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Executive Summary 

This project demonstrates a prototype energy signal tool for operational whole-building and 
system-level energy use evaluation. The purpose of the tool is to provide a summary of building 
energy use that allows a building operator to quickly distinguish normal and abnormal energy 
use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor 
for energy use that is either substantially different from expected (red and yellow lights) or 
approximately the same as expected (green light). Which light to display for a given energy 
end use is determined by comparing expected to actual energy use. As expected, energy use is 
necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy 
signal tool chooses the light by minimizing the expected cost of displaying the wrong light. 
The expected energy use is represented by a probability distribution. Energy use is modeled 
by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte 
Carlo exploration of the influence of model parameters on energy use. Distributions over model 
parameters are updated over time via Bayes’ theorem. The simulation study was devised to assess 
whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered 
level, which may lead to tradeoffs at the whole-building level that are not detectable without 
submetering. 
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Nomenclature
 

Pa action vector 
aopt optimal action 

A,B,C,D state space model matrices 
C opaque building shell thermal capacitance 

Cc roof thermal capacitance
 
Cc,1 external node roof thermal capacitance
 
Cc,2 internal node roof thermal capacitance
 

Ce exterior wall thermal capacitance 
Ce,1 external node exterior wall thermal capacitance 
Ce,2 internal node exterior wall thermal capacitance 
Cf floor thermal capacitance
 

Cf ,1 external node floor thermal capacitance
 
Cf ,2 internal node floor thermal capacitance
 

Ci internal thermal capacitance
 
Ci,1 node 1 internal thermal capacitance
 
Ci,2 node 2 internal thermal capacitance
 
Cp air thermal capacitance
 
Cz zone thermal capacitance
 

CM zone air capacitance multiplier
 
COP coefficient of performance
 

D measured data
 
DX direct expansion
 

ek transfer function heat gain history coefficient
 
E(x) expected value of x
 

Emeas measured predicted energy consumption
 
Emod model-predicted energy consumption
 

E0,low lower threshold of low deviation
 
E1,low upper threshold of low deviation
 
E0,high lower threshold of high deviation
 
E1,high upper threshold of high deviation
 

EQP equipment
 
G central green light action
 

GM internal gain multiplier
 
h f g heat of vaporization of water
 

HVAC heating, ventilation, and air conditioning
 
i action index
 
j state index
 

K cost matrix (decision analysis) or knowledge (inference) 
LTG lighting 
mair mass of air in the zone 
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m 
M 

ṁin f 
ṁSA 
ML
 
MH
 

NSU
 
n 
PP 
p 

qocc,lat 
Q̇ep
Q̇g,c 

Q̇g,r,c 
Q̇g,r,e 

Q̇g,r+sol,w 
Q̇in f 

Q̇sol,c 
Q̇sol,e 
Q̇sol,w 

Q̇sh 
Q̇zs 

Q̇rom 
r 

R1 
R2 
R3 
Rc 

Rc,1 
Rc,2 
Rc,3 

Re 
Re,1 
Re,2 
Re,3 
R f 

R f ,1 
R f ,2 
R f ,3 

Ri 
Ri,1 
Ri,2 

transfer function heat gain history order 
model output 
infiltration mass flow rate 
supply air mass flow rate 
much lower state 
much higher state 
nighttime setup 
number of past inputs 
state probability vector 
probability 
occupant latent gains 
surrogate or measured sensible zone load 
convective portion of internal gains (lighting, occupants, and equipment) 
radiative fraction of internal gains applied to ceiling surface 
radiative fraction of internal gains applied to vertical wall surface 
radiative portion of internal gains and solar radiation through glazing 
infiltration heat gain 
solar radiation transmitted through opaque ceiling/roof surfaces 
solar radiation transmitted through opaque vertical exterior surfaces 
solar radiation transmitted through glazing 
sensible convective heat gain to zone air 
sensible zone load 
reduced-order model predicted sensible zone load 
number of elements in the input vector u 
combined heat transfer coefficient to opaque shell mass node 
conduction coefficient between mass and internal surface node 
convection/radiation coefficient b/w surface and zone air temperature nodes 
roof thermal resistance 
roof combined external convection and radiation coefficient 
roof conduction resistance 
roof internal combined convection and radiation coefficient 
exterior wall thermal resistance 
combined external convection and radiation coefficient 
exterior wall conduction resistance 
exterior wall internal combined convection and radiation coefficient 
floor thermal resistance 
ground conduction coefficient 
floor conduction resistance 
floor internal combined convection and radiation coefficient 
internal partition thermal resistance 
internal partition combined convection and radiation coefficient 
internal partition conduction resistance 
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Ri,3 internal partition combined convection and radiation coefficient 
Rw glazing thermal resistance
 
RA return air
 
RH upper red light action
 
RL lower red light action
 

ROM reduced-order model
 
RTU rooftop unit
 

S similar state
 
SA supply air
 
SH somewhat higher state
 

SHGC solar heat gain coefficient 
SL somewhat lower state
 

S transfer function input coefficient matrix
 
t time or time index
 

Ta outdoor air temperature 
Tc ceiling node temperature
 

Tc,1 external roof node temperature
 
Tc,2 internal roof node temperature
 

Te exterior wall node temperature
 
Te,1 external exterior wall node temperature
 
Te,2 internal exterior wall node temperature
 
Tf floor node temperature
 

Tf ,1 external floor node temperature
 
Tf ,2 internal floor node temperature
 

Tg ground temperature
 
Ti internal partition temperature
 

Tm opaque building shell thermal temperature
 
Ts (pseudo) internal surface temperature
 
Tz zone air temperature
 
T̄z average zone air temperature over timestep
 
u input variable vector
 

WBE whole building electricity consumption
 
Wz zone air humidity ratio
 

WOA outdoor air air humidity ratio
 
WSA supply air humidity ratio
 

x state variable vector 
ẋ state variable first derivative vector
 

Xhigh definition of high level of deviation threshold
 
Xlow definition of low level of deviation threshold
 

y output variable vector
 
YH upper yellow light action
 
YL lower yellow light action
 
σε measurement noise
 
Δτ time step
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1 Introduction and Motivation
 

Stakeholders of assorted interests are increasingly concerned with the energy performance of 
the built environment. Increasing commitment to energy efficiency, cost-minimal retrofits, and 
renewable energy integration has coincided with the availability of commercial and open-source 
building energy simulation engines. Model-based approaches have become the norm, with en
gineering design accelerating its reliance on software. It is hypothesized that, beyond building 
design applications, model-based engineering of buildings can be extended to encompass a build
ing’s multi-decade life cycle. Of particular interest is the operational energy performance, where 
tradeoffs in comfort and energy consumption can be hidden, and the establishment of "normal 
behavior," as distinguished from "faulted behavior," is nontrivial. Research interests lie in data-
driven models for decision-making processes that are flexible, adaptable, and can evolve with the 
engineered system. 

A balance must be struck between model sophistication and available data. One may have scores 
of utility bill data available but little understanding of an appropriate, physically relevant model. 
Or one might have an exceedingly detailed physical model available but its real-world validity 
is still questionable because calibration has been performed against sparse utility data. Pattern 
recognition or classification can be used to ascertain the validity of a model and the value of data; 
however, building applications are in their infancy. At the building systems level, monitoring-
based heating, ventilation, and air conditioning (HVAC) commissioning (Wang et al., 2013) and 
chiller fault detection (Zhao et al., 2013) have shown promise. 

The interpretation of patterns might be further aided by providing real-time, appliance-level 
power management and occupant feedback for sociotechnical energy conservation (Gulbinas 
et al., 2014). At the whole-building level, participation in the smart grid via approaches such 
as energy storage may entail value-cognizant electricity demand shifting and shaping (Florita 
et al., 2013); the value to the building owner is likely different than that to the electricity grid. 
Data mining and knowledge discovery tasks have the ultimate goal of predictive diagnostics for 
buildings and their systems, and have shown acceptable levels of misclassification in the face of 
the evolving, nonstationary behavior common to buildings (Kiluk, 2014). Sector-wide studies 
include modeling the evolution and refurbishment of the German heating market (for 2050 goals) 
and its impact on carbon emissions (Bauermann et al., 2014). 

