.1 [Air Barriers] subsection 
C402.4.1.2.1 [Materials]). 

The adhered and nonadhered WSPs tested in the experiment are in compliance with the 
performance criteria for foundation insulation systems listed in the applicable 2009 Minnesota 
Statute. 
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Figure 52. Bay 2 WSP interior condensing surface 
Minnesota Energy Code compliance performance 
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Figure 53. Bay 3 WSP interior condensing surface 
Minnesota Energy Code compliance performance 
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3.5 Interior Humidification 
The impact of the basement interior humidification that commenced on January 10, 2014 on the 
WSP interior surface RH is shown in Figure 54 through Figure 56 for Bays 1–3, respectively. 
Comparing the bottom panels of Figure 54 and Figure 55 for Bays 1S and 2S, the RH levels 
measured in Bay 2S were lower than those recorded in Bay 1S because the Bay 2S wall 
temperatures were higher (Figure 12) than those of Bay 1S (Figure 102 in Appendix C). However, 
a comparison of the top panels of Figure 55 and Figure 56 for Bays 2N and 3N, respectively, 
shows that the RH profiles at 69 and 86 in. above the slab in Bay 3N were lower than those in Bay 
2N. This arose because the interior WSP surface in Bay 3N was warmer because of the additional 
insulation provided by the drainage cavity air gap. But this was not the case at 40 in. above the slab 
where the Bay 3N RHs were higher than those of Bay 2N, especially toward the end of March. The 
inconsistency is even more apparent in the lower panels of Figure 55 and Figure 56 where at all 
levels, the Bay 3N measured RHs were significantly higher than those in Bay 2N from mid-
February to the beginning of March. In fact, Bay 2S experienced a relatively short cumulative 
period of vapor saturation on the WSP interior surface (mid-February and March) compared with 
Bay 3S. WSP surface temperatures were not the only factor in play in this case, and the warmer 
surface temperatures were likely overwhelmed by a locally higher effective insulation permeance 
in Bay 3S. This could have been caused by imperfect air sealing around the perimeter of a rigid 
insulation board leading to a local vapor bypass (more likely) or, perhaps, differences in the 
thickness or material density of the insulation in Bays 2S and 3S (less likely). 

All the bays except 2S showed vapor saturation at least at one level for a prolonged period in 
response to the basement interior RH reaching 50%. The question is whether the resulting vapor 
flux was sufficient to yield measurable condensation on the interior surface of the vapor retarder. 
Previous test data collected at the University of Minnesota’s FTF provided photographic evidence 
(Goldberg 2004) that addresses this question. This evidence shows that 5-½ in. of open-cell spray 
polyurethane foam insulation without any warm-side vapor retarder and covered with gypsum 
wallboard only, yielded significant amounts of condensation on the surface of a masonry block 
wall interior WSP in response to basement elevated interior RH conditions of 50%. Based on 
manufacturers’ specifications, 5-½ in. of open-cell spray foam has a permeance of 9.1 US-perms in 
comparison with 0.5 US-perms for 3-in. thick XPS yielding a nominal vapor flux 18.2 times lower 
for the XPS under similar conditions. An 18-fold reduction of the volume of condensate observed 
with open-cell spray polyurethane foam would at most yield a thin film of condensate on the 
surface of the WSP that likely would not have sufficient mass to run down. 

No condensate rundown was observed at the CRRF after January 10, 2014 on Bays 1–3. However, 
the final determination whether any condensation occurred will be made when the test bays are 
dismantled at some future date and evidence of rundown is found or not. 
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Figure 54. Bay 1 adhered WSP interior side response to basement humidification 
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Figure 55. Bay 2 adhered WSP interior side response to basement humidification 
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Figure 56. Bay 3 nonadhered WSP interior side response to basement humidification 
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4 Experiment/Simulation Result Comparison 

The purpose of the experiment/simulation comparison was to evaluate the effectiveness of the 
experimental database as a tool for assessing the accuracy of earth contact simulation codes. In this 
context, the emphasis was on determining whether the experimental data gathered are adequate to 
determine whether the predictions of the simulation codes are physically reasonable and to 
ascertain whether any discrepancies can be explained in terms of the heat and mass transport 
physics revealed by the experimental data. The purpose was not to calibrate the simulation codes 
by manipulating their input parameters or to modify their algorithms to achieve agreement; in other 
words, not to determine how to improve the validity of the codes. The codes were applied in their 
standard configuration using standard methods of preparing the input data set (geometry, boundary 
conditions, and material properties) from the available experimental data. 

Further, the codes were applied in a “real-world” context in which building energy simulation 
codes are used to predict the performance of actual buildings. In this context, soil material 
properties and boundary conditions are not known with any accuracy and often such important 
boundary conditions (such as snow depth) are ignored because they are not recorded in standard 
boundary condition data (such as the Typical Meteorological Year, series 3 weather files). In this 
context, one objective was to see how close the codes chosen could come to the measured data 
when used with a fuzzy input material properties data set that is typical in actual practice. 
However, in this case, experimentally measured boundary conditions were used that reduced the 
uncertainties in the boundary conditions to very small levels. 

Two codes were chosen for this purpose. The BUFETS earth contact heat transfer simulation was 
selected for the thermal comparison in the project test plan because this simulation has been used 
in Minnesota since 2005 to develop the technical basis (Goldberg and Huelman 2005) for the 
foundation rules in the Minnesota Energy Code (Minnesota Statutes 2009). It has also been used in 
conjunction with BEoptE+ to assess the whole-house energy savings of foundation retrofits in cold 
climates (Goldberg and Steigauf 2011; Huelman et al. 2013) for the NREL Building America 
program.26 A particular goal of the thermal comparison was to examine the correlation between the 
measured and simulated heat flux data and to ascertain how the correlation was affected by soil 
type and moisture content. One research question in the Test Plan was “Are existing hygrothermal 
simulation codes (such as WUFI-2D) useful in any way for retrofit foundation insulation designs? 
Are their predictions qualitatively or quantitatively valid?” To answer this question, the WUFI-2D 
program was selected as the hygrothermal code because it is the only such code currently available 
commercially that has been applied to hollow masonry block walls that were tested in this project 
(Goldberg 2012; Huelman et al. 2013). Further, this code was the hygrothermal validation target 
for the ORNL part of this project and the assessment of WUFI-2D was carried out in collaboration 
with ORNL.  

                                                 
 
26 BUFETS has not been specifically tested using the IEA BESTEST Slab-on-Grade In-Depth Diagnostic Cases 
(Neymark and Judkoff 2008). 
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4.1 BUFETS Thermal Simulation 
The BUFETS code has been described in detail elsewhere (Goldberg and Steigauf 2011). In 
summary, BUFETS is a three-dimensional transient energy simulation code capable of 
representing complex foundation system geometries with arbitrary interior and exterior boundary 
conditions. It includes diffusion energy transport only and a rigorous phase change model based on 
actual quantized phase change physics (that is, the change between liquid and solid states is not 
continuous at any point). The soil is described using a constant soil moisture content field imposed 
as an initial condition; that is, moisture transport is not explicitly modeled. BUFETS also 
incorporates a snow depth model that includes the effect of snow compaction in calculating the 
effective thermal resistance of the snow cover (Sturm et al. 1995; Sturm et al. 2010; Calonne et al. 
2011).27 The specific salient features of BUFETS are: 

• Nonlinear material properties as arbitrary functions of temperature and moisture content  

• Three-dimensional geometry 

• Arbitrary, time-dependent boundary conditions  

• Boolean geometry specification and mesh generator 

• Inclusion of fully discontinuous phase change physics with frost-front tracking  

• High-speed stable solver (enables multiyear real time simulation of large discrete volume 
meshes (>100,000 volumes) 

• Graphical animation outputs  

• Arbitrary coupling of data outputs (fluxes, temperatures, U-values) 

• 8760 hours simulated per year with an arbitrary time step size (typically 1 hour to comply 
with standard Typical Meteorological Year weather data). 

BUFETS also has the following limitations: 

• No inclusion of any gaseous (air, water vapor) transport. Thus, hollow masonry block 
walls cannot be accurately modeled, especially when there is a buoyant cavity flow in the 
cores. This also applies to porous interior insulation such as fiberglass batts. 

• No inclusion of any bulk water transport. The soil moisture content field is entered as a 
simulation parameter and held constant. 

The simulation input parameters were prepared using standard protocols. The soil material 
properties are described in Table 4. In the standard protocol, ASTM C136 and D422 tests (where 
available) are used to determine the soil textural class in terms of the gravel, sand, silt, and clay 
fractions. If not available, the Unified Soil Classification System classification of the soil is 
generally known (true in this case for the CRRF subslab sand) and is used instead.  

                                                 
 
27 Data to determine the snow classification at the CRRF were provided by the National Center for Atmospheric 
Research/Earth Observing Laboratory under sponsorship of the National Science Foundation, 
http://data.eol.ucar.edu/codiac/dss/id=106.ARCSS045 (Global Seasonal Snow Classification System). 

http://data.eol.ucar.edu/codiac/dss/id=106.ARCSS045
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Table 4. Simulation Soil Properties 

 Native Soil Subslab Sand Bay 1 Crib Soil Bay 2 Crib Soil 
Unified Soil 

Classification 
System 

Classification 

SP-SM Not tested ML SP 

Soil Textural 
Triangle 

Classification 
Sand Not tested Loam Sand 

% Gravel 5.9 Not tested 4.6 0.2 
% Sand 85.8 Not tested 37.8 97.6 
% Silt 4.8 Not tested 46.7 1.5 

% Clay 3.5 Not tested 10.8 0.6 

Kersten Soil 
Model 

Northway 
fine sand Fairbanks sand 

Northway silt 
loam/Ramsey 
sandy loam 

Fairbanks sand 

Skeleton Density 
(kg/M3) 2760 2720 2690 2720 

Dry Heat 
Capacity (J/kg.K) 837 837 837 837 

Thermal 
Conductivity 

Johansen’s 
method 

Johansen’s 
method 

Johansen’s 
method 

Johansen’s 
method 

Porosity 0.428 0.42 0.522 0.371 
Isotropy Anisotropic Anisotropic Anisotropic Anisotropic 

 

The textural or Unified Soil Classification System classification is matched to a soil reported in 
Kersten (1948) that is selected as the model soil. The model soil is used to generate the skeleton 
density (or specific gravity) and porosity. The dry heat capacity is taken from the literature 
(Bowers and Hanks 1962, for example) and has a value that is fairly constant over all textural 
classifications because of the basic relatively invariant mineral content of soils (expressed as the 
Dulong-Petit law, Petit and Dulong 1819). The skeleton density, porosity, transient temperature 
and soil saturation ratio are used in an algorithm incorporating Johansen’s method (Johansen 1975) 
for calculating the transient frozen and unfrozen soil thermal conductivities. 

The above-grade boundary conditions required for BUFETS (ambient air temperature, wind speed, 
snow depth, and solar radiation and interior temperatures) were extracted from the experimental 
database and time averaged over the 1-hour time increment used in the simulations. As shown in 
Figure 57, for interior boundary condition purposes, the wall was divided into four zones, three on 
the interior vertical surface (with the low zone temperature also used for the slab) and one in the 
rim-joist cavity. 
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Figure 57. Vertical section through simulation domain 
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Figure 58. Horizontal section through wall 
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The simulation domain bottom boundary condition at the CRRF is problematic because experience 
has shown (from the operation of the sump pumps) that the heating season water table is lower 
than the cooling season height (the basement was flooded in June 2012 after a period of heavy 
rains) and moreover, the summer water table height has increased over the years the CRRF has 
operated. Well measurements in the vicinity show a near surface water table with cooler average 
annual temperatures than the traditional deep well temperatures. Thus the 50-¼ in. sub-slab depth 
of the water table shown in Figure 57 locates the water table roughly at the height of a marsh about 
100 ft from the building. The water table height is assumed to be constant (BUFETS has no 
capacity to model variable water table heights) and the temperature was assumed to remain 
constant at 39.5°F (EPA 2013), although an annual temperature variation is more than likely 
(Harmon 2014). 

The overall three-dimensional simulation domain is shown in Figure 57 and Figure 58. Bays 1N, 
2N and 3N were modeled separately with the soils appropriate to the specific bay. Each simulation 
domain was represented by one of the horizontal cross-sections in Figure 58 combined with the 
vertical cross-section of Figure 57. The BUFETS simulation domain reproduced Figure 57 and 
Figure 58 exactly, including: 

• All the hollow cores 

• The relative positions of the hollow and filled cores and the instrumentation plane 

• Drain tile air spaces 

• Air spaces in the insulation system 

• Expansion joints and other small details. 

Only the north side bays were modeled, because these were shaded by the building and 
surrounding trees. BUFETS does not include a soil shading model, so restricting the simulation to 
the north side of the building where insolation is largely absent (except for an hour or two at 
sunrise at the height of summer), avoids errors arising from the absence of a shading model. 

The cross-sectional view of Figure 57 depicts every element of the construction geometry 
simulated, including the “Form-A-Drain” drain tile, the thickness of the adhered or nonadhered 
WSP, air gaps wherever they occur, and the vertical and horizontal expansion joints at the edge of 
the footing. Particular attention needs to be paid to the bottom of the wall where, for consistency, 
the second block course above the footing was modeled arbitrarily as being hollow in all the bays. 
In the experiment, the exact status of this core was indeterminate. In the first sensor installation, the 
core in the second course above the slab was sufficiently obstructed with grout that an AH sensor 
could not be inserted into it. The AH sensor was installed into the core of the third course above 
the footing because its primary function was to measure the core air RH and vapor pressure. For 
consistency, the bottom core AH sensor was placed in the third course above the slab in all the test 
bays and the third course proved to be open in all cases. The face shell temperatures were 
measured one block below the core temperature. In the simulations, the colinear face shell and core 
temperatures are reported, but only the measured face shell temperatures are shown on that plane, 
because their non-congruent locations cause the simulated and experimental core temperatures at 
the base of the wall to be not comparable. 



 

105 

The horizontal cross-section of Figure 58 shows all the cores in each cross-section and which ones 
were filled. The locations of the instrumentation planes for each of the three walls modeled, and for 
which the experiment/simulation comparisons were made, are also depicted. Note that the core fill 
pattern was based on structural considerations and was not designed specifically to accommodate 
foundation wall thermal experimentation. The walls were used for foundation experimental work 
after the fact; the experiments were designed to fit the existing core fill pattern. In this experiment, 
the Bay 3N centerline corresponded to a filled core that was used as comparative control for the 
other bays in which all the vertical experimental planes were through hollow cores. In this context, 
the intent was to examine the real case of an isolated filled core adjacent to hollow cores on both 
sides, not the performance of a masonry block wall with filled cores. The latter case is analogous to 
a poured concrete wall that has been simulated often before (for example, Shen 1986). Examples of 
typical mesh discretizations for the simulation domain are given in Figure 59 (corresponding to the 
plane of Figure 57) and Figure 60 (perpendicular to the horizontal plan of Figure 58). 

The experiment/simulation comparison was performed for each of the three north test bays (1N, 
2N, and 3N) separately. The comparison for Bays 1N and 2N with loam and sand crib soils, 
respectively, and hollow core masonry blocks target the accuracy with respect to soil thermal 
modeling, because this was the only difference between the bays. The instrumentation plane on 
Bay 3N was placed through a solid core, so it provided a control to evaluate the impact of using a 
diffusion-only thermal transport representation of a masonry block hollow core in Bays 1N and 2N 
that is physically invalid.28  

High Rayleigh number, high aspect ratio, and transient buoyant cavity flows with nonlinear 
boundary conditions have a profound impact on the thermal energy transfer through a hollow 
masonry block wall (Huelman et al. 2013; McBride 2013). Further, the only solution for three-
dimensional buoyant cavity flow in a high-aspect ratio cavity that could be found in the literature is 
for steady-state, laminar flow with constant temperature boundary conditions (Gossard et al. 2011). 
Published solutions for the transient buoyant cavity flows in the masonry block cores tested at the 
CRRF that are subjected to nonlinear, transient boundary conditions could not be found. 

Huelman et al. (2013) investigated the use of experimental data to develop artificial still air 
equivalent thermal conductivities that yield simulated integrated heating season wall heat transfers 
that match the experimentally measured values for full basements with hollow masonry block 
walls. These values of still air conductivity in the masonry block walls were used in the BUFETS 
simulations here as the best available alternative to a standard temperature-dependent still air 
thermal conductivity that was determined to be invalid. 

In the case of Bays 1N and 2N for which archival data were gathered from November 10, 2012 
onward, the period from November 10 through December 31 was used for soil conditioning, 
followed by 12 months of comparison data generation. For Bay 3N, for which archival data 
commence on January 18, 2013, the period from December 8, 2012 through January 20, 2013 was 
used for soil conditioning, followed by 12 months of comparison data generation. 

                                                 
 
28 The instrumentation planes on the south wall test bays all passed through hollow core blocks, so a filled-core 
control is not possible for the south walls. 
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Because interior boundary condition data were not available for Bay 3N from December  8, 2012 
through January 18, 2013, Bay 2N interior data were used for this period that were adequate for 
soil conditioning purposes. 

 

Figure 59. Typical discretization on vertical plan perpendicular to wall 

Only the 12 months of comparison data are reported below. In all cases, the soil saturation ratios 
for the whole domain were established using the experimentally measured volumetric moisture 
contents prevailing at the commencement of the comparison period.29 

The experiment/simulation data comparison is expressed in terms of measured temperatures on the 
outside of the WSP and in terms of the heat fluxes measured on the interior surface of the WSP. 
The heat flux measurement captures the impact of the diffusion-only heat transfer through the 
insulation on the interior of the WSP that is not problematic, but is subject to inaccuracy because of 
incorrectly simulated interior masonry block face shell temperatures. The major problems and 
inaccuracies with the simulation results were expected on the exterior side of the WSP, so all the 
following measured temperatures are included in the temperature comparison (with the single 
exception, as explained above, of the masonry block core temperature at the base of the wall): 

                                                 
 
29 It would be preferable to use the measured soil moisture contents in the simulation on a transient basis. However, 
as currently implemented, BUFETS does not have this capability. 
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• Interior and exterior masonry block face shell 

• Masonry block core 

• Soil.  

 
Figure 60. Typical discretization on vertical plane along wall  
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 Test Bay 1N Experiment/Simulation Result Comparison 4.1.1
The baseline comparison was performed for Bay 1N because it had a loam soil with higher 
measured moisture contents compared with those of Bays 2 and 3 with similar sandy soils. The 
temperature comparison results for Bay 1N are shown in Figure 61 through Figure 66. In Figure 61 
through Figure 63, the simulated and experimental wall temperatures for the lower three vertical 
measurement locations (5-½, 40-¼, and 69-¼ in. above the slab) are shown on the same plot for 
the interior and exterior face shells and the core together. At 86-¼ in. above the slab, the interior 
and exterior face shell and core temperatures are shown in different plots for enhanced legibility. 

Beginning with Figure 61, 5-½ in. above the slab, a significant mismatch between the measured 
and simulated temperatures is evident. The essential features of the mismatch are: 

• Throughout the year the simulated wall temperatures decreased monotonically across the 
wall as expected for diffusion-only transport. The experimental interior face shell 
temperature was always warmer than its exterior counterpart. 

• The simulated face shell temperatures were lower than those measured throughout the 
year. The discrepancy in the magnitudes of the simulated wall temperatures was 
significantly larger during the cooling season (6°–7°C) than during the heating season 
(within 2°C). This might arise because during the cooling season, as noted above, the 
groundwater table beneath the CRRF was higher and warmer than in the heating season; 
in the simulation, the groundwater table was assumed to be at a constant height and 
temperature throughout the year. 

• At all locations, the measured temperatures were warmer at the end of the comparison 
period than they were at the beginning, whereas the simulated temperatures were about 
1°C colder at the end than at the beginning. This also can be attributed to a groundwater 
table temperature increase during the cooling season that functioned as a heat source. 

At 40-¼ in. above the slab in Figure 62, the same effects noted in Figure 61 are present but to a 
lesser degree. The following observations may be made: 

• In both the experiment and the simulation, throughout the year, the temperature profile 
across the core was mostly monotonic with the core temperature bounded by the face 
shell temperatures. 

• The simulated temperatures were still lower than those measured throughout the year, but 
the differences were smaller (within 1.5°C during the heating season, and within 4°C 
during the cooling season) than at the bottom of the wall (Figure 61). Diffusion-only 
thermal transport yields a fairly sharp increase in temperature with height above the slab 
during the cooling season, so the decrease in discrepancy is expected. Further, the impact 
of a cooling season water table heat source diminishes with height above the footing. 

• The experimental temperatures were still higher at the end of the comparison period 
compared with the beginning and the simulation temperatures still lower, but the 
difference in both cases was smaller than at the bottom of the wall. 
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Figure 61. Bay 1N wall experiment/BUFETS simulation temperature comparison 5-½ in. above the slab
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Compared with the 5-½ and 40-¼ in. levels, at 69-¼ in. above the slab, Figure 63 shows an even 
greater degree of convergence between the simulated and experimental data during the cooling 
season (within 2°C), but a slightly worse convergence during the heating season (as much as 8°C). 

• Interestingly, at this level, the experimental wall temperatures were clearly monotonic 
during the heating season, but the simulated temperature profiles show that the core 
temperature was occasionally colder than the exterior face shell temperature. During the 
cooling season, the experimental core temperatures appeared to be marginally higher than 
the face shell temperatures. 

• The magnitudes of the simulated and experimental temperatures still show a notable 
discrepancy during the heating season (within 8°C) , but the discrepancy is much smaller 
during the cooling season (mostly within 2.5°C). This again is consistent with the 
increase in wall temperatures with height for diffusion-only thermal transport during the 
cooling season and an even lower impact of the groundwater table heat source. 

• The increase in experimental temperature over the comparison year is still evident, but 
the difference in the simulated temperatures largely disappeared, which is expected for 
diffusive thermal flow as grade level is approached (bulk soil thermal heat capacity 
effects are reduced). 

• It may be speculated that, taken together, the coplanar temperature profile 
experiment/simulation comparisons at 40-¼ and 69-¼ in. above the slab offer some 
evidence of a buoyant cavity flow loop in the hollow masonry block walls during the 
heating season only (the experimental evidence is discussed in Section 3.1.1). This arises 
because the measured temperatures are consistently higher than the simulated 
temperatures, an effect that could be produced by a buoyant cavity flow loop.   

Harmon (2014) showed that the major cause of the discrepancy between the simulated and 
experimental wall temperatures in particular (as well as the soil temperatures discussed below) was 
that the simulated water table height was too low and the depth beneath the footing too great. She 
also showed that correcting these errors reduced the experiment/simulation wall temperature 
discrepancy to 3 °C or less during the heating season.
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Figure 62. Bay 1N wall experiment/BUFETS simulation temperature comparison 40-¼ in. above the slab 
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Figure 63. Bay 1N wall experiment/BUFETS simulation temperature comparison 69-¼ in. above the slab 
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At the top of the wall 86-¼ in. above the slab in Figure 64, different conditions existed because at 
this location the wall was solid (a bond beam block). The core temperature was measured in the 
hollow core block immediately below the bond beam block, so in this case also the face shell and 
core temperatures were not horizontally colinear. The following observations are pertinent: 

• On the interior face shell, the experimental temperatures were still 5°C higher than those 
simulated during the heating season, doubtless because of the vertical conduction up the 
interior face shell from the consistently warmer face shell over the below-grade height of 
the wall. During the cooling season, without a cavity flow loop, the simulated and 
experimental temperatures were within 3°C of each other because of the purely diffusive 
heat flow at the top of the wall. 

• Almost the same pattern appeared in the core one block below the bond beam, although 
the difference between the simulated and experimental temperatures was larger (within 
5°C) during the heating season, again demonstrating a cavity flow loop during this 
period. 

• On the above-grade exterior face shell, the simulated and experimental temperatures were 
within 4°C through 8000 hours. The difference after 8000 hours during the 2013–2014 
heating season (experimental temperatures were up to 8°C higher) is a consequence of 
the very deep snow that insulated the above-grade foundation wall from the ambient 
environment. This effect is not modeled in BUFETS, which assumes that the above-grade 
wall is always exposed to the ambient air temperature. 

Taken together, the wall temperature comparison results indicate major discrepancies between the 
simulated and experimental wall temperatures. The data suggest that this can be attributed to an 
absence in the simulation of buoyant cavity flow loop modeling in the heating season and an 
incorrectly modeled water table (Harmon 2014). 
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Figure 64. Bay 1N wall experiment/BUFETS simulation temperature 

comparison 79-¼ and 86-¼ in. above the slab 
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The discrepancy is inversely proportional to the height above the slab during the cooling season as 
the thermal impact of a water table heat source diminishes. The discrepancy is much smaller in the 
heating season, but the discrepancies are largest in the middle of the wall where the impact of a 
buoyant cavity flow loop would be greatest. Clearly at the midwall locations, the use of an 
equivalent thermal conductivity for the air cores in the simulation did not effectively reduce the 
experiment/simulation temperature discrepancies. 

The effects of the experiment/simulation discrepancy in the wall temperatures were carried through 
to the soil, as shown in the vertical soil temperature profiles in Figure 65. At 69-¼ in. above the 
slab, the measured temperatures exceeded those simulated by about 3°C during the heating season 
and diminished to about 2°C during the cooling season. Progressing down the wall, the heating 
season discrepancy diminished (3°C and 2°C at 40-¼ and 5-½ in. above the slab, respectively) and 
the cooling season discrepancy increased (6°C and 9°C at 40-¼ and 5-½ in. above the slab, 
respectively). Comparing Figure 65 to Figure 61 at 5-½ in. above the slab demonstrates how the 
effect of the postulated summer water table heat source (confirmed by Harmon [2014]) diffused 
through the soil with the peak summer experiment/simulation discrepancy increasing from 6°C in 
the wall to 9°C in the soil at 5000 hours. This also points to the simulation possibly 
underpredicting the soil thermal conductivity because the assumed fixed soil moisture content was 
higher during the cooling season (at 5-½ in. above the slab the moisture content was measured at 
0.20 V% on January 15, 2013 and at 0.24 V% on July 15, 2013). The absence of moisture transport 
modeling in the simulation clearly had measurable impacts on the predicted soil temperature field. 

The horizontal soil temperature comparison is shown in Figure 66 at 40-¼ in. above the slab. The 
temperature discrepancy 5 in. from the wall increases with distance from the wall as expected from 
diffusion-only transport. The differences between the profiles 18-¾ and 32-½ in. from the wall 
were very small, indicating that the 36-in. width of the soil crib was sufficient to encapsulate most 
of the wall heat transfer effects in the experiment.30  

This observation provides additional evidence for heat transfer phenomenology other than buoyant 
cavity flows in the wall cores being active. This phenomeology is not being captured by the 
simulation because, if this is the only mechanism missing in the simulation, the 
experiment/simulation discrepancy would be expected to decrease with distance from a wall with 
R-15 insulation. The following additional mechanism has been proposed: 

As discussed above, because of the high water table (as noted, the CRRF basement flooded 
during the summer of 2012) and higher average ambient temperatures in recent years, it is 
entirely feasible that the bottom Dirichlet boundary condition used for the simulation (a constant 
39°F at 50-¼ in. beneath the footing, see Figure 57) was too deep and too cold and did not 
include the effect of varying water table depth and temperature. The impact of water table height 
and temperature can be investigated parametrically using computer simulation in future research. 
As noted above, Harmon (2014) demonstrated that a major cause of the experiment/simulation 
temperature discrepancies can be attributed to an incorrectly modeled water table. 