The goal of the energy signal tool research is to enable owners and operators of commercial 
buildings to quickly (in a matter of seconds) attain insight into how their buildings’ energy use 
compares against the likely range of expected energy consumption over a given time period 
(days, weeks, months, or years). The output of the energy signal tool is a simple traffic light 
indicator that summarizes energy consumption relative to model-based expectations. To find 
the appropriate value of the indicator, the energy signal tool carries out an analysis of building 
energy use, taking uncertainty and misclassification costs into account. As illustrated in Figure 1, 
the energy signal tool process begins with an operational energy model of a building to provide 
expected energy performance, but recognizes that any model only approximates reality. 
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Previous research explored how gray-box models are obtained and calibrated from noisy data 
(Pavlak et al., 2014), and results are extended here to include HVAC systems. The term opera
tional derives from the desire to consider only a few influential variables within the model and to 
use them in real-time applications while learning from data as they are gathered. We believe that 
simplified operational models are sufficient when coupled to uncertainty analysis and misclassifi
cation costs of relatively simple building types such as big box retail. Work is currently underway 
to develop an open-source tool based on the OpenStudio development effort that would allow the 
decision analysis to be applied to arbitrarily complex multi-zone buildings. 

Figure 1. Energy signal tool flowchart
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A Bayesian probabilistic approach was adopted here to update beliefs about uncertainties in light 
of new data. Over time, the energy signal tool learns improved assumptions for input parameter 
uncertainties by incorporating measured building data into a Bayesian inference process. Unob
served variables are inferred from data and physical modeling. The range of all possible values 
is divided into five exhaustive and mutually exclusive intervals, labeled 1–5 in the figure, which 
represent predicted energy use that is substantially lower, somewhat lower, more or less the same, 
somewhat higher, and substantially higher than observed. The probability that energy use (at 
either the whole-building or the end-use level) falls into a given range of values, is computed as 
the integral of the energy use probability distribution over that interval. User-defined thresholds 
determine the tool’s sensitivity and are driven by the operator’s risk appetite. We then applied 
utility theory to find the most appropriate action given an assumed cost of misclassification of 
each action (i.e., each traffic light color) in each state (i.e., each energy use interval probability). 
The expected cost of misclassification is the cost matrix multiplied by the probability vector. We 
chose the element of the expected cost that has the lowest value. 

To illustrate the operation of the energy signal tool, we give examples of its output in various 
energy use scenarios and review Bayesian updates to model parameters. 
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2 Literature Review
 

Most uncertainties in building energy performance are addressed during the design phase. The 
evolution of a given design involves a sequence of decisions by various domain experts and has 
implications in thermal, visual, and acoustical performance (De Wit and Augenbroe, 2002). 
Competing objectives such as energy consumption, environmental performance, and financial 
costs warrant multi-objective optimization for decision-making (Diakaki et al., 2010, 2013). 
Although engineering tradeoffs lead to numerous optimal and near-optimal solutions; e.g., Pareto 
fronts (Rafiq, 2000), early design choices lead to the building’s ultimate sustainability (Balcomb 
and Curtner, 2000). Confounding the problem is information sharing with conflicting objectives 
in the collaborative design process (Ugwu et al., 2000). However, the primary, uncertain drivers 
in the design process include (1) (micro)climate variables (Sun et al., 2014), which may not be 
appropriately captured by typical meteorological data; (2) occupancy patterns and dynamics, 
which may be hard to capture with traditional diversity factor approaches (Li et al., 2009); and 
(3) consideration for the existing infrastructure where the building will be constructed, which 
may be far from ideal (Takizawa et al., 2000). Judkoff et al. (2008/1983) described the sources 
of difference between simulation and reality. Recent interest lies in sustainable designs with 
renewable energy systems (Piotr et al., 2012), net zero energy buildings (Attia et al., 2012), and 
overall healthy and productive buildings (Choi et al., 2009; Zeiler et al., 2012). 

Energy management or measurement and verification within existing building energy systems 
must face a plethora of uncertainties, including (but not limited to) noisy sensors, point measures 
of distributed phenomena (e.g., air temperature), and unobserved variables. To capture complex, 
nonlinear, and multivariable interactions, mathematical approaches such as Gaussian processes 
(Burkhart et al., 2014; Heo and Zavala, 2012), multi-agent decision-making control strategies 
(Zhao et al., 2010), and Bayesian-calibrated energy models (Heo et al., 2011; Neumann et al., 
2011) have been used. Furthermore, with the proliferation of wireless sensor networks in smart 
buildings (De Farias et al., 2014), interest in assessing performance has extended beyond energy 
into mold growth and remediation (Moon and Augenbroe, 2008), as well as disaster preparedness 
and management (Filippoupolitis and Gelenbe, 2009; Vinh, 2009) for events such as fires (Sanctis 
et al., 2011), earthquakes (Basso et al., 2013), and bioterrorist attacks (Thompson and Bank, 
2010). The literature shows that the need for decision support within operational building settings 
is vast, yet a balance between risk and situational usefulness needs to be attained. 

Many authors have devised frameworks for decision support in various building energy perfor
mance settings. Augenbroe et al. (2009) described a tool with an investment strategy for energy 
performance decision-making for existing buildings with viable refurbishments via optimiza
tion. Kolokotsa et al. (2009) analyzed and categorized buildings for specific actions or groups 
of plans in a methodology for decision support of building energy efficiency and environmental 
quality, including real-time operation and offline decision-making. Das et al. (2010) considered 
building maintainability using an analytical hierarchy process to balance budget requirements 
with performance standards for nine building systems, including input from 37 facilities man
agement experts. Gultekin et al. (2013) developed a decision support system for guidance in 
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"green retrofits" to identify key criteria and feasible alternatives. Mohseni et al. (2013) offered a
 
comprehensive decision-making methodology for condition monitoring to guide building asset 
managers, aiding capital investments and expenditures. In a series of papers, Lee et al. (2013a,b, 
2012) detailed process models for decision support in energy-efficient building projects, and 
campus-scale infrastructures, and summarized a "workbench" for uncertainty quantification, 
respectively. Collectively, i.e., taking this series of three papers together, a decision support 
framework was provided. 
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3 Methodology 

3.1 Modeling Environment 

For prototyping the energy signal tool, the simulation study required the validation of the oper
ational building energy model as detailed in the following sections. In practice, a measurement 
campaign combined with system identification techniques would be required before the energy 
signal tool is implemented. Because of its Bayesian learning approach, the process could be 
automated with a basic knowledge of the model’s structure. 

3.1.1 Retail Building Simulation Models 

The U.S. Department of Energy’s EnergyPlus standalone retail reference building (Crawley et al., 
2001; Deru et al., 2010), post-1980 construction, was used as a relatively simple first application 
for prototyping and testing the energy signal tool. An isometric view of the original five-zone 
retail building is shown in Figure 2, along with a plan view of model zoning shown in Figure 
3. One zone is dedicated to the entry vestibule, two slender zones to the left and right of the 
vestibule have glazing and are assumed to be affected by solar gains, a very large core retail zone 
occupies about 90% of the floor area. Finally, a loading and storage zone covers the back of the 
store. Selected model details are highlighted in Table 1. This five-zone EnergyPlus model was 
used to generate simulated operational data for use in developing the reduced-order building 
energy models described in the following subsections. Surrogate data were preferred here over 
real measurements so that latent variables could be controlled in the experimental study. 

Figure 2. Isometric view of five-zone retail building model
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Figure 3. Zone plan of five-zone retail building model 

Table 1. Selected EnergyPlus Model Details 

Property Value Units 
Vintage 1980 year 
Volume 13984 m3 

Conditioned floor area 2294 m2 

Bldg. avg. U-value (no film, excluding floor) 0.418 W m−2 K−1 

Ext. wall U-value (no film) 0.621 W m−2 K−1 

Roof U-value (no film) 0.314 W m−2 K−1 

Floor U-value (no film) 12.904 W m−2 K−1 

Internal thermal capacitance 450 MJ K−1 

Internal thermal capacitance per floor area 196.2 kJ K−1 m−2 

Infiltration 1.01 ACH 
Glazing fraction 7 % 
Glazing U-factor 3.354 W m−2 K−1 

Glazing solar heat gain coefficient 0.385 fraction 
Lighting power density 32.3 W m−2 

Equipment power density 5.23 W m−2 

Occupant density 7.11 m2/person 
HVAC system CV-DX -
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3.1.2 Inverse Gray-Box Building Model for Operational Applications 

The inverse gray-box modeling approach developed for this work is largely based on methods 
described by Braun and Chaturvedi (Braun and Chaturvedi, 2002; Chaturvedi et al., 2000). For 
the application presented in this work, it is important to be able to predict transient cooling and 
heating requirements for the building using inverse models that are trained using on-site data. 
Inverse models for transient building loads range from purely empirical or "black-box" models 
to purely physical or "white-box" models. Generally, black-box (e.g., neural network) models 
require a significant amount of training data and may not always reflect the actual physical be
havior, whereas white-box (e.g., finite difference) models require specification of many physical 
parameters. Braun and Chaturvedi introduced a hybrid or "gray-box" modeling approach that 
uses a transfer function with parameters that are constrained to satisfy a simple physical rep
resentation for energy flows in the building structure. A robust method was also presented for 
training parameters of the constrained model, wherein (1) initial values of bounds on physical 
parameters are estimated from a rough building description; (2) better estimates are obtained 
using a global direct search algorithm; and (3) optimal parameters are identified using a nonlinear 
regression algorithm. They found that 1 to 2 weeks of data are sufficient to train a model so that it 
can accurately predict transient cooling or heating requirements. 

Previous to the work by (Braun and Chaturvedi, 2002; Chaturvedi et al., 2000), (Judkoff et al., 
2000; Subbarao, 1988a,b; Subbarao et al., 1988, 1985), developed a modeling scheme consisting 
of several lumped parameters with direct correspondence to reality and correspondence to a 
detailed model. The model, used in combination with field data, enabled empirical determination 
of the input parameters, thereby reducing model uncertainty. 

Inverse gray-box models may be based on the approximation of heat transfer mechanisms by 
an analogous electrical lumped resistance-capacitance network. This approximation creates a 
flexible structure that allows the modeler to choose the appropriate level of abstraction. Model 
complexity can range from representing entire systems with a few parameters to modeling each 
heat transfer surface with numerous parameters. Depending on the model structure and complex
ity, parameters can approximate the physical characteristics of the system. Model parameters are 
then identified through a training period with measured data. 

Figure 4 shows the 21-parameter thermal network representations that by Braun and Chaturvedi 
(2002); Chaturvedi et al. (2000) found to work well. Other forms have been considered in this 
work and are described below. A separate 3R2C network is used to represent external wall, ceil
ing, ground, and internal wall heat transfer. Looking at the 3R2C network for exterior walls, for 
example, Re,1 could be thought to represent a combined external convection and radiation co
efficient, Re,2 wall conduction resistance, and Re,3 internal combined convection and radiation 
coefficient to the zone air node. Solar gains from opaque elements are represented by Q̇sol,e ap
plied to the external surface nodes (e.g., Te,1 and Tc,1). Storage is neglected for glazing elements 
that are represented by a single resistance Rw. Solar gains directly entering the zone through glaz
ing are distributed among internal partition nodes Ti,1 and Ti,2 as Q̇sol,w. Internal gains are split 
into convective and radiant fractions. Convective fractions are applied directly to the zone air 
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node Tz as Q̇g,c. Radiant portions are applied to interior surface nodes Te,2 and Tc,2 as Q̇g,r,e and 
Q̇g,r,c, respectively. (Split is proportional by surface area.) 
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1
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Q̇g,r,c

1

Figure 4. Twenty-one-parameter thermal RC network 

When using the inverse gray-box modeling approach described in this work, questions naturally 
arise about the RC network structure that is most appropriate for the modeling task. Selecting 
a very complex model structure results in a difficult parameter estimation task, but too simple a 
model may not appropriately capture the desired dynamics. In this research the reduced-order 
modeling (ROM) environment was developed to allow for model structure flexibility, so this 
question may be investigated. As previously mentioned, various RC network forms have been 
considered in this work ranging from five to 21 parameters. Because the 21-parameter model 
was previously introduced, discussion will begin with the 18-parameter model (see Figure 5). 
This model can be considered a subset of the 21-parameter model with the internal surface heat 
transfer elements simplified to 1R1C. This reduced the parameter estimation procedure three 
parameters and kept most of the structure of the 21-parameter model. The 13-parameter model, 
shown in Figure 6, is also a subset of the 21-parameter model, with a simplified internal surface 
node and no ground heat transfer. The initial thought for this model is that for small footprint 
high-rise buildings the ground heat transfer may not be a significant contributor to the overall 
thermal load. Also a subset of the initial 21-parameter network, the 11-parameter model (Figure 
7) contains the simplified internal surface network, as well as a simplified ground heat transfer 
network and lumped ceiling and exterior wall networks. The eight-parameter model, shown 
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in Figure 8 further simplifies the 11-parameter model by neglecting ground heat transfer. This 
model contains a 3R2C network for exterior surfaces, a glazing resistance, and a simplified 
internal surface/mass network. 
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Figure 6. Thirteen-parameter 
thermal RC network 

Figure 5. Eighteen-parameter
 
thermal RC network
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Figure 7. Eleven-parameter
 
thermal RC network
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Figure 9. Five-parameter thermal RC network 

In this work, we adopt a five-parameter single-zone model, shown in Figure 9; its structure was 
adapted from the thermal RC network used in the CEN-ISO 13790 "Simple Hourly Method" load 
calculations (ISO, 2007). Heat transfer and storage of opaque building shell materials are repre
sented by R1, R2, and C. These elements link the ambient temperature node to a pseudo interior 
surface temperature node Ts, accounting for potential heat storage of the mass materials. Glazing 
heat transfer is represented by a single resistance Rw connecting the ambient temperature node 
to the surface temperature node, because thermal storage of glazing is typically neglected. R3 
represents a lumped convection/radiation coefficient between the surface temperature node and 
the zone air temperature node Tz. The convective portions of internal gains (lighting, occupants, 
and equipment) are applied as a direct heat source to the zone temperature node, shown as Q̇g,c, 
and the radiant fraction along with glazing transmitted solar gains Q̇g,r+sol,w are applied to the 
surface node. 

We decided to adopt the five-parameter thermal model after performing a model complexity 
analysis including all six thermal RC model structures previously presented. Each of the six 
RC networks (five-parameter, eight-parameter, 11-parameter, 13-parameter, 18-parameter, and 
21-parameter) was trained using surrogate data from the five-zone U.S. Department of Energy 
Stand-alone Retail Reference EnergyPlus model. Table 2 summarizes the model performance 
in terms of root mean square error (RMSE) with respect to a validation dataset, and in terms 
of an objective generalized cross-validation score (GCV). GCV is defined in Equation 3.1 and 
essentially weights the mean-squared error based on model complexity (Bracken et al., 2010). 

Obviously, the 11-parameter model is superior to the five-parameter model in terms of RMSE and 
GCV. Visual inspection, however, proved that the model responses in terms of zone temperature 
and sensible zone load are virtually identical; therefore, we chose to adopt the simpler five-
parameter model to reduce sample size in the Monte Carlo analyses. 

N 
∑ (Q̇rom,i − Q̇ep,i)

2 

GCV = i=1 (3.1)
N
-
1 − p �2 

N
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In Equation 3.1, N represents the total number of data points, Q̇rom,i is the model predicted zone 
sensible load, Q̇ep,i is the surrogate zone load, and p is the number of parameters in the model. 
The number of parameters p is equal to the number of RC parameters plus two, to account for the 
internal gain and zone capacitance multipliers that may also be used in model calibration. 

For the retail building the 18-parameter model produced the lowest RMSE; however, the 21
parameter results were inadequate because they should have achieved at least the same score as 
the lower order model. The 11-parameter model produced the lowest GCV, which suggests that 
the additional improvement made by the 18-parameter model was not worth the additional com
plexity. Overall, the RMSE values for the retail building are all relatively low, further suggesting 
that all model forms performed well. Because satisfactory performance was observed from all 
models, the 5-parameter model was adopted to keep the problem dimensionality low. 

Table 2. Model complexity results. 

Retail 

Model p N k RMSE GCV 

5p 7 504 128 6411 42.3 × 106 

8p 10 504 1024 5338 29.7 × 106 

11p 13 504 8192 3087 10.0 × 106 

13p 15 504 32768 5234 29.1 × 106 

18p 20 504 1048576 3076 10.3 × 106 

21p 23 504 8388608 3192* 11.2 × 106 

*Slightly suboptimal. Should have at least reached 3076 
as the 18-parameter retail model. 

A thermal RC network may be represented by a system of linear first-order differential equations 
with constant coefficients by performing an energy balance at each node with a storage element. 
This system can be represented in traditional state-space form as: 

ẋ = Ax + Bu 
y = Cx + Du 

For the five-parameter model adopted in the retail building modeling effort, state and input 
vectors are represented as: 

xT = [Tm Ts]
 

uT = [Tz Ta Q̇g,r+sol,w Q̇g,c]
 

where Tm is the opaque building shell thermal temperature, Ts is the (pseudo) internal sur
face temperature, Tz is the zone temperature set point, Ta is the ambient external temperature, 
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Q̇g,r+sol,w is the sum of the radiative portion of internal gains and the solar radiation transmitted 
through glazing, and Q̇g,c is the total convective internal gains. 