                                                 
 
30 This is true only for insulated foundation walls where the heat isoflux lines are distorted to be essentially vertical 
adjacent to the wall. It is not true for uninsulated walls where the isoflux lines are more radial so that the wall heat 
transfer zone has a width approximately equal to the below-grade depth of the wall. 
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Finally, the experiment/simulation heat flux comparison on the interior face of the WSP is shown 
in Figure 67. At the top of the wall where the heat flow is entirely diffusive, there is a fairly small 
discrepancy (0.5 W/m2 at most) between the measured and experimental heat fluxes. The simulated 
heat fluxes were slightly larger after 8000 hours because colder wall temperatures were produced 
by ignoring the insulating effect of the snow on the wall, as discussed with reference to Figure 64. 

Progressing down the wall, at 69-¼ in. above the slab, the experiment/simulation discrepancy is 
within 0.8 W/m2; the biggest effect is observable in the cooling season when the simulated interior 
face shell temperature is slightly lower than that measured (Figure 63). 

At 40 in. above the slab, the discrepancies increase to 1 W/m2 or more in both the heating and 
cooling seasons because of the larger differences between the experimental and measured interior 
face shell temperatures (Figure 62). The experiment/simulation heat flux discrepancies are 
consistent with the wall temperature discrepancies. 
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Figure 65. Bay 1N soil vertical profile experiment/BUFETS simulation temperature comparison 
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Figure 66. Bay 1N soil horizontal profile experiment/BUFETS simulation temperature comparison 
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Figure 67. Bay 1N wall experiment/BUFETS simulation heat flux comparison 
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 Key Factors Influencing Test Bays 2N and 3N Experiment/Simulation 4.1.2
Comparisons 

The essential phenomenology discussed in some depth for Bay 1N also applies to Bays 2N and 3N. 
So instead of repeating the previous discussion, this section focuses on the impacts of the 
differences between Bays 1N and 2N and between Bays 2N and 3N. There were two fundamental 
differences: 

• The loam soil in Bay 1 yielded a much higher soil moisture content profile than in either 
Bay 2 or Bay 3. Although the soils in Bays 2 and 3 were both classified as sand, the 
higher silt and clay content of the Bay 3 soil yielded a moisture content higher than Bay 2 
but lower than Bay 1 (the native soil was used as the Bay 3 fill; Table 4). The resulting 
average soil moisture content differences of 17% for Bays 1N and 2N and 7% for Bays 1N 
and 3N translate into soil conductivities that increase with moisture content. These thermal 
conductivities in turn influence the experiment/simulation temperature and heat flux 
comparisons. Table 5 shows a comparison of the daily average volumetric soil moisture 
contents in the three north exposure bays simulated in the middle of summer and winter. 

Table 5. Soil Volumetric Moisture Content 5 in. From the Wall 

Date Test 
Bay 

5-½ in. Above 
the Slab 

(V%) 

40-¼ in. Above 
the Slab 

(V%) 

69-¼ in. Above 
the Slab 

(V%) 

7/15/13 
1N 28 20 20 
2N 6 6 5 
3N 19 15 13 

1/15/14 
1N 26 17 18 
2N 4 4 4 
3N 16 13 11 

 
The moisture content data confirm that the almost pure sand adjacent to Bay 2N 
yielded significantly lower soil moisture contents than either Bay 1N or 3N. 
However, notably, the relatively small aggregate silt and clay content excess of 
the native (Bay 3) soil compared with the Bay 2 sand of 6.2% yielded a 
substantial increase in soil moisture content (at least a factor of 2). Table 6 shows 
a comparison of the calculated unfrozen soil conductivities on July 15, 2013 and 
January 15, 2014 using Johansen’s method (Table 4, Johansen 1975). 

The skeleton thermal conductivity of the sand in Bay 2 of 7.44 W/m.K was much 
higher than that of the loam in Bay 1 of 2.58 W/m.K (a factor of 2.9). The higher 
skeleton volumetric ratio of 0.629 in Bay 2 also was higher than that for Bay 1 
with a value of 0.478 (a factor of 1.3). For Bay 1, these two factors combined to 
offset the much higher moisture content of Bay 1N relative to Bay 2N (a factor of 
4) yielding a lower soil thermal conductivity in Bay1N compared with Bay 2N. 
Comparing Bays 2N and 3N with similar soils, the higher moisture content of Bay 
3N relative to Bay 2N (a factor of 2.8) yielded a higher thermal conductivity in 
Bay 3N. This is contrary to the experimental evidence (see Section 3.1.2, which 
suggests Bay 1 had the highest thermal conductivity as might be expected from 
the largest soil moisture contents being measured there). 
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Table 6. Average Calculated Vertical Profile Soil Thermal Conductivity 

Date Test 
Bay 

Wet Thermal 
Conductivity 

(W/m.K) 

Dry Thermal 
Conductivity 

(W/m.K) 

Moist/Dry Soil 
Thermal 

Conductivity Ratio 

7/15/13 
1N 0.786 0.119 6.6 
2N 1.365 0.279 4.9 
3N 1.446 0.233 6.2 

1/15/14 
1N 0.741 0.120 6.2 
2N 1.132 0.276 4.1 
3N 1.280 0.233 5.5 

 
• The instrumentation plane in Bay 3N passed through a filled core while that in Bays 1N 

and 2N passed through a hollow core. 
 
These differences are relevant to understanding the differences in the experiment/simulation 
discrepancies between Bays 1N and 2N and Bays 2N and 3N. 

 Comparison of Bay 1N and 2N Experiment/Simulation Discrepancies 4.1.3
At the base of the wall 5-½ in. above the slab, the temperatures are reported in Figure 61 and 
Figure 68 for Bays 1N and 2N, respectively. The results are similar in both cases. The difference 
between the face shell temperatures was smaller in Bay 2N before 3000 and after 7000 hours. The 
difference between the simulation and experimental temperatures was greater in Bay 2N than in 
Bay 1N because the erroneous simulated higher soil conductivity in Bay 2N better transported heat 
away from the footing in the heating season and down from the grade surface during the cooling 
season. 

The same trends are evident in a comparison of Figure 62 and Figure 69, 40-¼ in. above the slab. 
Generally the magnitude of the simulated temperatures was the same while the measured 
experimental temperatures were higher in Bay 2N. 

Figure 69 shows that the measured wall temperatures were essentially uniform across the wall 
during the cooling season; Figure 62 reveals an interior to exterior gradient. This again may be 
ascribed to a warmer exterior face shell in Bay 2N (by about 1°C) as a result of greater conduction 
from the warm grade surface (evidence in this case for the accuracy of the calculated thermal 
conductivity). Alternatively, the difference may be ascribed to a systematic effect whereby the 
experimental data are measured at single points and the simulated data are strictly spatial averages 
over discrete volumes. 

The trend continues in Figure 63 and Figure 70, 69-¼ in. above the slab. The simulated 
temperatures were very similar for Bays 1N and 2N, while the measured temperatures were about 
2°C warmer in Bay 2N. The experiment/simulation discrepancy is roughly larger by the same 
amount in Bay 2N. 

The top of the wall 86-¼ in. above the slab shows little difference between the experiment/simula-
tion discrepancies in Figure 64 and Figure 71 for Bays 1N and 2N, respectively. In this case, the 
magnitude of the temperature profiles is similar as expected, because the face shell temperatures 
were measured above grade and thus the soil thermal conductivity difference had a lesser impact. 
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Figure 68. Bay 2N wall experiment/BUFETS simulation temperature comparison 5-½ in. above the slab 
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Figure 69. Bay 2N wall experiment/BUFETS simulation temperature comparison 40-¼ in. above the slab 
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Figure 70. Bay 2N wall experiment/BUFETS simulation temperature comparison 69-¼ in. above the slab
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Figure 71. Bay 2N wall experiment/BUFETS simulation 

temperature comparison 79-¼ and 86-¼ in. above the slab 
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The effect of the thermal conductivity can still be seen for the core temperature comparisons 79-¼ 
in. above grade that were measured just below the grade line, in that the measured Bay 2N core 
temperature (Figure 71) was slightly higher than that of Bay 1N (Figure 64). 

There is very little difference between the Bay 1N and 2N soil vertical temperature profile 
discrepancies in Figure 65 and Figure 72, respectively. The figures show some differences; for 
example, a slightly smaller temperature discrepancy at 5-½ in. above the slab for Bay 1N prior to 
1000 hours. In this case, the soil conductivity difference appears to have had almost no influence 
on the measured and simulated temperatures. 

A difference is visible in the horizontal soil temperature profiles in Figure 66 and Figure 73 for 
Bays 1N and 2N, respectively. In particular, the discrepancies at 2800 and 7000 hours (during the 
swing seasons) are smaller for Bay 2N. The magnitudes of the peak measured temperatures during 
the cooling season were larger for Bay 2N by about 2°–3°C, showing the effect of the increased 
calculated soil thermal conductivity. No increase is shown in the corresponding simulated 
temperatures. However, the effect may be attributable to different simulation and experimental 
surface heat transfer coefficients, a possibility that also can be examined parametrically using 
simulation in future research. 

The heat flux profiles for Bays 1N and 2N shown in Figure 67 and Figure 74 show the same 
pattern of experiment/simulation discrepancy with increased discrepancy magnitudes in Bay 2N. 
At the top of the wall (86-¼ in. above the slab) the discrepancies between Bays 1N and 2N are 
comparable, perhaps with a slightly larger simulated heat flux during the cooling season caused by 
a slightly colder simulated interior face shell temperature for Bay 2N (Figure 71). At grade height 
(69-¼ in. above the slab), again the shapes of the heat flux profiles for Bays 1N and 2N are similar 
and the experiment/simulation discrepancy is larger for Bay 2N because of a larger difference 
between the measured and simulated interior face shell temperatures for Bay 2N than for Bay 1N 
(Figure 70 and Figure 63, respectively). At the midwall location (40-¼ in. above the slab), Figure 
67 and Figure 74 again show congruent profile shapes, but the magnitude of the 
experiment/simulation discrepancy is somewhat different. From Figure 62 and Figure 69 the 
experiment/simulation interior face shell temperature difference is larger for Bay 2N than for Bay 
1N so that the simulated heat flux in Figure 74 is greater relative to the measured heat flux in Bay 
2N than in Bay 1N. This yields better agreement between the experimental and measured heat flux 
profiles during the heating seasons (~before 3000 and after ~7300 hours) and a bigger discrepancy 
during the cooling season. 
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Figure 72. Bay 2N soil vertical profile experiment/BUFETS simulation temperature comparison 
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Figure 73. Bay 2N soil horizontal profile experiment/BUFETS simulation temperature comparison 
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Figure 74. Bay 2N wall experiment/BUFETS simulation heat flux comparison 
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 Comparison of Bay 2N and 3N Experiment/Simulation Discrepancies 4.1.4
The key difference between Bay 2N and Bay 3N was that the instrumentation plane in Bay 2N 
passed through a hollow masonry block core while the Bay 3N instrumentation plane passed 
through a solid core (Figure 58). The calculated soil thermal conductivity difference of 6% on July 
15, 2013 and 13% on January 15, 2014 were significantly smaller between Bay 2N and 3N than 
the 42% and 35% differences on July 15, 2013 and January 15, 2014, respectively, between Bay 
2N and Bay 1N. 

The experiment/simulation temperature comparison at 5-½ in. above the slab is shown in Figure 68 
and Figure 75 for Bays 2N and 3N, respectively. The core temperature was not measured directly 
between the face shell temperatures in Bay 3N (it was measured in a hollow core adjacent to the 
solid core, see Figure 58), so the core temperature profiles are omitted from the Bay 3N 
temperature graphs. In Figure 75, the exterior masonry block face shell temperature sensor was 
installed at the end of May 2013, so the recorded temperatures are available only from that date 
onward. The  temperature spike in the interior face shell profile in Figure 75 that resulted from the 
exterior soil being excavated to install the soil and wall exterior sensors is apparent. After the soil 
was backfilled, the continuity of the interior face shell temperature was maintained even after the 
excavated soil pile was mixed and exposed to ambient temperature conditions for at least 24 hours. 
This effect is observable in all the Bay 3N temperature plots and so will not be noted again. 
Further, the Bay 2N plots begin on January 1, 2013 and the Bay 3N plots begin on January 21, 
2013. 

After about 6600 hours, Figure 68 reveals a smaller temperature difference across the hollow core 
than is evident for the temperature difference across the solid core in Figure 75, which is another 
indicator of a convective flow loop in the Bay 2N wall during the heating season. During the 
cooling season, the peak measured face shell temperature magnitudes were larger by 1°–1.5°C in 
Bay 2N than in Bay 3N. Otherwise the measured face shell temperature profiles were similar 
between the two bays. The simulated temperature profiles reflect the higher thermal conductivity 
for solid concrete core in Bay 3N compared with the effective air conductivity used for the air core 
in Bay 2N. 
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Figure 75. Bay 3N wall experiment/BUFETS simulation temperature comparison 5-½ in. above the slab
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This yielded higher Bay 2N simulated temperatures in the heating seasons and lower simulated 
temperatures during the cooling seasons. However, the experiment/simulation discrepancies are not 
significantly reduced in Figure 75, as might be expected if the temperature field were two-
dimensional and the convective loop were eliminated. The three-dimensional nature of the heat flow 
in the wall with relatively high masonry thermal conductivity (~1.4 W/m.K) has significant 
consequences. It ensures that the higher temperatures in the hollow cores adjacent to the solid core in 
Bay 3N putatively produced by the convective loops have a noticeable impact on the solid core 
temperature profiles. 