The state space equations are then converted to the following heat transfer function form: 

n m 
˙ ST ˙Qsh,t = ∑ k ut−kΔτ − ∑ ekQsh,t−kΔτ (3.2) 

k=0 k=1 

where S is a matrix containing input coefficients, ek is a vector containing heat gain history 
coefficients, n is the number of past inputs in the calculation, and m is the number of past heat 
gain values in the calculation. 

The transfer function method is an efficient calculation routine as it relates the sensible heat gains 
to the space ( Q̇sh) at time t to the inputs (ut ) of n and heat gains ( Q̇sh,t ) of m previous time steps. 
The input weighting coefficients (ST

k ) and zone load coefficients (ek) are the results of the state 
space to transfer function conversion process described by Seem (Seem, 1987). 

Performing an energy balance on the zone air node in Equation 3.3 provides a basis for sensible 
zone load calculations where Cz is the zone air (or node) capacitance, Tz is the zone air temper
ature node, Q̇sh,t is the zone-sensible heat gain, Q̇in f represents infiltration heat gain, and Q̇zs,t 
is the required sensible zone load. In effect, the RC network model describes the transient heat 
transfer through opaque and transparent envelope components as well as internal gains from 
occupants, lighting, and equipment. This network is used to compute the heat gains from these 
sources to the air node. The complete energy balance is provided in Equation 3.3, including 
infiltration, zone air mass, and HVAC heat addition and extraction rates. 

dTzCz = Q̇sh,t + Q̇zs,t + Q̇in f (3.3)
dt 

If the differential in Equation 3.3 is approximated by: 

dTz Tz,t − Tz,t−Δ≈
dt Δτ 

it can be rearranged to develop an algebraic "inverse" transfer function for computing zone 
temperature predictions from a known zone load shown in Equation 3.4. 

r n m 
∑ S0(l)ut (l)+ ∑ S jut− jΔτ − ∑ e jQ̇sh,t− jΔτ + 2

Δ

C
τ 
z Tz,t−Δτ + ṁin f Cput (2)+ Q̇zs,t 

l=2 j=1 j=1
T̄z = (3.4)

2 Cz 
Δτ − S0(1)+ ṁin f Cp 

where r is the number of inputs in input vector u, here r = 4. An assumption of this formula
tion is that the heat gains are computed using the average value over the time step so the actual 
temperature at a given time step can be determined from: 

Tz,t = 2T̄z,t − Tz,t−Δτ 
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An ideal load calculation scheme for a dual set point with a dead band scenario can be described 
by using the previous equations according to the following procedure: 

for t = simstart : simend do 
Calculate Q̇sh,t using Equation 3.2;
 
Calculate Q̇zs,t to maintain Tz = Tcool,set using Equation 3.3 (assume cooling first);
 
if Q̇zs,t < 0 (heating required to maintain cooling set point) then
 

Set Q̇zs,t = 0. Compute floating temperature using Equation 3.4; 
if Tz < Theat,set then 

Recompute Q̇zs,t to maintain Tz = Theat,set using Equation 3.3 
end 

end
 
end 

To compute zone humidity, the simulation also includes a moisture balance as described in 
Equation 3.5: 

dWZ qocc,lat mair = ṁin f (WOA −WZ)+ ṁSA(WSA −Wz)+ (3.5)
dt h f g 

where mair is the mass of air in the zone, ṁin f is the mass flow rate of air from infiltration, ṁSA 
is the supply air (SA) mass flow rate, qocc,lat is the occupant latent gain, and h f g is the heat of 
vaporization of water. Wz, WOA, and WSA are the humidity ratios of the zone, outdoor air, and SA, 
respectively. 

3.1.3 Envelope Model Calibration 

When using the inverse gray-box thermal modeling approach, it was necessary to determine 
the values of R and C parameters that bring the simple model into the closest agreement with 
the more detailed EnergyPlus model. Sum of squares minimization was used to identify model 
parameters that minimize the RMSE, defined by Equation 3.6, between the ROM predicted 
(Q̇rom) and the surrogate or measured ( Q̇ep) sensible zone load. 

 
N  
∑ (Q̇rom,i − Q̇ep,i)2 

i=1J =
 

(3.6)
N 

In this work, the two-stage optimization presented by Braun and Chaturvedi (2002) was imple
mented that first performs a direct search over the parameter space to identify a starting point for 
local refinement. The direct search is performed on k uniformly random points located within the 
bounds of the parameter space. The local refinement, subject to the same parameter constraints, is 
performed via nonlinear least squares minimization implemented using the MATLAB optimizer 
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lsqnonlin based on trust-region Newton methods. The implementation in this environment 
also allows local refinement to be performed around several good starting points from the direct 
search. For higher complexity models the local optimization can be sensitive to the initial starting 
point. Good results have been found when the 12 best direct search points are given to separately 
executed least squares algorithms to simultaneously explore several attractive regions. Table 3 
presents the calibrated parameters for the five-parameter model used throughout this work. The 
zone air capacitance multiplier CM represents furnishing and other mass associated with the air 
node; the internal gain multiplier scales the assumed internal gains from lights and equipment. 
These were considered the nominal parameter values to which uncertainty was applied later in 
the work. 

Table 3. Calibrated Five-Parameter Network RC Parameters 

Parameter Value Units 

R1 
R2 
R3 
Rw 
C 
CM 

4.989 
0.164 
0.183 
3.000 
279.6 
3.5 

(m2K)/W 
(m2K)/W 
(m2K)/W 
(m2K)/W 
kJ/(m2K) 

-
GM 0.788 -

3.1.4 HVAC System Modeling 

For the standalone retail building a typical constant volume packaged rooftop unit (RTU) was 
modeled. Figure 10 provides an overview of the system configuration. The RTU model features 
a temperature- or enthalpy-based outdoor air economizer, constant-volume fan, single-speed 
direct expansion (DX) cooling coil, and gas heating coil. Component models were based on the 
quasi-steady-state physical formulations used by several mainstream whole-building simulation 
programs (Brandemuehl et al., 1993; DOE, 2010). Component models were programmed such 
that a full air loop can be simulated, allowing system air states to be included in a zone moisture 
balance for computing zone humidity levels. 

Next, we assessed the fidelity of the new HVAC models against the EnergyPlus model. Energy-
Plus outputs were used as inputs to the new HVAC models to compare with the HVAC system 
performance only. Comparing the EnergyPlus with the HVAC model implementations used in 
this work, Figures 11 and 12 show annual SA temperature and humidity ratio, respectively, for 
an annual simulation. In Figure 11, the top panel shows the SA temperature for occupied and 
unoccupied periods. To better visualize the information, weekly comparison plots are offered for 
a winter week and a summer week. Overall performance is very good during summer conditions. 
Mostly slight temperature deviations were noted during winter periods; however, early morning 
startup periods are visible where the ROM shows SA temperature values that are 10 K higher 
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Figure 10. Packaged RTU 

than the values found by EnergyPlus. After further review we discovered that this is an artifact 
of using average hourly rather than subhourly EnergyPlus outputs as validation data, and the fact 
that the ROM was simulated at hourly time steps. 

During unoccupied periods the fan and heating coil cycle ran in unison to meet the required 
heating loads. During this operating mode the RTU model reports the SA temperature as the air 
temperature leaving the heating coil, which is near 50◦Cwhen the coil is operating. In the case 
of the ROM, this temperature is reported for the entire hour even though the RTU does not run 
constantly for the hour. Because the EnergyPlus model was simulated at subhourly time steps, 
time intervals existed where they were not necessary for the heating coil and fan to run, and thus 
much lower supply temperatures were reported for some time steps. Thus, the hourly average SA 
temperature reported by EnergyPlus was 10 K lower. Had detailed (i.e., subhourly) EnergyPlus 
outputs been plotted for validation, several higher spikes near 50◦Cwould have been observed 
along with lower values near 20◦Cduring the hour. 