At 40-¼ in. above the slab, Figure 69 and Figure 76 for Bays 2N and 3N, respectively, both show 
reduced experiment/simulation temperature profile discrepancies during the cooling season and 
increased discrepancies during the heating seasons. So again, elimination of the core convective loops 
in Bay 3N does not reduce the discrepancy overall because of three-dimensional diffusion effects 
through the solid parts of the masonry blocks. 

At grade level (69-¼ in. above the slab), Figure 70 and Figure 77 show the same discrepancy trends 
observed before with a lower difference between the simulated and experimental temperatures during 
the cooling season. The temperatures overall are about 2°C warmer in Bay 2N compared with Bay 3N 
for the simulated and measured temperatures. These may be ascribed to the additional thermal 
resistance provided by the gap between the nonadhered WSP and the wall. This is mostly a diffusion 
thermal transport phenomenon, so the simulation replicated the measured impact of the WSP air gap 
fairly well. 

At the top of the wall at the bond beam block, Figure 71 and Figure 78 for Bays 2N and 3N, 
respectively (the core temperature plot is omitted in Figure 78), show no appreciable differences 
between the bays because the wall configuration was the same. The experiment/simulation 
discrepancies also are visually similar; for example, a maximum experiment/simulation discrepancy 
of 10°C at 500 hours for Bays 2N and 3N. 

In terms of the soil vertical temperature profile comparison31 for Bays 2N and 3N shown in Figure 72 
and Figure 79, respectively, the experiment/simulation temperature discrepancy generally is reduced 
in Bay 3N at all vertical heights. This is doubtless a result of the simulation more accurately modeling 
the solid core in Bay 3N than the hollow core in Bay 2N. However, the discrepancies still are not 
eliminated because of three-dimensional effects from the surrounding hollow cores in Bay 3N. 

The heat flux comparisons shown in Figure 74 and Figure 80 for Bay 2N and 3N, respectively, reveal 
lower experiment/simulation discrepancies in general in Bay 3N, again as expected with diffusive 
thermal transport in the instrumentation plane masonry block cores in both the simulation and the 
experiment. 

 Summary 4.1.5
The experiment/simulation comparison demonstrates that the experimental data are effective for 
evaluating the accuracy of thermal transport foundation simulation programs. The experimental data 
also provide insight into the possible physical mechanisms underlying discrepancies between the 
simulation and experimental results. 
                                                 
 
31 Note there was no horizontal soil temperature plane measurement in Bay 3N, so the horizontal soil temperature 
comparison is omitted. 
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Figure 76. Bay 3N wall experiment/BUFETS simulation temperature comparison 40-¼ in. above the slab 
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Figure 77. Bay 3N wall experiment/BUFETS simulation temperature comparison 69-¼ in. above the slab 
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Figure 78. Bay 3N wall experiment/BUFETS simulation 

temperature comparison 86-¼ in. above the slab 
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Figure 79. Bay 3N soil vertical profile experiment/BUFETS simulation temperature comparison 
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Figure 80. Bay 3N wall experiment/BUFETS simulation heat flux comparison 
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In the case of the comparison of the BUFETS simulation and experimental results discussed, the 
experimental data point to two possible causes for the discrepancies observed: 

• Buoyant cavity flow loops in the hollow masonry block cores are not modeled in 
BUFETS. 

• The Dirichlet boundary condition at the base of the simulation domain is incorrectly 
modeled (the assumed constant height and temperature water table model is incorrect for 
the circumstances prevailing at the CRRF). This was confirmed by Harmon (2014). 

However, the comparison also reveals some deficiencies in the experimental data set, the most 
significant of which are: 

• No temperatures were measured in the drain tile system. 
• The initial and settled vertical soil density and thermal conductivity profiles were not 

measured. 
• The simulation domain bottom soil temperature and moisture content boundary 

conditions were not measured. 
• The density of temperature and moisture content measurements should be increased in 

the soil and the walls. 
In this experiment, the first deficiency was not considered in the experimental design because it 
had not been an issue in prior research. The second and fourth deficiencies were a result of 
limitations imposed by the ORNL and NREL test plans. The second deficiency (as far as the 
settled soil density and thermal conductivity profile is concerned) can be corrected in the future if 
additional funding becomes available. Correcting the third deficiency32 for measurements beneath 
the slab is really feasible for new construction only, but it could be addressed if a sensor array were 
installed within 10 ft or so of the CRRF. 

4.2 Hygrothermal 
The WUFI-2D program was selected for evaluation against the hygrothermal experimental data. 
As discussed in Appendix D, a hygrothermal solution (combined solution of the thermal and 
moisture transport equations) could unfortunately not be obtained for the experimental domain 
despite numerous attempts and a lengthy interaction with the program developers. A thermal 
solution was obtained and the resulting simulated temperatures were compared against their 
experimental counterparts. The resulting discrepancies initiated a lengthy collaboration with 
ORNL in an attempt to resolve the errors and some progress was made in this regard. However, 
DOE terminated the ORNL WUFI-2D program before definitive solutions could be found. At this 
time, WUFI-2D in its current form is not ready for modeling the hygrothermal performance of full 
basement walls. However, based on the progress made in resolving the thermal discrepancies, there 
is hope that it may become useful as a building foundation hygrothermal simulation tool in the 
future.  

                                                 
 
32 This would require installing a vertical soil temperature and moisture content sensor array to the depth of the 
marsh near the CRRF that would require a drilling rig to reach the required depth. 
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5 Answers to Research Questions 

The conclusions drawn in this section are preliminary because they are applicable to the results 
from a single experiment conducted in a cold climate for a limited period of about 1-½ years. The 
research questions posed in the two project plans for this project at the outset are answered directly 
in the order that they were posed (answers are given in bold): 

1. Do the selected interior foundation wall insulation retrofit designs to be tested meet the 
hygrothermal performance criteria (of the Minnesota Energy Code)? In particular: 

 
i. Is the annual wetting/drying cycle stable (moisture content at the beginning of the 

year lower than or equal to that of the beginning of the year)? YES. 
ii. Are all monitored components of the foundation wall system interior to the WSP 

free of surface condensation for at least 4 months over a full calendar year 
(sensible [or dry bulb] temperature higher than dew point temperature)? YES. 

iii. Is there any visible or olfactory evidence of mold or rot when the test retrofit 
systems are dismantled at the end of the experiment? UNKNOWN. Will be 
determined only when the test bays are dismantled. 

iv. Has any liquid water been observed on the floor beneath the test retrofit systems 
during the course of the experiment? NO. 

 
2. Do the measured interior foundation wall surface heat fluxes agree with those predicted 

by foundation energy simulation programs (such as BUFETS)? The agreement achieved 
with BUFETS was a function of the discrepancy between the measured and 
simulated wall temperatures that were as large as 8°C in some instances. However, 
the disagreement between the measured and simulated heat fluxes was no more than 
1.2 W/m2. This disagreement was in terms of the magnitude of the profiles, not their 
shape. The level of agreement was judged adequate to render predictions of 
cumulative seasonal basement wall heat flow adequate relative to those measured. 

 
3. Can the test wall systems meet the performance criteria in the presence of a severe 

internal humidity load during the heating season? Severity in this case was defined to 
be a period of internal basement humidity of 50% for a period of about 2 weeks. 
Under these circumstances, the data indicate that the answer is a provisional “yes” 
subject to confirmation when the wall systems eventually are dismantled and 
inspected. 

 
4. Is an adhered WSP susceptible to delamination with a high wall moisture contents? 

Unknown, but expected to be “yes.” The data show that maintaining an interior face 
shell saturation ratio of 0.25 or lower is feasible for adhered WSPs over the long 
term, so that under these conditions, delamination is not likely. A long-term 
measured interior face shell saturation ratio of 0.25 is recommended conservatively 
at this stage as a requirement for using adhered WSPs. A final determination will be 
made when test bays are dismantled. 
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5. Do either adhered or nonadhered WSPs result in perpetually wet walls? NO. The data 
show that even after a period of prolonged wetting of the drainage cavity on the 
exterior of a nonadhered WSP, the wall surface dries out to prewetting moisture 
contents. However, the RH in the drainage cavity remains saturated regardless of 
the interior block face shell moisture content. 
If so, is the moisture content/temperature profile sufficient to produce freeze/thaw cycle 
structural damage? Not applicable. 

6. Is the RH/temperature/time profile within the drainage cavity between a nonadhered 
WSP and the wall sufficient to grow mold? YES. 
If so, how severe is this potential? There is a high potential for mold growth as the 
drainage cavity RH remains elevated (>90%) over an entire year yielding prolonged 
periods when mold growth is possible. 
Are there sufficient nutrients in the cavity to produce significant amounts of mold? 
Unknown. Will be determined when the test bays are eventually dismantled. 

 
7. What is the experimental thermal effectiveness of exterior partial wall insulation? Is it 

comparable with that of full wall insulation? The reduction in heat loss is comparable 
with full wall insulation at the center of the partial wall insulation only. The heat 
loss reduction diminishes as the upper and lower edges of the board are approached 
because of thermal bridging. This is particularly noticeable if the exterior insulation 
is installed to the top of the wall only. We recommend that partial exterior wall 
insulation extend to at least the top of the rim-joist cavity. 

 
8. Are positive hygrothermal benefits afforded by partial wall exterior insulation (such as 

reduced rim-joist cavity RH) compared with an uninsulated wall? Benefits are afforded 
by partial exterior wall insulation if such insulation extends to the top of the rim-
joist cavity at least. For example, the rim board interior surface RH was 30% lower 
during the heating season with exterior insulation. However, in terms of the M-MC 
of the rim-joist cavity wood bounding components, no measurable advantage was 
found for the insulated case under the experimental conditions in which the rim-
joist cavity was sealed and vapor isolated from the basement interior. This would 
not be the case if the cavity were in vapor communication with the basement 
interior when much larger amounts of condensation can be expected on the rim 
board and sill plate interior faces. If the partial exterior wall insulation extends only 
to the top of the wall, no rim-joist cavity hygrothermal benefits were observed under 
the experimental conditions (uninsulated and unsealed rim-joist cavities). 

 
9. (An extension of question 5 posed at a later time and partially answered above.) Do 

leaking foundation walls covered with a nonadhered WSP ever dry out? YES. 
If they remain perpetually wet, what are the structural and mold impacts? Not applicable 
because the walls did not remain perpetually wet. Unknown for the case in which 
this is not true, such as in the presence of continuous bulk water leakage into the 
drainage cavity (will require additional experiments to evaluate). 
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Is it safe to install a foundation insulation retrofit that creates a perpetually wet wall? 
Unknown from the experiments conducted. 

10. Are existing hygrothermal simulation codes (such as WUFI-2D) useful in any way for 
retrofit foundation insulation designs? Are their predictions qualitatively or quantitatively 
valid? At this point, no. Despite repeated attempts, no hygrothermal solution for a 
simulation on the instrumented test plane through Bay 1N or 2N could be obtained 
with WUFI-2D. The moisture transport algorithm failed after repeated attempts at 
different solutions as explained in Appendix D. Efforts to resolve the problems 
encountered with the program developers also were of no avail. A thermal solution 
was obtained in terms of simulated temperatures only (WUFI-2D does not report 
heat fluxes) for Bays 1N and 2N only. The comparison with the experimental 
temperature data yielded larger temperature differences on average than those 
achieved with BUFETS. 

 
11. What is the extent of the vapor coupling between the interior condensing surface of the 

rim board and vapor sources within masonry block wall cavities? No coupling observed 
with either an insulated or uninsulated rim board. A saturated masonry block core 
humidity had no impact on the rim board M-MC that remained below 6% 
throughout the experiment. 
 

12. How does the sill plate moisture content relate to the masonry block core humidity and 
the moisture content of the underlying bond beam? No coupling was observed between 
the sill plate M-MC and a saturated masonry block core humidity. The sill plate M-
MC remained at 8% or lower throughout the experiment. No coupling was observed 
between the masonry block face shell V-MC and the sill plate M-MC. A transient V-
MC increase on the interior face shell produced by elevated humidity in the 
basement interior was not reflected in the sill plate M-MC. 

 
13. What is the potential for the rim board to dry to the exterior, particularly when covered 

with exterior vapor retarding insulation? With an uninsulated rim board, potential 
drying to the exterior (interior surface vapor pressure >exterior surface vapor 
pressure) was possible from November through April. The same potential existed 
with the insulated rim board except the measured interior-exterior vapor pressure 
difference was consistently lower than the uninsulated case. 
 

14. To what extent does exterior foundation wall insulation that extends upward to cover the 
rim joist decrease the condensation arising from vapor transmission from masonry block 
wall cores? No impact under the experimental conditions with a solid bond beam 
block separating the rom joist cavity from the masonry block cores. 
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6 Conclusions 

The conclusions drawn in this section also are preliminary because they are applicable to the 
results from a single experiment conducted in a cold climate for a limited period of about 1-½ 
years. The primary project objectives described in Section 1.3 were met as follows: 

• Physically credible and reliable long-term hygrothermal performance data have been 
developed for retrofit foundation wall insulation systems that are fully compliant with the 
performance criteria in the Minnesota Energy Code. These data currently span the period 
from November 10, 2012 through May 31, 2014, although only the data collected through 
the end of April 2014 are discussed in this report. 

• Public experimental data sets to validate and calibrate building foundation hygrothermal 
simulation codes have been developed. 

• Retrofit foundation wall systems with both interior and exterior insulation placements 
were tested. No particular advantage for the partial wall exterior insulation system was 
found unless the insulation extends at least to the top of the rim joist. In this case, the 
interior rim board surface RH was lowered substantially compared with the uninsulated 
case. However, the exterior insulation had no impact on the moisture content of the rim-
joist cavity wood component moisture content that was the same as the uninsulated case. 
The heat flux performance of the partial wall exterior insulation was equivalent to that of 
full-wall interior insulation only at the vertical center of the insulation, it deteriorated as 
the top and bottom edges were approached. 

• The full-wall interior foundation insulation retrofits tested using adhered and nonadhered 
WSPs was shown by the experimental data to be in compliance with the Minnesota 
Energy Code performance criteria over the calendar year from January 10, 2013 through 
January 9, 2014. 

• The experimental thermal data were used to investigate the validity of the three-
dimensional BUFETS earth contact energy simulation code when applied to the test bay 
walls under field conditions. The agreement between the experimental and simulation 
heat flux data was acceptable for calculating seasonally integrated wall heat flows that 
are necessary for accurate foundation enclosure seasonal energy load calculations. 
Agreement between the measured and simulated wall and soil temperatures was within 
8°C in the heating season and within 10°C in the cooling season; the average discrepancy 
in the wall temperatures decreased with height above the slab. The primary cause of the 
discrepancy was shown by subsequent research to be an incorrectly modeled water table 
in terms depth beneath the footing and height. Two omissions in the BUFETS program 
were recognized as contributing to the discrepancies:  

o The absence of the ability to model buoyant cavity flow loops in hollow masonry 
block walls  

o The inability to model a water table with a seasonally varying height and 
temperature.  
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Secondary effects such as the absence of a soil moisture transport model enabling the 
calculation of seasonally varying thermal conductivities as a function of soil moisture 
content were also recognized from the data. 

• The WUFI-2D hygrothermal simulation program in its standard form was unable to 
model the basement foundation systems tested. The program failed to yield a solution to 
the moisture transport equation included in its algorithm. The thermal component of the 
simulation did yield results that were compared to the experimental data. In almost every 
case, a comparison of the experiment/simulation temperatures yielded larger temperature 
differences on average than those obtained with BUFETS. 

• The test wall systems were exposed to conditions of high basement interior humidity 
(50% RH for 2 weeks) during January and February of 2014. The experimental data 
tentatively show that the wall systems did meet the Minnesota Energy Code performance 
criteria for this period. This cannot be confirmed until the formal end of the experiment in 
November 2014, when sufficient experimental data will become available to make the 
final determination (the NREL part of the experiment terminated on April 30, 2014). A 
final determination also will require the wall systems to be dismantled.  

• The vapor coupling between hollow masonry block walls and a sealed rim-joist cavity 
with and without exterior rim board insulation was measured. The experimental data 
revealed no coupling between moisture-saturated (100% RH) cores and the moisture 
content of any rim-joist cavity wooden boundary component with and without exterior 
insulation. In addition, no coupling between an elevated wall top course face shell 
moisture content and the wooden boundary components was revealed. This was ascribed 
to the top course of the wall being a solid bond beam block that provides an adequate 
class II vapor retarder. The retarder effectively isolates the rim-joist cavity from the 
masonry block wall cores and from elevated basement interior humidity conditions when 
the bond beam block is not wetted by exterior bulk water. 

• Exterior rim board thermal insulation with a class II permeance rating did not reduce the 
condensation on the rim board interior surface under the experimental conditions. This 
arose because the vapor transport from all sources (including the masonry block cores 
and the basement interior) was so low that the potential for condensation was severely 
restricted. Further, even without exterior insulation, the RH on the rim board interior face 
never reached saturation. 

• The experimental data were configured into a standard format that can be published 
online. The calibrated data were compiled into a standard flat-form CSV (comma 
separated value) format with one data file for each day. These files can be read by 
standard commercially available spreadsheet and database software. A description of the 
format of the database and the meanings and descriptions of the individual data readings 
(metadata) was also developed. 

The secondary project objectives were mostly achieved as follows: 

• It will not be possible to finally determine whether the adhered WSPs delaminated from 
the interior face shell until the walls are dismantled (the walls cannot be dismantled until 
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the ORNL part of the project is completed in November 2014). The experimental data 
suggest that the wall interior face shells were never wet enough to permit delamination. 

• The data reveal that neither adhered nor nonadhered interior WSPs produced perpetually 
wet walls during the experiment. Thus, the potential for freeze/thaw cycle structural 
damage could not be assessed. 

• The data show that the RH/temperature/time profile in the drainage cavity between the 
nonadhered WSP and the wall during the experiment is sufficient to grow mold if 
sufficient nutrients are available. 

• The thermal effectiveness of exterior partial wall thermal insulation is equivalent to that 
of full-wall interior insulation only at the vertical center of the exterior insulation board. 
The effectiveness diminishes closer to the vertical edges of the board. 

• Calibrated instrumentation was developed to continuously measure the exterior and 
interior masonry block face shell moisture contents. This instrumentation was effective 
on the interior of the masonry block walls where excessive wall moisture contents were 
not measured. The moisture probes failed on the exterior wall surfaces where high levels 
of moisture speculatively caused the conductive epoxy coating the graphite electrodes to 
de-adhere from the masonry producing an electrical open circuit. The inexpensive signal 
conditioning electronics operated without any failures. 
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7 Prognosis 

A large and extensive public domain database of the hygrothermal performance of basement walls 
in a cold climate (zone 7) was developed and can effectively evaluate the accuracy of thermal earth 
contact simulation codes. However, whether this database will be made available for full long-term 
public access is not known. An attempt was made to find funding for this publication, but 
ultimately, without success. 
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Appendix A: Instrumentation and Experimental Fabrication Record 
Table 7.  Purchased Instrumentation Schedule 

Instrument Measurement Manufacturer Model No. Manufacturer’s 
Listed Performance 

Pyrgeometer 
FIR 

(4500–42000 
nm) 

Long wave sky 
radiation 

Kipp and 
Zonen CGR3 Nonlinearity: <1% 

Ultrasonic 
Snow Depth 

Gauge 
Snow depth Campbell 

Scientific SR50A-l 
Accuracy: maximum 

(±0.4 in., 0.4% of 
target distance) 

Heated 
Precipitation 

Gauge 

Precipitation 
(solid and 

liquid) 
RM Young 52202 Resolution: ±0.1mm 

Thin Film 
Capacitance 
RH Sensor* 

RH Honeywell HIH-4000-003 Calibrated accuracy:  
±3.5% 

Thermocouple Temperature Omega 
Engineering PR-T-24-SLE 

Accuracy: maximum 
(±0.5°C, ±0.4% of 

reading) 

Heat Flux Plate Heat flux Concept 
Engineering F-002-4 HFP Accuracy: ± 5% 

Soil Dielectric 
Sensor Used on 

Bays 1 and 2 

Soil moisture 
content and 
temperature 

Stevens Water 
Monitoring 

Systems, Inc. 
Hydraprobe 

Moisture content 
accuracy: ±0.03 
volumetric MC 

Temperature 
accuracy: 
±0.6°C 

Soil Dielectric 
Sensor Used on 

Bays 3 and 4 

Soil moisture 
content and 
temperature 

Stevens Water 
Monitoring 

Systems, Inc. 
Hydraprobe II 

Moisture content 
accuracy: ±0.03 
volumetric MC 

Temperature 
accuracy: ±0.1°C 

Barometer Atmospheric 
pressure 

Setra Sensing 
Solutions 276 Accuracy: 0.25% of 

full scale 

Pyranometer Solar 
irradiance flux 

Kipp and 
Zonen CMP 3 

Nonlinearity: 
<±2.5%, temperature 

dependence: ±5% 
Pelton Wheel 
Flow Sensor Water flow Kobold DPM1157N2F50

0 
Accuracy: ±1.5% of 

full scale 
* The AH sensors referred to in Figure 1 and Figure 3 through Figure 6 comprise RH and temperature sensors in 
close proximity in the same sensor body. 
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Figure 81. Exterior soil crib and sensors 

 
Figure 82. Backfilled exterior soil crib 
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Figure 83. Interior block wall sensors (block moisture content, 

core humidity, and surface temperature) 
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Figure 84. Exterior sensors (block moisture content and temperature) 
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Figure 85. Sensors on the insulation interior face (humidity and temperature) 
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Figure 86. Humidity sensors installed in pockets on rear insulation face 
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Figure 87. Heat flux plates mounted on interior face of WSP 



 

156 

 
Figure 88. Nonadhered WSP with attached humidity sensors (dimpled side faces the wall) 

 
Figure 89. Nonadhered WSP drainage cavity with drainage tube at the left end 

Drainage 
tube 
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Figure 90. Spray bar system 

Spray bar 
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Figure 91. Insulation placement on nonadhered WSP 
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Figure 92. Framing and gypsum wallboard over adhered WSP 
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Figure 93. Finished interior surface test bays 1–4 

Vertical seams 
sealed with caulk 
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Figure 94. Completed Bay 5N rim-joist test cavities 

 

Foil faced 
polyisocyanurate 
board 

Extruded 
polystyrene 
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Appendix B: Moisture Content Sensor Development33 

The moisture contents of the masonry block face shells and the wood boundary components of the 
rim-joist test cavities were measured using instrumentation developed and deployed for the first 
time in this experiment. 

B.1 Masonry Block 
One objective of the research was to collect data on the moisture content of the masonry block 
walls. This was likely the first time that the measurement of this parameter had been attempted on 
a significant scale (that is, multiple locations simultaneously, even on the same block) and a 
continuous sampling basis in the public domain.34 

In the context of developing hygrothermal simulation code validation-grade data, foundation wall 
moisture contents are essential to overcome the limitations of RH measurements under condensing 
conditions on the face shells and in the cores of masonry blocks. Because sorption isotherms at 
RHs in excess of 90% in masonry materials are very steep, very small changes in RH correspond 
with large changes in moisture content. The RH sensors used in this experiment (individually 
calibrated Honeywell HIH-4000-003 thin-film capacitance) have a rated accuracy of ±3.5%, which 
is too large to adequately track the masonry moisture content in the crucial vapor condensing 
range. Indeed, extensive experience with these sensors has demonstrated that they tend to read 
100% RH at actual RHs above 95%. Thus, a low-cost, conductance based method for measuring 
masonry moisture contents with high precision developed by the principal investigator (Goldberg 
2013) was adopted and refined for application in this project. The advantage of the methodology is 
its low cost in comparison with other reported techniques such as electrical time domain 
reflectometry (ETDR) (Khoshbakht and Lin 2006), heated “pad” temperature time constant 
(Davies and Ye 2009), and low-temperature confined ceramic resonator sensor for measuring the 
dielectric constant of the masonry (Maksimovic et al. 2012). 

The sensors collecting the masonry block moisture content data consist of two probes spaced 
approximately 10-1/16 in. apart and centered across the height and width of the block. The probes 
are constructed by drilling two ¼-in. diameter by 1-in. deep holes in the face shell of the block and 
installing equally sized graphite rods with their perimeters coated with an electrically conducting 
epoxy paste with graphite particles providing the conductance. A #2 stainless steel screw (0.089-in. 
diameter) is then installed in each graphite rod and a wire lead is connected to each screw. Lastly, 
the top of the screw and graphite rod are covered with epoxy to isolate the probe from surface 
moisture, further reduce the potential for corrosion, and minimize the intrusion of water around the 
perimeter of the rod and screw. The screws are installed in the graphite rod and not directly into the 
concrete to minimize the galvanic potential between the screw and water in the block. The 
electrical conducting paste fills any voids around the rod that would otherwise have the potential to 
fill with water and cause irregular readings from variable graphite rod/masonry contact electrical 
resistance. 

                                                 
 
33 Appendix B is based on and excerpted from a chapter in Harmon (2014). 
34 No references through 2012 were revealed by a search of the Compendex engineering database. 
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The wire leads are attached to a half resistance bridge energized by a continuously operating 24 V 
DC power supply that supplies a constant voltage across the bridge. The voltage across the probes 
and the current flowing through them (on the order of 1 μA to 1 mA) are measured via the half 
bridge circuit and converted to a steady-state conductance. As the masonry block functions as a 
parallel resistance/capacitance circuit, the constant applied voltage eliminates the transients 
produced by capacitor charging and discharging, thus allowing the steady-state conductance to be 
measured in isolation (transients are eliminated). To achieve the necessary precision, the half 
bridge voltages are measured with a 24-bit analog-to-digital converter. The conductance reading 
correlates to the block moisture content; high conductance correlates to high moisture content and 
low conductance to low moisture content. The correlation is determined in the laboratory on a test 
masonry block by taking conductance readings for a known set of moisture contents. The moisture 
content is determined by periodic mass measurements of the concrete block as it dries between 
water-saturated and ambient equilibrium states. 

Normal weight masonry blocks in compliance with ASTM C 9035 exhibit a wide range of 
porosities usually far lower than the maximum specified in the standard (about 20.8%).36 Five 
calibration blocks were obtained from different sources for experimental evaluation. The amount 
of water uptake in a masonry block is dependent on its porosity, so having a range of calibration 
samples that bracket the installed block’s porosity is necessary to infer its moisture content by 
interpolation. The in-situ block porosity was determined by removing coupon samples from the 
face shell of masonry blocks at the CRRF. These samples were tested per ASTM C140.37 Because 
the coupons were taken from existing construction, a single full block face shell (16 in. wide × 8 
in. high) could not be obtained. In lieu of a full face shell, three coupons were removed and tested 
in aggregate to reduce the error introduced from the low sample weight of a single sample. 
Fortunately, the measured aggregate porosity of the CRRF face shells fell within the porosity range 
of the five calibration blocks already obtained. 