Figures 13 and 14 highlight the calculated return air (RA) temperature and humidity ratio. Slight 
differences in the RA humidity can be observed in the results of the simplified zone moisture bal
ance. As with SA temperatures, this is likely an artifact of using average hourly rather than sub-
hourly EnergyPlus outputs as validation data. Simple first-order methods were used to implement 
the moisture balance and may also contribute to numerical differences between the two models. 
However, overall the model is a good approximation. Figures 15 and 16 show the predicted RTU 
energy consumption for an annual simulation; good results are observed for electricity and gas 
demand. 
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Figure 15. Validation of pack- Figure 16. Validation of 
aged RTU electricity demand packaged RTU gas demand 

3.1.5 Overall Retail Building Model Validation 

The following results provide a comparison of overall gray-box retail building model perfor
mance compared to its five-zone EnergyPlus counterpart. That is, the RTU HVAC models de
scribed and validated in Section 3.1.4 were coupled to the five-parameter thermal RC network 
that was developed in Section 3.1.2 and calibrated in Section 3.1.3, to evaluate the ROM in its 
entirety. To provide better insight into the model performance under various conditions, we sim
ulated it using typical nighttime setup (NSU) operation during a mild week and a precooling 
heuristic for a hot week. (These are validation time periods; i.e., neither was included in model 
calibration.) Sensible zone load, temperature, and HVAC electricity consumption are in fairly 
good agreement for NSU and the precooling scenarios in Figure 17 through 22. 
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sumption comparison for NSU scenario tion comparison for precooling scenario 

3.2 Uncertainty Quantification 

To illustrate the capabilities of the energy signal tool, we adopted the five-parameter envelope 
(single-zone) ROM; its parameters were identified from hourly surrogate training data derived 
from an EnergyPlus simulation of a five-zone retail building near the Chicago Midway Airport. 
This model has five parameters for the building shell; however, 20 parameters are required for the 
building, its use, and HVAC systems; each parameter is considered to be uncertain. 

3.2.1 Model Input Parameter Uncertainty 

Input parameter distributions are characterized in this work using Gaussian distributions; faults 
are modeled with triangular distributions, although any other probability distribution may be 
selected. In this work, uncertainties are known varieties that are correctly quantified by an energy 
analyst using input distributions of choice; faults are effects of unobserved uncertainties that 
affect the measured building performance but not the modeled predictions. 

The chosen distributions represent the best available knowledge of each uncertain model param
eter. Input parameters are distributed around a mean that equals the nominal parameter value 
found from the parameter estimation process that has resulted in the validated ROM presented 
above. A standard deviation of 10% of the mean is adopted for the uncertain input parameters. 

Adopting the five-parameter ROM, 11 parameters are associated with the building shell and use 
and an additional nine parameters are associated with the HVAC system. The seven nominal 
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building envelope parameters are shown in Table 3, the four use parameters are shown in Table 4, 
and the nine nominal HVAC-related model parameters are shown in Table 5. 

Table 4. Retail Building Use Parameters 

Parameter Value Units 

Lighting power density 32.30 W/m2 

Equipment power density 5.23 W/m2 

Occupant density 7.1 m2/per 
Infiltration flow rate 3.9 m3/s 

Table 5. Retail Building HVAC Parameters
 

Parameter Value Units
 

Supply fan efficiency 57 % 
Maximum supply fan airflow 13.5 m3/s 
Supply fan pressure rise 883 Pa 
DX coil rated capacity 319 kW 
DX coil rated sensible heat ratio 70 % 
DX coil rated coefficient of performance (COP) 3.2 
DX coil rated air mass flow rate 16.0 kg/s 
Gas heating coil-rated capacity 457 kW 
Gas heating coil efficiency 80 % 

To demonstrate the tool, five of the 20 input parameters are considered uncertain: lighting power 
density, equipment power density, occupant density, DX coil-rated COP, and gas heating coil 
efficiency. The remaining 15 input parameters are taken at their nominal values. In reality, most 
of these 20 parameters would be uncertain at different levels of uncertainty. 

3.2.2 Operational and Equipment Faults 

In spite of an energy analyst’s best intentions and a belief that the model accurately reflects the 
building with all uncertainties, undetected faults may affect building performance. In this work, a 
fault differs from a parameter uncertainty in that it is present without the knowledge of the energy 
analyst or building operator; i.e., it is unobserved, yet still affects the measured conditional 
distributions of building energy end use. 

We chose an additional six model parameters to represent such a faulted state. Tehse are modeled 
by triangular distributions, which may be asymmetrical. The outdoor air fraction’s nominal 
value is 24.5%, but may vary from 0% to 100%. The airside economizer high limit temperature 
is nominally 28◦C, but can vary between 12 and 40◦C. Essentially, at very low values of the 
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high limit temperature the economizer is disabled; at high values the economizer operation 
is not overridden. Heating and cooling temperature set points may differ from their assumed 
values with a random offset from -1.5 to +1.5 K. Moreover, the internal gains schedules may be 
expanded by up to 3 hours or contracted by up to 3 hours from the nominal building operation 
schedule. Finally, the schedules for internal gains from lighting and equipment may be shifted 
by up to 4 hours in each direction; i.e., to earlier and later onsets. Because the environment uses 
hourly time steps, the schedule contraction/expansion and shift are rounded to the nearest full 
hour. For the fault-free scenario the six fault parameters are kept at their nominal values. For the 
faulted case, all six fault parameters are randomly perturbed concurrently; i.e., a very wide range 
of fault combinations is explored. 

Table 6. Fault Ranges 

Parameter Nominal Minimum Maximum Units 

Outdoor air fraction 24.5 0 100 % 
Airside economizer high limit 
Cooling temperature set point 
Heating temperature set point 
Internal gains contraction/expansion 
Internal gains shift 

28 
22.8 
21.7 
10 

8:00 a.m. to 6:00 p.m. 

12 
-1.5 
-1.5 
-3 
-4 

40 
+1.5 
+1.5 
+ 3 
+ 4 

◦C 
◦C 
◦C 
h 
h 

Random sampling of 10,000 annual samples for each case is presented here. Because parameter 
combinations randomly drawn from the input distributions described above may lead to infea
sible model configurations for which no solution can be computed, only valid model results are 
retained. The sample rejection was put in place to deal with parameter combinations that cause 
simulation errors such as non-convergence and subsequent crashes. Crashes are most often ob
served when randomly sampling a wide range of HVAC equipment-rated parameters, because 
the random sampling may not always produce physically consistent rated conditions. Thus, we 
expect that the wider the input parameter distributions, the more frequently invalid model results 
are generated. In the fault-free scenario 99.94% of all samples were valid (six of 10,000 failed); 
in the faulted scenario 99.88% of all samples were valid (12 of 10,000 failed). 

The resultant conditional distribution of whole-building, HVAC, lighting (LTG), and plug elec
tricity EQP consumption is shown in Figure 23; Table 7 shows pertinent statistics of the same in 
units of [MWh/a]. In the figure and table, whole-building electricity (WBE) please define and add 
to nomenclature is the sum of HVAC, LTG, and miscellaneous electric loads EQP. For fault-free 
and faulted cases, the table shows the mean, 10th, 50th (median), and 90th percentiles, along with 
the deterministic mean without consideration of any parameter uncertainty. 

It is evident that the uncertainty associated with the five selected parameters only slightly affects 
the mean but strongly affects the variance in the whole-building and submetered end uses. The 
central 80% of the WBE consumption can be found within -7% and +8% from the determinis
tic mean in the fault-free case, and within -24% and +20% from the deterministic mean in the 
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faulted case. The influence of faults is stronger in the HVAC and LTG end uses compared to the 
EQP end use. Given the dominance of HVAC and LTG end uses on whole-building consumption 
WBE, faults strongly affect WBE as well. Above all, faults widen the energy distributions. 
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Figure 23. Distributions of whole-building,
 
HVAC, lighting, and plug electricity consumption
 

Table 7. Summary Statistics of Conditional Distributions of Whole-Building,
 
HVAC, Lighting, and Plug Electricity Consumption in [%] in [MWh/a]
 

Percentile 
End-Use Case Mean 10th 50th 90th 

WBE Deterministic 416.3 
Fault-free 100% 93% 100% 108% 
Faulted 99% 76% 99% 120% 

HVAC deterministic 156.5 
Fault-free 100% 96% 100% 105% 
Faulted 96% 79% 97% 112% 

LTG deterministic 215.8 
Fault-free 100% 87% 100% 113% 
Faulted 100% 71% 99% 130% 

EQP deterministic 44.1 
Fault-free 100% 87% 100% 113% 
Faulted 100% 78% 100% 123% 

23
 



3.3 Decision Analysis 

Comparing monitored data against a probable range of expected energy use is more insightful 
than comparing against a single number, because it allows a building owner to assess the urgency 
of corrective actions that need to be taken. If the measured energy use lies at the edge of the 
probable range of expected values, given all the uncertainties in the model inputs, the owner 
can be very confident that an issue requires attention. In this work, a decision-making tool was 
developed based on the probability distribution of model predictions to determine the expected 
utility of a range of available decisions, suggesting the one that maximizes the expected utility. 
The tool takes on the form of a modified traffic light with red, yellow, and green lights. We 
adopted the perspective that a red light is shown both for high levels of overconsumption and 
high levels of underconsumption, because a building consuming significantly less energy than 
expected may indicate an operational problem as significant as a building consuming too much. 
A yellow signal is similarly used for cases of mild overconsumption and mild underconsumption. 
A green light is reserved for measured building energy consumption that is in line with model 
expectations. 

As a first step, a distribution of the model-predicted energy consumption (called Emod) was 
generated using Monte Carlo simulation as described in Section 3.2. 

Second, the cases falling on the 5th, median, and 95th percentiles of the modeled energy distri
butions were selected to represent low, medium, and high estimates of actual measured energy 
consumption (called Emeas) for fault-free and faulted scenarios. The decision analysis compared 
the distribution of model-predicted energy consumption with Emeas to determine appropriate 
actions; thus, to illustrate the decision tool these three values of Emeas were taken from the sam
pled distributions. When physically implemented, the measured energy consumption would be 
determined directly from building metering data. 

Third, boundaries were computed from the measured energy consumption to define meaningful 
ranges of low and high levels of deviation in energy consumption. Beginning with a low level 
of deviation, let us define E0,low such that it is Xlow percent below Emeas and E1,low such that it is 
Xlow percent above Emeas. 

E0,low = Emeas(1 − Xlow) 

E1,low = Emeas(1 + Xlow) 

Similarly, for a high level of deviation, let’s define E0,high such that it is Xhigh percent below Emeas 
and E1,high such that it is Xhigh percent above Emeas. 

E0,high = Emeas(1 − Xhigh)
 

E1,high = Emeas(1 + Xhigh)
 

Of course, Xlow < Xhigh and we arbitrarily define Xlow to be 5% and Xhigh to be 10%, i.e., a small 
deviation around the metered end use is ±5% and a large deviation ±10%. It would be easy 
to adopt different values for Xlow and Xhigh for each building energy end use depending on its 
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temporal variability. Once we have a conditional probability distribution of expected energy 
consumptions in hand, we can make various kinds of statements. Here, we desire to report that 
the actual energy use is much higher, somewhat higher, similar, somewhat lower, or much lower 
than anticipated. We further want to assign costs to making correct and incorrect statements, and 
report the statement that has lowest expected cost. 

Fourth, the empirical cumulative distribution of expected energy consumption was used to find 
the cumulative probabilities for the anticipated energy consumption to be below E0,high (called 
P1), between E0,high and E0,low (called P2), between E0,low and E1,low (called P3), between E1,low 
and E1,high, (called P4) and above E1,high (called P5). Together, these probabilities form the state 
probability vector PP = (P1,P2,P3,P4,P5)

T as shown in Figure 24. 

Figure 24. Relationship between deviation thresh
olds Xlow and Xhigh and state probability vector PP 

Fifth, we define a cost function K, where cost is a function of state and action with a finite num
ber of states and a finite number of actions. Therefore, this cost function can be represented as a 
matrix. Let us agree that there is one row per action and one column per state K(i, j); i.e., cost of 
action i in state j. Let action i = 1 display the lower red light (RL) on the modified traffic signal, 
action i = 2 the lower yellow (YL) signal, i = 3 a green (G) signal, action i = 4 the upper yellow 
(YH) signal, and finally i = 5 be displaying the upper red (RH) light. Let j = 1 be the state that 
the model predicts a much lower (ML) energy consumption, j = 2 a somewhat lower (SL) energy 
consumption, j = 3 about the same (S), j = 4 a somewhat higher (SH) energy consumption, and 
j = 5 a much higher (MH) energy consumption than the actual building. Action vector Pa has thus 
five elements. 
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Table 8. Decision Analysis State and Action
 

State j: Anticipated Model Energy 

Action i: Much Lower Somewhat Lower Similar Somewhat Higher Much higher 

Lower red 
Lower yellow 
Central green 
Upper yellow 
Upper red 

K(RL,ML) 
K(YL,ML) 
K(G,ML) 

K(YH,ML) 
K(RH,ML) 

K(RL,SL) 
K(YL,SL) 
K(G,SL) 

K(YH,SL) 
K(RH,SL) 

K(RL,S) 
K(YL,S) 
K(G,S) 

K(YH,S) 
K(RH,S) 

K(RL,SH) 
K(YL,SH) 
K(G,SH) 

K(YH,SH) 
K(RH,SH) 

K(RL,MH) 
K(YL,MH) 
K(G,MH) 

K(YH,MH) 
K(RH,MH) 

An advantage of the presented decision analysis tool lies in its ability to individually set the costs 
of actions given certain states. Here, we make reasonable but somewhat arbitrary assumptions on 
the values of the cost matrix elements: Showing an RL light when the model predicts ML energy 
consumption is assumed to have a cost of 4 (strong false negative, lost savings opportunity), 
when the model predicts an SL energy consumption a cost of 3 (false negative), when the model 
predicts a similar energy consumption a cost of 2 (weak false negative), when the model predicts 
an SH energy consumption a cost of 1 (weak false negative), and finally, when the model predicts 
MH energy consumption a cost of 0 (correct identification). Showing an RH light when the 
model predicts ML energy consumption is assumed to have a cost of 0 (correct identification), 
when the model predicts an SL energy consumption a cost of 1 (weak false positive), when the 
model predicts a similar energy consumption a cost of 2 (weak false positive), when the model 
predicts an SH energy consumption a cost of 3 (false positive), and finally, when the model 
predicts MH energy consumption a cost of 4 (strong false positive, unnecessary alarm). Similar 
arguments can be made for the remaining signals of a lower yellow (YL), a green, and an upper 
yellow (YH) light, and we yield the following cost matrix. 

⎡ 
K(RL,ML) K(RL,SL) K(RL,S) K(RL,SH) K(RL,MH) 

⎤ 

K = 

⎢⎢⎢⎢⎣ 

K(Y L,ML) 
K(G,ML) 

K(Y H,ML) 
K(RH,ML) 

K(Y L,SL) 
K(G,SL) 

K(Y H,SL) 
K(RH,SL) 

K(Y L,S) 
K(G,S) 

K(Y H,S) 
K(RH,S) 

K(Y L,SH) 
K(G,SH) 

K(Y H,SH) 
K(RH,SH) 

K(Y L,MH) 
K(G,MH) 

K(Y H,MH) 
K(RH,MH) 

⎥⎥⎥⎥⎦ 

⎡
4 3 2 1 0

⎤ 

= 

⎢⎢⎢⎢⎣ 

3 
2 
1 
0 

2 
1 
0 
1 

1 
0 
1 
2 

0 
1 
2 
3 

1 
2 
3 
4 

⎥⎥⎥⎥⎦ 
(3.7) 

The expected cost vector for each action is found by multiplying the cost matrix K with the 
probability vector PP : 

E(Pa) = K · PP 
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⎡ 
E (RL) 

⎤ ⎡ 
K(RL,ML) K(RL,SL) K(RL,S) K(RL, SH) K(RL,MH) 

⎤⎡
P1
⎤ 

E (Y L) K(Y L,ML) K(Y L,SL) K(Y L,S) K(Y L,SH) K(Y L,MH) P2⎢ ⎥ ⎢ ⎥⎢ ⎥⎢
E (G) 

⎥
= 
⎢

K(G, ML) K(G,SL) K(G,S) K(G,SH) K(G,MH) 
⎥⎢

P3
⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢

E (Y H)
⎥ ⎢

K(Y H,ML) K(Y H, SL) K(Y H,S) K(Y H,SH) K(Y H,MH)
⎥⎢

P4
⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

E (RH) K(RH,ML) K(RH, SL) K(RH,S) K(RH,SH) K(RH,MH) P5 ⎡ 
K(RL,ML)P1 + K(RL,SL)P2 + K(RL,S)P3 + K(RL,SH)P4 + K(RL,MH)P5 

⎤ 

K(Y L,ML)P1 + K(Y L,SL)P2 + K(Y L,S)P3 + K(Y L,SH)P4 + K(Y L, MH)P5⎢ ⎥ 

= K(G,ML)P1 + K(G,SL)P2 + K(G,S)P3 + K(G,SH)P4 + K(G,MH)P5 (3.8)
⎢⎢ ⎥⎥⎢

K(Y H,ML)P1 + K(Y H,SL)P2 + K(Y H, S)P3 + K(Y H,SH)P4 + K(Y H,MH)P5
⎥⎣ ⎦

K(RH,ML)P1 + K(RH,SL)P2 + K(RH, S)P3 + K(RH,SH)P4 + K(RH,MH)P5 

As suggested by utility theory, the last step is to select the best action aopt in the face of uncer
tainty; i.e., activate that light, which minimizes the expected cost. 

aopt = argminE(Pa)
i 

3.4 Bayesian Updating 

Thus far, the distributions of the uncertain model parameters were assumed to be Gaussian with 
a standard deviation equal to a fixed fraction of the parameter mean, here 10%. The choice of 
these distributions was made somewhat arbitrarily, before any operational data was available 
from the actual building performance and termed before data because of its consideration prior to 
observation. We believe that building performance measurements collected over an extended time 
period (i.e., after data) can be used to infer improved input parameter distributions by applying 
probability theory in general and Bayes’ theorem in particular. See Jaynes (Jaynes, 2003) for 
full development of Bayesian probability. A brief explanation is provided below for information 
pertinent to this research. 