The wide variation in masonry block porosities poses a particular challenge for hygrothermal 
analysis. The porosity results from the five calibration stretcher masonry blocks (the type used in 
the CRRF test walls) are given in Table 8. The ASTM C140 test procedure is augmented with a 
mathematical analysis of porosity that enables the skeleton density and total volume of the 
specimen also to be calculated from the ASTM results. These data are also given in Table 8. The 
porosity data in Table 8 demonstrate that using “standard” masonry block material properties, 
especially porosity, may be invalid in any particular case (such as the CRRF). This is of great 
importance in attempting to validate hygrothermal simulation codes with experimental data. 

                                                 
 
35 Standard Specification for Loadbearing Concrete Masonry Units. 
36 The description of the calibration methodology and results is extracted from Harmon (2014). 
37 Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units. 
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Table 8. Masonry Block ASTM C140 Test Results 

Face 
Shell 

Porosity 
(%) 

Total 
Volume (m3) 

Skeleton 
Density (kg/m3) 

1 13.18 0.0110 2477 
2 10.808 0.0110 2446 
3 11.27 0.0093 2441 
4 13.24 0.0059 2469 
5 9.30 0.0121 2481 

 

Because the moisture content was measured on the interior and exterior face shells of the masonry 
blocks and the current path between the electrodes is through the face shell only, the calibration 
needs to be performed on the face shells only, not the entire block. Thus, each of the five masonry 
block samples was carefully split into two face shells by removing as many of the webs as 
possible. An example of the resultant test sample is shown in Figure 95. 

 
Figure 95. Face shell test sample 

A set of graphite rod probes was installed in each face shell, but the screws, wire leads, and epoxy 
were not installed. Using the ASTM C140 methodology for determining saturated weight, the face 
shell was saturated in a bath of water for 24–28 hours, then removed and weighed. Because the 
graphite rods are not porous, the weight represents the water absorbed by the face shell. The 
difference in weight between the drilled out concrete block and the installed graphite rods is 
negligible. The results of the ASTM C140 test for the 10 face shells as well as the aggregate of the 
three face shell coupons removed from masonry blocks at the CRRF are shown in Table 9. 
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Table 9. Masonry Block Face Shell ASTM C140 Test Results 

Face 
Shell 

Porosity 
(%) 

Total Volume 
(m3) 

Skeleton Density 
(kg/m3) 

1A 12.45 0.0037 2472 
1B 12.41 0.0038 2488 
2A 9.62 0.0031 2415 
2B 9.51 0.0039 2429 
3A 10.81 0.0040 2416 
3B 10.85 0.0039 2425 
4A 11.15 0.0027 2418 
4B 12.00 0.0024 2421 
5A 8.88 0.0034 2475 
5B 9.06 0.0035 2446 

CRRF 11.73 0.0026 2530 
 

A comparison of Table 8 and Table 9 shows clearly that the porosities of the face shell are different 
from those of the entire block. That is, the porosity of the webs in general is different from the 
porosity of the face shells that in turn can be different from each other. The largest difference was 
measured for face shell 4A that has a smaller porosity than the whole block  
by 2.09%. 

The block was then allowed to dry and the screws, wire leads, and epoxy were installed. After the 
epoxy cured, the block was again saturated in a bath of water for 24–28 hours. The block was then 
removed from the bath of water and placed on the scale. The probes were connected to the data 
acquisition system. Figure 95 shows the essence of the calibration apparatus. In this case, because 
of the weight of the face shells, the only suitable remote reading digital scale available had a 
precision of 0.02 kg and a manufacturer’s specified accuracy of 0.01% full scale. 

A data acquisition system read the electrical circuit data (supply and half-bridge resistor voltages) 
and the mass of the face shell every 10 minutes. The first reading represented 100% saturation. 
Readings were taken until the face shell reached equilibrium with ambient conditions, which was 
evident when the mass and conductance reached equilibrium (see Figure 97). A climate chamber 
approximately 4 ft wide × 12 ft long × 8 ft high with regulated temperature and humidity was used 
to dry the face shell from saturation to equilibrium with controlled ambient conditions. The room 
was equipped with an air conditioner and a humidistat that was used to maintain an RH of 
approximately 30%. A standalone convection heater was used to increase the temperature of the 
room with its air flow directed over the test sample via a drying duct enclosure (Figure 96).  
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Figure 96. Calibration rig drying enclosure 

The intent was to maintain conditions in the room that allowed the face shell to dry to a sufficiently 
low moisture content so that a full calibration curve could be drawn (that is, with the amount of 
moisture in the block approaching zero). 

The conductance across the probes in the block was calculated indirectly using a half resistance 
bridge comprising a series circuit with a 24-V power supply, the concrete block and a 249-ohm 
resistor with a 1% tolerance. The voltage across the probes was determined by subtracting the 
measured voltage across the resistor from the measured total supply voltage to avoid contaminating 
the calculated current between the electrodes with the current passing through the voltmeter. The 
current through the circuit was calculated by dividing the measured voltage across the resistor by 
its resistance. The electrical conductance of the block between the electrodes was calculated using 
the calculated current and voltage across the electrodes. 

Figure 97 depicts the raw time series drying data for face shell 4B (Table 9). This graph shows that 
the method is highly sensitive to small changes in moisture content at higher saturations (a large 
change in conductance for a small change in mass). This is exactly the characteristic desired to 
compensate for the low sensitivity and accuracy of thin-film capacitance RH transducers at 
moisture contents above 90%. 
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Figure 97. Raw calibration data for a masonry block face shell 

The equilibrium conductance at lower moisture contents is also visible in Figure 97 and Figure 98. 
The profile representing the mass of the block is stepped because the scale’s precision is ±0.02 kg 
and it is not sensitive enough to measure the intermediate change in mass.38 For a given mass (i.e., 
moisture content) the corresponding conductance is the first reading on a given mass plateau. 
Figure 98 shows raw conductance/volumetric moisture content profiles for the block 4 face shells 
derived from the raw time series data (such as Figure 97). The volumetric moisture content 𝑀𝑀𝑉 is 
calculated as follows: 

𝑉𝑇𝑇𝑇 =  𝑀𝑠𝑠𝑠
[𝜉𝜌𝑤+(1−𝜉)𝜌𝑠𝑠] (B.1) 

𝑉𝑊 =  𝑀𝑠𝑠𝑠− 𝑀𝑑𝑑𝑑

𝜌𝑤
 (B.2) 

𝑀𝑀𝑉 =  𝑉𝑊 𝑉𝑇𝑇𝑇�  (B.3) 

                                                 
 
38 The scale used in the calibration procedure was an OHAUS PBI with a range of 0–68 kg and a precision of ±0.02 
kg. Clearly a balance with a higher precision is desirable, but was not available. 
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where: 

𝑉𝑇𝑇𝑇 = total volume of masonry block 

𝑉𝑊 = volume of water 

𝑀𝑠𝑠𝑠 = water saturated mass of masonry block 

𝑀𝑑𝑑𝑑 = oven-dried mass of masonry block 

𝜉 = porosity (ASTM C140 measurement – Table 9) 

𝜌𝑤 = density of water 

𝜌𝑠𝑠 = masonry block skeleton density (ASTM C140 measurement – Table 9) 

The final calibration curves for all 10 face shells (Table 9) are shown in Figure 99. Each color 
corresponds to the pair of face shells with the porosities depicted in the legend. There a few 
interesting features in this graph to be noted: 

• As the face shells approach 0% saturation, the conductance approaches zero, 
demonstrating that the conductance decreases as the proportion of air in the voids 
increases. In general, the data show that higher porosity face shells have lower 
conductance readings than low porosity face shells for a given volumetric moisture 
content (Vw/Vtot). This arises because at a given volumetric moisture content, the volume 
of water in the high and low porosity face shells was approximately the same,39 but in the 
low porosity face shells the pores were filled to a greater extent (higher saturation) than 
in the high porosity face shells. The critical factor affecting the conductance reading and 
the relationship between different porosity face shells is the ratio of air to water. The 
greater the ratio, the lower the conductance reading. The volumetric moisture content was 
plotted instead of the degree of saturation, because at a given volumetric content it 
reflects approximately the same volume of water in all of the face shells, regardless of 
porosity.40 

• The face shell profiles are closely correlated with each other except for face shells 5 that 
are divergent. It is thus clear that something other than a porosity difference is producing 
this effect. It was presumed that curve 5B (9.06% porosity) was accurate because it 
followed the general pattern of the graph (decreasing porosity for increasing 
conductance). The saturated conductance reading for face shell 5A was taken a second 
time and confirmed that there was not an error in the data collection procedure. It was 
speculated that there was a problem with the insulation of the sensor, such as a crack in 
one of the graphite electrodes. 

• The location of the block 2 face shell profiles (9.62% and 9.51% porosity) is out of 
sequence in terms of its porosity. The block 2 profiles would be expected to fall between 
the profiles from blocks 3 and 5 (10.81%/10.85% and 8.88%/9.06% porosity, 

                                                 
 
39 Differences arising from inconsistencies in the amount of web material left attached to the face shell. 
40 Saturation ratio = Volumetic moisture content/porosity. 
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respectively). The block 2 face shell profiles are consistent with each other, indicating 
that there was likely not an error with the data collection procedure. It is speculated that 
the block material mix affected the conductance readings. For example, if block 2 
contained a fly ash admixture, its conductance would be increased relative to blocks 
without a fly ash admixture (Naik et al. 2010). Block 2 was acquired from a construction 
waste yard and there was no way to learn the details of its source and no ability to test the 
masonry block composition. 

 
Figure 98. Drying data for block 4 face shells 
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Figure 99. Face shell calibration curves 

Fortunately, the CRRF masonry block porosity (11.73%) fell neatly between the porosities of the 
face shells of block 4 (11.15% and 12%) and the block 4 profiles showed no anomalies. Therefore, 
it was a simple matter to interpolate the CRRF masonry block conductance/volumetric moisture 
content profile from the block 4 face shell profiles. 

Two refinements to the methodology may be evaluated in future research: 

• Investigate the use of alternate nonmetallic electrode materials that are less susceptible to 
cracking than graphite rods. 

• Clearly it is preferable to calibrate multiple whole masonry blocks used in the 
construction if possible (such as for new construction). In general this is not possible, so 
including a material composition test for the target masonry block coupons to determine 
their carbon content is desirable. The calibration curve could then be derived from 
masonry bocks spanning both the porosity and carbon content of the target block. 
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B.2 Wood 
The same approach was used to measure the wood moisture content as was used for the concrete 
block moisture content. Two insulated stainless steel pins formed the electrodes and were inserted 
into the wood component to approximately half the depth of the component 1 in. apart. The 
exposed portion of the pin was coated in marine epoxy to protect it from moisture. The pins were 
connected to the same circuit used for the masonry blocks. 

Calibrations of the wood moisture content sensors were conducted in the laboratory to create a 
correlation to the field data. The calibration was conducted on a 6-in. × 6-in. × ½-in. OSB sample 
and a 6-in. × 5-½-in. × 1-½-in. sample of 2 × 6 treated lumber. The OSB sample was scrap 
material from the CRRF and the 2 × 6 sample was purchased new because a coupon could not be 
extracted from the CRRF sill plate for structural and airtightness reasons. The wood species and 
treatment method were not labeled on the purchased 2 × 6 sample. The treated 2 × 6 was the only 
available product at a national building supply store and considered a standard product. Note that 
the 2 × 6 sill plate at the CRRF would likely have been treated with chromated copper arsenate 
because it was standard in 1997 when the building was constructed; however, chromated copper 
arsenate is no longer used for such applications. 

After the samples were cut to size, the oven-dry weight was determined using method B from 
ASTM D4442: Standard Test Methods for Direct Moisture Content Measurement of Wood and 
Wood- Base Materials (ASTM International 2007). The samples were dried in a 103°C oven until 
there was no change in the mass over a 4-hour period. The ½-in. OSB took 3 days to reach oven-
dry and the 2 × 6 took 8 days. All mass measurements were taken using a scale with a ±0.1 g 
precision. The results of the oven drying are shown in Table 10. 

Table 10. Wood Sample Drying Data (per ASTM D4442) 

Sample Oven-Dry Mass 
(g) 

Moisture Content at 
Drying Termination 

(m-%) 
½-in. OSB 161.3 2 

2 × 6 449.9 6 
 

Immediately after the oven-dry mass was attained, the pins with leads were installed and coated in 
epoxy. The mass was then taken to determine the mass of the pins, leads, and epoxy. After a 
minimum of 24 hours for the epoxy to cure, the sample was placed in a water bath to saturate. The 
sample was removed from the bath when there was no appreciable change in mass over an 
approximate 24-hour period (2.4% for the ½-in. OSB and 1% for the 2 × 6). 

When the saturated condition was reached, the sample was placed onto the scale and connected to 
the data acquisition system described above (Section 2.4.1), except, in this case, the scale had a 
precision of ±0.1 g. The sample was elevated off the scale approximately 1-⅛ in. by two 
nonporous spacers. The drying process using the same apparatus used for the masonry block 
calibrations (see Figure 96). The drying fan was set on low fan speed and placed 25 in. from the 
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edge of the scale. The scale was set to take readings at the first scale reading as opposed to a stable 
scale reading because the fan resulted in a noisy mass reading (<1 g noise level).41 

Data were collected at an interval of 30 seconds or shorter for at least the first 12 minutes, after 
which the collection interval was increased to 2 minutes. After 10 minutes the scale was checked 
for accumulated water; none was ever present. The readings continued until the conductance 
plateaued. The ½-in. OSB reached a measured conductance 0 μS and the 2 × 6 plateaued at 
0.000333 μS. 

 
Figure 100. Wood moisture content calibration curves 

The drying process generated a data set with a conductance and mass at every time interval. The 
data set was filtered by taking the first reading at a given mass and eliminating all data points that 
followed that had a mass of equal or greater value. This reduced data set was further filtered by 

                                                 
 
41 Owing to the sensitivity of the scale, it would have been preferable to dry the sample in a radiant heat drying 
chamber with sample surface temperature control. 
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removing all data points where the conductance increased over a time interval. These two filters 
generated a smoothed data set (see Figure 100). 

The moisture content by mass for each data point was calculated using the following equation: 

𝑀𝑀(% 𝑚𝑚𝑚𝑚) = 𝑀−𝑀𝑜𝑜𝑜𝑜−𝑑𝑑𝑑
𝑀0𝑣𝑣𝑣−𝑑𝑑𝑑

 

To determine the moisture content, the mass of the pins, epoxy, and leads was subtracted from the 
mass readings taken during the drying process. 

The conductance was plotted against the mass moisture content to create the calibration curves for 
the measured field conductance data (Figure 100) for OSB and the treated 2 × 6 sill plate. As noted 
above, the final conductance reading for the OSB was 0 μS and for the 2 × 6 was 0.000333 μS. In 
reality, the OSB did not reach a conductance of 0 μS or infinite resistance, but the zero reading was 
due to the quantization error in the 16-bit analog-to-digital converter used in the data acquisition 
apparatus. In this experiment the quantization error was 0.000166 μS. At one quantization error, 
the OSB was at 2% moisture content. Anything below this value was not determinable. The final 
reading for the 2 × 6 was within two quantization errors of 0 μS and was at a moisture content of 
6%. This method was therefore accurate down to 6% moisture content for the 2 × 6. For the field 
data, any conductance below the lower limit (0.000166 μS for OSB and 0.000333 μS for a 2 × 6) 
was reported as unmeasurable. 

After the samples finished drying they were left sitting in ambient conditions. The moisture content 
of the samples was checked using a Lignomat pin moisture content meter with a lower 
measurement limit of 5%. The OSB was checked 16 days after and the 2 × 6 was checked 7 days 
after the calibration drying was completed. For both samples, the moisture content was less than 
5%. The ambient conditions at the time of testing were approximately 70°F and 22% RH. 

Refinements to the calibration methodology include: 

• Increasing the sample size of each material to check result repeatability. 

• Investigating the impacts of wood treatments on the electrical conductance / moisture 
content correlation. 
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Appendix C: Supplementary Experimental Data 

 
Figure 101. Bay 1S above-grade masonry block wall temperature profiles 
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Figure 102. Bay 1S heating season masonry block wall and 

soil temperature profiles 40 to 79 in. above the slab 
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Figure 103. Bay 1S cooling season masonry block wall and 

soil temperature profiles 40 to 79 in. above the slab 
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Figure 104. Bay 1S heating season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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Figure 105. Bay 1S cooling season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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Figure 106. Bay 3N above-grade masonry block wall temperature profiles 
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Figure 107. Bay 2S (interior insulation)/Bay 4S (exterior half-wall insulation) 

wall temperature comparison 5-½ in. and 16 in. above the slab 

 



 

181 

 
Figure 108. Bay 2S (interior insulation)/Bay 4S (exterior half-wall insulation) 

above-grade wall temperature comparison 
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Figure 109. Bay 1N moisture transport phenomenology 
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Figure 110. Bay 2N heating season above-grade masonry block wall temperature profiles 
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Figure 111. Bay 2N heating season masonry block wall and 

soil temperature profiles 40 to 79 in. above the slab 
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Figure 112. Bay 2N cooling season masonry block wall and 

soil temperature profiles 40 to 79 in. above the slab 
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Figure 113. Bay 2N heating season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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Figure 114. Bay 2N cooling season masonry block wall and soil temperature profiles 5-½ to 16 in. above the slab 
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Figure 115. Bay 2N moisture transport phenomenology 
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Figure 116. Bay 3N moisture transport phenomenology 
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Figure 117. Bay 2S WSP vapor retarding performance 
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Figure 118. Bay 2N WSP vapor retarding performance 
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Figure 119. Moisture performance of Bay 5S rim-joist cavity with uninsulated rim board 
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Figure 120. Moisture performance of Bay 5S rim-joist cavity with insulated rim board 
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Figure 121. Wetting/drying profiles for Bay 5S rim-joist cavity with uninsulated rim board 
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Figure 122. Wetting/drying profiles for Bay 5S rim-joist cavity with insulated rim board 
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Figure 123. Moisture performance of Bay 5S bond beam block below rim-joist cavity 
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Figure 124. Water diffusion through Bay 5S bond beam block below rim-joist cavity 
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Figure 125. Bay 5S rim-joist cavity bounding surface vapor pressure profiles 

with uninsulated rim board 
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Figure 126. Bay 5S rim-joist cavity bounding surface vapor pressure profile 

with insulated rim board 
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Figure 127. Bay 5N rim-joist cavity interior vapor pressure gradient with uninsulated rim board 

 
Figure 128. Bay 5N rim-joist cavity interior vapor pressure gradient with insulated rim board 
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Figure 129. Bay 5S rim-joist cavity interior vapor pressure gradient with uninsulated rim board 

 
Figure 130. Bay 5S rim-joist cavity interior vapor pressure gradient with insulated rim board 



 

202 

 
Figure 131. Bay 1 WSP interior condensing surface 
Minnesota Energy Code compliance performance 
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Appendix D: WUFI-2D Experiment/Simulation Result Comparison 

As noted in Section 4, WUFI-2D was selected as the hygrothermal code with which to evaluate the 
usefulness of the experimental moisture data (RH and moisture content) for simulation code 
evaluation purposes. However, in its standard configuration, WUFI-2D may not be capable of 
modeling soils directly. This arises because WUFI uses a single transport equation using RH as the 
transport variable for modeling both water vapor and liquid water diffusion fluxes (Kunzel 1995). 
This relies on invoking a material “moisture storage function” (Kehrer et al. 2012) (more 
conventionally referred to as a sorption isotherm) to convert RH into a moisture content for 
calculating the water transport. This works satisfactorily for most building materials where the 
sorption isotherms are generally monotonic with moderate gradients. However, in soils adjacent to 
the basement, this becomes problematic because, in the Vadose Zone (soil region above the 
groundwater table), the soil RH generally exceeds 99% with a dew point depression less than 
0.2°C (Rasmussen and Rhodes 1995). Using a conventional sorption isotherm to meaningfully 
model liquid transport in soils42 becomes problematic because of the extremely steep slope (almost 
vertical) of the sorption isotherm for soils at high RH so that, typically, for all saturation ratios 
above 0.5, the RH >99%. For example, Bird et al. (2000) shows that for Ariana silt clay loam 
(texturally similar to the soil adjacent to Bay 1) at 10°C, the RH43 increases from 0.99953 at a 
moisture content of 18 V-% (saturation ratio = 0.39) to 0.99998 at a moisture content of 46 V-% 
(saturation ratio = 1). This also places severe numerical stability strains on the composite moisture 
transport equation. These numerical issues have been acknowledged by ORNL44 and, apparently, 
are generally managed using a trial-and-error process by manipulating the sorption isotherms and 
the spatial discretization. However, no documented procedures for performing these manipulations 
were available and no precise verbal information about them could be obtained from ORNL. 

Because WUFI-2D is two-dimensional, it had to be applied with care to the masonry block walls in 
the experiment. As demonstrated in Section 4.1.4, the heat transfer through the solid or grouted 
core in Bay 3N is intrinsically three-dimensional, so WUFI-2D cannot be used in this case. It was 
evaluated for Bays 1N and 2N only, on a plane passing through the center of a masonry block core. 
The cross-sectional geometry at the center of a masonry block core and the boundary conditions 
are shown in Figure 132. Both the geometry and the boundary conditions are identical to those of 
BUFETS (Figure 57), except that the horizontal far field width is reduced from 108 in. to 12 in. 
The reduced far field width is intended purely as a thermal guard for the soil crib. The spatial 
discretization is given in Figure 133. 

Soil properties were developed by ORNL (Kehrer et al. 2012) for use with WUFI-2D. Twelve sets 
of soil properties were developed, one for each textural class region in the U.S. Department of 
Agriculture soils triangle.45 

                                                 
 
42 The soil sorption isotherm is derived from the water retention curve which expresses the relationship between 
volumetric moisture content and suction pressure. The RH can be calculated from the suction pressure by invoking 
the Kelvin-Thomson equation (Fredlund and Rahardjo 1993). 
43 Converted from the water suction pressures reported in the paper. 
44 Personal communication with M. Kehrer. 
45 Note that these material properties are different from those used in BUFETS as shown in Table 4. 
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Figure 132. Two-dimensional WUFI simulation domain and boundary conditions 
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Figure 133. Two-dimensional WUFI simulation domain discretization 
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The “standard” commercial version of the WUFI-2D kernel (rev. 3.3.2.52) was used for the 
simulations46 together with the ORNL soil properties. Unfortunately, a hygrothermal solution 
could not be obtained for the simulation domain. The thermal part of the simulation (energy 
transport equation) functioned satisfactorily with good numerical convergence, but the moisture 
transport equation failed to converge and generated software errors related to the convergence of 
the inner iterations of the equations’ solution algorithm. A solution that partially succeeded was to 
deactivate the bulk water capillary hydraulic conduction transport in the WUFI-2D algorithm. This 
yielded about 3 months of data before the simulation failed. For these 3 months, a comparison of 
the simulated masonry block core RH profiles against those measured revealed a very substantial 
difference between the measured and simulation results. Every effort was made to glean insight 
into these results and to solve the problems by communicating at length with the software 
developers at ORNL as well as at the IBP in Germany, but to no avail.47 Only the thermal results 
of WUFI-2D can be evaluated against the experimental data here. 

Like BUFETS, WUFI-2D also does not explicitly include advective thermal flows in the energy 
equation; only diffusive thermal flows are modeled. The limitations of not modeling the buoyant 
cavity flows in the masonry block cores discussed for BUFETS apply to WUFI-2D as well, and the 
expectation at the outset was that WUFI-2D would replicate the experimental data no better than 
BUFETS, the two-dimensional limitation of the former in modeling a fundamentally three-
dimensional problem notwithstanding.48 The same heat transport physics discussed in relation to 
the BUFETS/experimental data comparison also apply to WUFI-2D so this discussion will not be 
repeated here. Instead the discussion will focus on the differences in the simulated data produced 
by BUFETS and WUFI-2D because these are more instructive for improving the models and 
demonstrating the efficacy of the experimental data for evaluating such simulations. 

With this in mind, an attempt was made to improve the information yield from the comparison 
exercise as a whole. As the BUFETS simulations were undertaken on the north side of the building 
for which the soil cribs were shaded for most of the year, direct solar irradiance was not included 
as a boundary condition. In general, as shown in Sections 4.1.1 through 4.1.4, the simulated 
temperature profiles consistently had lower values than those measured with the larger 
discrepancies occurring in the cooling season. The question arises about whether an additional heat 
source at the ground surface would improve the experiment/simulation agreement. It was decided 
to use the WUFI simulations to evaluate this proposition so as to maximize the yield from the very 
time-consuming simulation exercise. Solar irradiation on the soil and above-grade wall surfaces for 
the Bay 1N and 2N cases was included in the WUFI-2D simulations to determine whether this 
would improve the agreement. Conversely, no improvement would tentatively suggest (because 
many other factors are involved) that surface irradiance may not be a factor in the 
BUFETS/experimental temperature discrepancies. Further, if the WUFI-2D discrepancies would 
be worse than those of BUFETS, surface solar irradiance as a boundary condition likely is of minor 
importance in earth contact simulations for accurate modeling of the deeper ground temperatures in 

                                                 
 
46 A more recent special version that allows the importation of external dynamic link libraries to describe sources 
and sinks was not used. 
47 A copy of the model was sent to ORNL for review and comment. No response was received. 
48 See Figure 58. 
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general and the causes for the discrepancies must be sought elsewhere (as suggested in Section 
4.1.5). 

As the WUFI-2D data output includes only temperatures within the simulation domain (not heat 
fluxes, as is the case with BUFETS), the experiment/simulation comparison is reported for 
temperatures only. A complete set of experiment/WUFI-2D temperature comparison graphs for 
Bays 1N and 2N corresponding to the experiment/BUFETS graphs in Sections 4.1.1 and 4.1.2 is 
reported in Appendix E. An illustrative excerpt of the comparisons sufficient to illustrate the 
essential features is discussed below. 

D.1 Test Bay 1N 
The BUFETS and WUFI-2D wall temperature comparisons 40-¼ in. above the slab are shown in 
Figure 134. The worst disagreement between the experimental and simulation data is about 7°C for 
WUFI-2D and about 3°C for BUFETS. The BUFETS temperature predictions are closer to the 
experimental data during the heating season while the summer discrepancy is reduced for WUFI-
2D but is still about 3.5°C larger then BUFETS at 5000 hours. 