High-dimensional integrals associated with problems in computational physics lead to the devel
opment of Markov Chain Monte Carlo algorithms, which can efficiently sample from probability 
distributions by exploiting the Markov property. This has led to the explosion of Bayesian tech
niques, with the Metropolis Algorithm as the breakthrough approach (named as one of the top 
10 algorithms of the 20th century) (Cipra, 2000). A probabilistic perspective not only provides 
insight into the relationship between sets of model parameters, revealing tradeoffs and compen
sating interactions, but also lends itself to a continuous model uncertainty quantification and 
tuning where the posterior distribution of an initial parameter estimate can be used as the prior 
for a subsequent parameter estimation update once new building performance data have been 
collected. 

Dodier used Bayesian (belief) networks for whole-building energy diagnostics (Dodier and Krei
der, 1999; Dodier et al., 1998). Lauret et al. (2006) demonstrated improvements over traditional 
parameter estimation methods by applying Bayes’ theorem to determine better estimates of con
vection coefficients for a radiant barrier roof system model. More recently, Booth et al. (2012) 
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used London housing stock models for hierarchical modeling, with considerations of internal 
heating set points, fraction of space heating, air leakage, heating system COP, window U-value, 
and window-to-wall ratio. 

In this work, the Bayesian inference of uncertain model parameters relies on the extension of a 
previously developed technique (Neumann et al., 2011). It has benefits over traditional methods 
because prior knowledge of the system can be directly incorporated into the estimation task and 
methods for addressing sensor noise are inherent to the Bayesian approach. The inference can 
essentially be thought of as fitting a joint probability distribution to a measured dataset. Specifi
cally, conditional probabilities are related through the product rule to derive Bayes’ theorem and 
allow consideration of "before data" and "after data" states of knowledge. The prior probability 
distribution is updated with any measured data to form the posterior probability distribution, 
which represents the state of knowledge in any inference task. We propose a periodic process 
where model input parameter distributions are updated daily, weekly, monthly, or for a similar 
period of interest. As new measurements become available, data effectively shape the distribution 
of expected building energy use according to the information gleaned from a combination of 
prior knowledge and sensor data; uncertainty is still present but should decrease with additional 
data and understanding of the relationships among variables. 

The probability of parameter set Θ given measured data D and knowledge of the system K can be 
written as posterior probability p(Θ|DK). Bayes’ theorem then allows the conditional probability 
p(Θ|DK) to be computed from p(Θ|K), p(D|ΘK), and p(D|K) as shown in Equation 3.9, 

p(D|ΘK)
p(Θ|DK) = p(Θ|K) (3.9)

p(D|K) 

where p(Θ|K) represents prior knowledge about parameter values, p(D|ΘK) represents the like
lihood of observing the measured dataset D given a particular parameter set Θ and knowledge 
of the system K, and p(D|K) is the probability of observing the dataset. Ignoring the reference 
to system knowledge K, the relation can be written in alternate form where the numerator re
mains the product of likelihood and prior, and the denominator is a normalization factor so that 
posterior probabilities sum to unity. 

p(Θ)p(D|Θ)
p(Θ|D) = (3.10)

∑ p(Θi)p(D|Θi) 
i 

Assuming random Gaussian noise about a measured datum Di, the likelihood of an observation 
can be determined from its location within the normal distribution with standard deviation σε this 
is not in nomenclature, centered at µ equal to the measured datum, 

p(Di|Θ) = √ 
1 

exp
(−(Di − Mi)

2 )
, (3.11)

σε 2π 2σε
2

where Mi is the model output given the parameter set Θ. 
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Further, assuming independent errors, the likelihood is that the entire dataset is simply the prod
uct of the likelihoods of all individual points. The assumption is likely valid for common HVAC 
sensors (e.g., temperature probes), but correlated errors could be handled with a slightly different 
formulation that is indicative of a fault model. Measurement errors are often correlated because 
of, for example, hysteresis error or linearity error. If such correlated errors are of concern, a 
Bayesian (or other probabilistic) method may be used that can accommodate correlated measure
ments. This work nonetheless assumes uncorrelated energy consumption measurements; thus, 
it ignores autocorrelation of errors, which is estimated to be small. For the dynamics and time 
range considered in this problem, model structure is considered more important, with respect to 
data fit, than noise correlation. From this model assumption, we derive the easily computable 
likelihood function given by Equation 3.12. 

The likelihood function is maximized when the exponential term is minimized, which occurs 
as the modeled data approach the measured (or surrogate) data. When uniform priors are used 
with Equation 3.12 in a Bayesian calibration context, the most likely parameters are equivalent 
to those that would be found using a least squares approach, because the exponential term in 
Equation 3.12 is essentially the sum of squared errors (Pavlak et al., 2014). 

 
−1 n 

 
1 2p(D|Θ) = √ n exp ∑ (Di − Mi) (3.12) 

2σ2-
σε 2π ε i=1 

Evaluating Equation 3.12 directly can pose numerical issues, because a small range of σε values 
results in a large range of likelihoods. Double precision computing environments are typically 
capable of evaluating floating point numbers on the order of 10−308 to 10308. This means that 
when using 3 weeks of hourly data (i.e., n = 504), σε must approximately be in the range of 
[0.1,1.5]. Values outside this range will cause the likelihood (and consequently the posterior) to 
evaluate to "Inf," "NaN," or "0," regardless of the time series fit. These numerical issues can be 
alleviated by computing the natural logarithm of the posterior rather than the posterior directly 
(Lauret et al., 2006; Sivia and Skilling, 2006). 

To compute the natural log of the posterior, first, the log of both sides of Equation 3.10 is taken. 
⎛ ⎞ 

p(Θ)p(D|Θ)
ln(p(Θ|D)) = ln (3.13)⎝

∑ p(Θi)p(D|Θi)
⎠ 

i 

The right-hand side of Equation 3.13 can be separated using logarithm product and quotient 
rules. 

  
ln(p(Θ|D)) = ln(p(Θ)) + ln(p(D|Θ)) − ln ∑ p(Θi)p(D|Θi) (3.14) 

i 
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The log-likelihood term of Equation 3.14, 

n1 −1 2ln(p(D|Θ)) = ln √ n exp ∑ (Di − Mi) (3.15) -
σε 2π 2σε

2
i=1 

can be further simplified by applying product and quotient rules as shown in Equations 3.16 and 
3.17, respectively. 

n1 −1 2ln (p(D|Θ)) = ln √ n + ln exp ∑ (Di − Mi) (3.16) -
σε 2π 2σε

2
i=1 

√ n−1 2ln(p(D|Θ)) = ln(1) − ln 
((

σε 2π

)n)
+ ln exp ∑ (Di − Mi) (3.17) 

2σ2
ε i=1 

With ln(1) = 0, and the power rule can be applied to the middle term of the right-hand side. The 
last term of the right-hand side simplifies, because of to logarithmic identity, to produce Equation 
3.18. 

√ n−1
ln(p(D|Θ)) = −n ln

(
σε 2π

)
+ ∑ (Di − Mi)

2 (3.18)
2σ2

ε i=1 

Recombining the simplified log-likelihood of Equation 3.18 with the log-posterior equation of 
Equation 3.14 yields: 

√ n1 2ln(p(Θ|D)) = ln(p(Θ)) − n ln
(

σε 2π

)
− ∑ (Di − Mi) (3.19) 

2σ2
ε i=1 

− ln ∑ p(Θi)p(D|Θi) 
i 

The last term of the right-hand side of Equation 3.19 is ultimately a constant number subtracted 
from each individual ln(p(Θi)p(D|Θi)) value. Because the value of this constant term does not 
impact the shape or relative information of the posterior, it could be thought of as an arbitrary 
constant C. 