At the top of the wall in Figure 135, the differences between BUFETS and WUFI-2D are reduced 
as this region is least influenced by the soil. The effect of the solar irradiance is discernable in the 
large WUFI-2D simulated diurnal temperature variations on the exterior face shell that are carried 
through to the core and interior face shell temperatures.  
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Figure 134. Bay 1N BUFETS/WUFI-2D wall temperature comparisons 40-¼ in. above the slab 
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The agreement between the BUFETS and experimental exterior face shell temperatures confirm 
that in reality the north side is almost always shaded.49 In terms of the core and interior face shell 
temperatures, WUFI-2D yields agreement with the experimental data (allowing for the increased 
diurnal variations) during the cooling season, but not in the heating season when again, the 
discrepancies are larger than those of BUFETS. For example, at the end of the simulation year, 
WUFI-2D shows a core temperature discrepancy of about 16°C compared with about 8°C for 
BUFETS. At the top of the wall, this difference is likely a result of the absence of three-
dimensional heat flow in WUFI-2D. 

The comparison of the vertical soil temperature profiles shown in Figure 136 is instructive. At the 
base of the wall, 5-½ in. above the slab, BUFETS yields discrepancies <2°C during the heating 
season and 8 to 10°C during the cooling season, whereas the corresponding discrepancies are <4°C 
and no more than 10°C for WUFI-2D. This correspondence suggests that at the base of the wall, 
both programs are showing the omission of a heat source resultant from a seasonally varying water 
table depth and temperature (see Section 4.1.5). 

As the height above the slab increases, the WUFI-2D/BUFETS discrepancy difference increases at 
the end of the simulation year from about 2°C at 5-½ in. above the slab to >20°C at 69-¼ in. above 
the slab (12 in. below grade). As grade is approached, the differences between the BUFETS and 
WUFI-2D energy transport equation solution algorithms increase.50 The inclusion of solar 
irradiance on the ground surface would be expected to manifest 12 in. below grade. However, the 
results do not support this expectation. At 5000 hours, for example, when solar irradiance might be 
expected to have the largest impact, the BUFETS and WUFI-2D temperature discrepancies are 
about 3° and 16°C, respectively. So it is very unlikely that solar irradiance has a significant impact 
on the soil heat transport phenomenology 12 in. below grade and deeper. 

 

                                                 
 
49 Around the winter solstice, the north face is sunlit just after sunrise. Surrounding forest shades the north side just 
before sunset. 
50 Chiefly, three-dimensionality and discontinuous phase change in BUFETS compared with two-dimensionality and 
continuous phase change in WUFI-2D. 
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Figure 135. Bay 1N BUFETS/WUFI-2D wall temperature comparisons 86-¼ in. above the slab 



 

211 

 
Figure 136. Bay 1N BUFETS/WUFI-2D vertical soil temperature profile comparisons 
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D.2 Test Bay 2N 
The same pattern in the BUFETS/WUFI-2D discrepancy comparisons shown in Bay 1N continues 
to Bay 2N. For both BUFETS and WUFI-2D, the experiment/simulation discrepancies increase a 
little as a consequence of the crib soil changing from loam to sand. In the case of the wall 
temperatures 40-¼ in. above the slab, at the end of the simulation, the WUFI-2D discrepancy 
increases from 10.5°C in Bay 1N (Figure 134) to 12°C in Bay 2N (Figure 137), while the 
corresponding increase for BUFETS is 2°–3°C. Thus change in soil thermal properties affects both 
WUFI-2D and BUFETS with the former experiencing a slightly bigger impact. However, the 
pattern of discrepancies is unaltered, suggesting that soil material property inaccuracies are not the 
primary cause of the experiment/simulation discrepancies. 

The same pattern is evident at the top of the wall 86-¼ in. above the slab in both Bays 1N and 2N. 
The discrepancy increases for both programs in Bay 2N (Figure 139) with the discrepancy increase 
for WUFI-2D being slightly larger. The Bay 2N vertical soil temperature profile (Figure 139) 
shows very little change for BUFETS compared with Bay 1N, but shows a noticeable change for 
WUFI-2D. For example, at the end of the simulation period, the WUFI-2D temperature 
discrepancy 5-½ in. above the slab increases from 4°C in Bay 1N to 8°C in Bay 2N (for BUFETS 
there is no change, the ending discrepancy is 2°C in both bays). Thus in the soil, remote from 
grade, the change in material properties appears to have a much bigger impact on WUFI-2D than 
on BUFETS. This is most likely a result of the different soil thermal properties used in BUFETS 
(Table 4) compared with the soil properties developed by Kehrer et al. (2012). 

D.3 Summary 
The WUFI-2D experiment/simulation temperature results comparison has also demonstrated the 
value of the experimental data in evaluating at least the thermal performance of earth contact 
simulation codes. A comparison of the results from two programs relative to the experimental data 
provides additional insight to the sensitivity of the results to differences in simulation algorithms, 
boundary conditions, and material properties. The ability of the experimental data to evaluate the 
performance of the moisture transport aspects of earth contact simulation programs could not be 
ascertained because the authors could not find a solution for the WUFI-2D moisture transport 
equation despite attempts to resolve the problems with the program developers. The moisture 
transport evaluation usefulness of the experimental results will have to be postponed to future 
research. 

In terms of the usefulness of the two programs evaluated for predicting building foundation energy 
transport through masonry block walls in the context of whole building energy simulation, it 
appeared at the time of the evaluation that BUFETS yielded heat transfer results with lower wall 
temperature discrepancies than those available from WUFI-2D. In the whole building context, it 
appears that three-dimensional foundation heat transfer simulation is a better solution than two-
dimensional simulation in terms of accuracy, particularly when the wall cross-section is 
nonuniform (as is the case with a masonry block wall) and the nonuniformities are included in the 
geometry of the wall simulation model. 
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Figure 137. Bay 2N BUFETS/WUFI-2D wall temperature comparisons 40-¼ in. above the slab 
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Figure 138. Bay 2N BUFETS/WUFI-2D wall temperature comparisons 86-¼ in. above the slab 
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Figure 139. Bay 2N BUFETS/WUFI-2D vertical soil temperature profile comparisons 
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Appendix E: WUFI-2D Experiment/Simulation Comparison Data 

 
Figure 140. Bay 1N wall experiment/WUFI simulation temperature comparison 5-½ in. above the slab 
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Figure 141. Bay 1N wall experiment/WUFI simulation temperature comparison 40-¼ in. above the slab 
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Figure 142. Bay 1N wall experiment/WUFI simulation temperature comparison 69-¼ in. above the slab 
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Figure 143. Bay 1N wall experiment/WUFI simulation 

temperature comparison 79-¼/86-¼ in. above the slab 
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Figure 144. Bay 1N soil vertical profile experiment/WUFI simulation temperature comparison 
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Figure 145. Bay 1N soil horizontal profile experiment/WUFI simulation temperature comparison 



 

222 

 
Figure 146. Bay 2N wall experiment/WUFI simulation temperature comparison 5-½ in. above the slab 
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Figure 147. Bay 2N wall experiment/WUFI simulation temperature comparison 40-¼ in. above the slab 
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Figure 148. Bay 2N wall experiment/WUFI simulation temperature comparison 69-¼ in. above the slab 
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Figure 149. Bay 2N wall experiment/WUFI simulation temperature 

comparison 79-¼ and 86-¼ in. above the slab 
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Figure 150. Bay 2N soil vertical profile experiment/WUFI simulation temperature comparison 
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Figure 151. Bay 2N soil horizontal profile experiment/WUFI simulation temperature comparison 
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Appendix F: Solution Center Guide 

 
Guide Title: Durable Interior Foundation Insulation Retrofits 
 
Keywords: Foundation, Basement, Water Separation Plane (WSP), Interior Insulation 
Climate Zone: 6 and 7 (Cold Climates) 
Construction Types: Existing Homes 
 
Disclaimer: The Regents of the University of Minnesota and its employees assume no liability 
for the use of this guide. 
 
Scope: Moisture Control and Thermal Insulation Retrofits for Existing Basements 

Thermal and moisture problems in existing basements create a unique challenge because the 
exterior face of the wall is not easily or inexpensively accessible. This approach addresses 
thermal and moisture management from the interior face of the wall without disturbing the 
exterior soil and landscaping. It effectively reduces energy loss through the wall, principally 
during the heating season, increasing occupant comfort throughout the year and creating a WSP 
between the interior and exterior environments. This approach has the potential for improving 
durability, comfort, and indoor air quality. The solution also is compliant with the hygrothermal 
performance requirements of the Minnesota Energy Code (Minnesota Statutes (2009), Chapter 
1322, Section N1102.2.6.12). 
 
Description 
 
The following approach applies to hollow masonry block and cast-in-place concrete walls and 
uses a continuous, full-height WSP applied directly to the wall. Full-height, rigid insulation is 
then installed directly against the WSP. Optionally, a hollow stud wall and gypsum wallboard 
can be installed against the insulation. There are two options for the WSP depending on the 
wetness of the existing wall. In all cases, proper exterior surface water drainage must first be 
addressed. 
 
Insulation: Shall meet the 2012 IECC requirements. Vapor-retarding insulation, such as XPS 
board, is preferred. Otherwise, the insulation system selected should not permit condensate 
rundown on the WSP interior face at 50% indoor RH while allowing the insulation system to dry 
to the interior.  
 
Self-adhered WSP: A “peel-and-stick” membrane adhered directly to the wall. Generally, the 
wall must be primed before the WSP is installed. The WSP can be used on walls that are bare, 
clean (or can be rendered clean), and reasonably smooth and dry with a saturation ratio ≤25%. 
 
Nonadhered WSP: Sheet products that provide a small gap between the sheet and the wall (e.g., 
dimpled high-density polyethylene sheet with dimples facing the wall). Because a drainage plane 
is located between the membrane and the wall, it must be drained to a drainage system at the 
base of the WSP. The WSP is adhered to the wall with mechanical fasteners. If the saturation 
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ratio* >25%, there is visible evidence of current or past bulk water leakage, or the wall surface is 
unfit for an adhered WSP, a nonadhered WSP must be used. 
 
How-To: 

Test the moisture content of the interior face of the wall for at least 1 month (preferably during a 
wet time of year such as spring) using the conductance based method described in Goldberg and 
Harmon [2014]). 
Calculate the average moisture saturation ratio of the interior wall face. If the saturation ratio 
>25%, a nonadhered WSP must be used. 
For hollow masonry block walls, determine if the top course is grouted solid (bond-beam or 
equivalent). If not, the top course must be grouted solid. Insert a plug into the wall to support the 
grout. 

 
 
Image Title: Wall Moisture Content Sensors. 
Image Source: ESDP, 2013, Unpublished 
Display Image Filename:  

 
Self-adhered WSP: If the saturation ratio ≤25% and the surface of the wall is bare, clean (or can 
be rendered clean), and reasonably smooth, a self-adhered WSP may be used. 

Prime the wall per the manufacturer’s instructions using a compatible primer. 
Install the WSP from the top of the slab to the top of the wall with all vertical joints overlapped a 
minimum of 6 in. Horizontal seams are not recommended but, if necessary, should be ship-
lapped with a 6-in. overlap. 

                                                 
 
* The saturation ratio in porous materials is defined as the volume of water/total pore volume. In terms of a 
measured volumetric moisture content, it may be calculated from the ratio: volumetric moisture content/material 
porosity. 
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Image Title: Self-Adhered WSP With Vertical Lapped Joints. 
Image Source: ESDP, 2013, Unpublished 
Display Image Filename:  

 
Nonadhered WSP: If the saturation ratio >25%, there is visible evidence of current or past bulk 
water leakage, or the wall surface is unfit for an adhered WSP, a nonadhered WSP must be used.  
 
A small gap will exist between the sheet and the wall that requires a drainage system at the base 
of the WSP. Options for the base drainage system include: 

• A channel at the base of the wall above the slab. The channel must provide a means to 
drain water to a sump or floor drain. 

• Drain tile beneath the slab (requiring perimeter slab removal) with the WSP extended to 
the top of the footing. 

Install the WSP to the top of the wall, avoiding horizontal joints. All vertical joints should be 
overlapped a minimum of 6 in. Adhere the WSP to the wall with mechanical fasteners. 
Seal all fastener penetrations. All vertical joints should be sealed with a compatible, durable, 
vapor resistant adhesive (not caulk). The exposed perimeter of the WSP and the drainage system 
should be vapor sealed from the basement interior. 
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Image Title: Nonadhered WSP With Vertical Lapped Joints. 
Image Source: ESDP, 2013, Unpublished 
Display Image Filename:  

 
Insulation: 
Install the insulation against the face of the WSP so that it does not damage the WSP in any way 
(penetrations of the WSP are prohibited). 
All insulation joints and vapor bypasses must be air sealed. 
 

 
 
Image Title: Rigid XPS Insulation. 
Image Source: ESDP, 2013, Unpublished 
Display Image Filename:  
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Framing: 
If desired, install an open stud frame wall with gypsum wallboard tight to the insulation. 

 

 
 
Image Title: Open Frame Stud Wall and Gypsum Wallboard. 
Image Source: ESDP, 2013, Unpublished 
Display Image Filename:  

 
Ensuring Success 
 
Considerations to include: 

• Has the basement been converted to conditioned living space? Will it be converted in the 
near future? 

• Are there significant moisture problems such as bulk water seepage or penetration? 

• Has exterior drainage been addressed through grade, gutters, surface materials, etc.? 

• Does the wall moisture content test adequately reflect the conditions of the wall by 
testing for a sufficient duration and during a wet time of year? 

• For the nonadhered WSP, does the base wall drainage system adequately handle the 
volume of water expected? 

 
Climate-Specific Factors/Details 
Applies to cold climates (U.S. Department of Energy climate zones 6 and 7). 
 
Architectural CAD Files  
None available 
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Compliance 
Local building codes have specific requirements such as the R-value of insulation, WSPs, fire 
and combustion requirements, radon mitigation requirements, flood prevention requirements, and 
requirements for pest control. Begin by checking with local authorities to ensure that all 
materials and work will comply with local code requirements. 
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