√ n1 2ln(p(Θ|D)) = ln(p(Θ)) − n ln
(

σε 2π

)
− ∑ (Di − Mi) +C (3.20)

2σ2
ε i=1 

The constant term can be moved to the left-hand side of the equation, producing Equation 3.21. 

√ n1 2ln(p(Θ|D)) −C = ln(p(Θ)) − n ln
(

σε 2π

)
− ∑ (Di − Mi) (3.21) 

2σ2
ε i=1 
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Because the objective is to avoid numerical underflow or overflow, prescribing
 

C = max
 
√ 

ln(p(Θ)) − n ln
(

σε 2π

) 
− 

1
 n 

∑
 2(Di − Mi) (3.22)

2σε

2
i=1 

shifts all points so that the maximum is 0. A maximum value of 0 in the ln space ensures that all 
values will be mapped to the interval [0,1] when taking the exponential. After taking exponen
tials, the values can be scaled by a constant so that probabilities sum to unity. 

The σε value is a noise term with physical interpretation. Here there are three energy signals 
of interest: HVAC, lighting, and equipment–all electrical terms with the error associated with 
minor fluctuations not incorporated in the physical model. As previously stated, prescribing an 
appropriate σε is necessary to prevent underflow or overflow, which causes the inference task 
to crash from numerical issues. The most appropriate σε value can be found by maximum a 
posteriori (MAP) estimation. MAP is used to obtain a point estimate of σε by placing a prior 
distribution over σε and finding the maximum posterior mode according to the empirical data. 
Because the HVAC, lighting, and equipment energy signals are considered independent in this 
study, the MAP estimate of σε, HVAC, σε, LT G, and σε, EQP were performed separately with 
a uniform prior on each σε set between 0% and 15% of the magnitude of the full, individual 
signals. 

With the appropriate and optimal σε set for each signal, it was then possible to calculate the 
probability of observing various energy signals as a function of the uncertainty parameters. 
Because the signals are considered independent, the joint probability of the building state is a 
product of the individual probabilities: 

p =
∏
pi = pHVAC pLT G pEQP. (3.23)
 
i 

With the joint posterior probability distribution available from the equation above, it was then 
possible to sample from the posterior directly or marginalize over all parameters not of interest 
and form a new prior. That is, the updating process is prior → posterior → prior. The optimal 
updating period is a function of the building energy dynamics and available data. 
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4 Results
 

Results are presented that (1) exemplify the decision support aspect of the tool; and (2) illustrate 
the updating of the uncertain model parameters based on measured data. 

4.1 Decision Support Case Studies 

The decision analysis results presented here are separated into fault-free and faulted scenarios. In 
the fault-free scenario, the high, medium, and low consumption values (surrogates of measured 
building energy consumption) are drawn from the conditional energy consumption distributions 
without faults and the decision analysis is based on the same distribution. In contrast, in the 
faulted scenario, the high, medium, and low consumption values are drawn from the conditional 
energy consumption distributions including faults and the decision analysis is based on the 
distribution excluding faults. 

The results are shown as a matrix of figures. The first row shows the whole-building electricity 
WBE consumption results for the last year, then last month, then last week, followed by the last 
day. The second row shows the HVAC energy consumption results for the time periods, the third 
row shows the lighting LTG results, and lastly, the fourth row shows the EQP results. Each of 
the 16 figure panels reveals a box plot1 Larger and smaller values, respectively, are shown as 
outliers of the expected energy consumption value for the time period of interest, a diamond 
marker superimposed on the box plot to indicate the surrogate actual consumption value Emeas, 
and on the left margin the energy signal tool with the signal chosen for the resultant cumulative 
probabilities PP, cost matrix C, and deviation thresholds Xlow and Xhigh. The central green light 
separates cases of mild (YH) and strong (RH) overconsumption above the green light from the 
cases of of mild (YL) and strong (RL) underconsumption below the green light. The particular 
traffic signal-inspired design is one of many possible designs chosen for illustration here; thus, 
many other valid designs can be conceived. Moreover, the planned field implementation of 
this energy signal tool would likely not show the box plots but only the signals. Finally, if only 
whole-building energy WBE measurements are available, the tool would reveal only the top row 
of WBE versus the four time periods. In contrast, when submetering of HVAC, LTG, and EQP is 
available, the lower three rows would be shown and the top WBE row omitted, because it would 
not offer additional insight. 

1Box plots shown in this report adopt the common notation that the box occupies the interquartile range (IQR) 
from the lower (25th percentile) to the upper (75th percentile). The whiskers extend to the minimum and maximum 
values if these are less than 1.5 times the IQR below the lower or 1.5 times the IQR above the upper quartile. 
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4.1.1 Fault-Free Scenario 

4.1.1.1 High Energy Consumption Case 

Beginning on August 30 with the high energy consumption case at the 95th percentile, a mild 
overconsumption is shown for all time scales for WBE and HVAC; LTG and EQP show strong 
overconsumption for all time scales. 
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Figure 25. Fault-free high consumption case beginning August 30 (mea
sured consumption data are indicated by diamonds in each figure) 

4.1.1.2 Medium Energy Consumption Case 

The medium consumption cases for August and February show consistency between WBE, 
HVAC, and LTG; green lights are shown for all time scales and the EQP consumption is low. 
Because the EQP contribution to the total is small, the WBE signal is not swayed to show a low 
yellow light. 

33
 



350

400

450

500

WBE:Year

M
W
h

35

40

45

50

55

WBE:Month

M
W
h

8

9

10

11

12

WBE:Week

M
W
h

1100

1200

1300

1400

1500

1600

1700

WBE:Day

k
W
h

140

150

160

170

180

HVAC:Year

M
W
h

18

20

22

24

26

28

HVAC:Month

M
W
h

4

4.5

5

5.5

6

HVAC:Week

M
W
h

500

550

600

650

700

750

HVAC:Day

k
W
h

150

200

250

300

LTG:Year

M
W
h

12

14

16

18

20

22

24

LTG:Month

M
W
h

3

3.5

4

4.5

5

5.5

LTG:Week

M
W
h

500

600

700

800

900

LTG:Day

k
W
h

30

35

40

45

50

55

60

EQP:Year

M
W
h

2.5

3

3.5

4

4.5

5

EQP:Month

M
W
h

0.6

0.7

0.8

0.9

1

1.1

EQP:Week

M
W
h

80

100

120

140

160

EQP:Day

k
W
h

Figure 26. Fault-free medium consumption case beginning August 30 
(measured consumption data are indicated by diamonds in each figure) 

4.1.1.3 Low Energy Consumption Case 

In the low consumption case, it is interesting to note that the WBE signal shows a strong un
derconsumption (low red), driven by the corresponding LTG signal, even though HVAC con
sumption is similar to the model expectation (green) and EQP is only a mild underconsumption. 
This case reveals the importance of submetering: Without it, it would not have been possible 
to isolate that LTG causes the warning, HVAC could be ignored, and EQP could be given less 
consideration. 
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Figure 27. Fault-free low consumption case beginning August 30 (mea
sured consumption data are indicated by diamonds in each figure) 

4.1.2 Faulted Scenarios 

In the faulted scenarios, the three cases are drawn from much wider distributions, as shown in 
Figure 23. 

4.1.2.1 High Energy Consumption Case 

The high consumption case for August 30 shows consistency between WBE, HVAC, and LTG. 
RH lights are shown for all time scales and the EQP consumption is close to model expectation. 
However, because the EQP contribution to the total is small, the WBE signal is not swayed to 
show a low green light. 
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Figure 28. Faulted high consumption case beginning August 30 (mea
sured consumption data are indicated by diamonds in each figure) 

4.1.2.2 Medium Energy Consumption Case 

On an annual basis, the medium consumption case leads to the expected green lights. On time 
scales of months and shorter, we can observe HVAC mild and strong underconsumption. 
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Figure 29. Faulted medium consumption case beginning August 30 
(measured consumption data are indicated by diamonds in each figure) 

4.1.2.3 Low Energy Consumption Case 

The low consumption case at the 5th percentile of the faulted distribution shows a consistent RL 
light for all end uses and time scales, independent of season. 
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Figure 30. Faulted low consumption case beginning August 30 (mea
sured consumption data are indicated by diamonds in each figure) 

Finally, we present a sample illustration of how such a decision analysis tool would be deployed 
in the management of distributed commercial buildings. Imagine, a building operator is responsi
ble for the energy-efficient operation of four buildings in a city. Building 1 appears to be healthy; 
all end uses show green signals for all four time scales; building 2 suffers from overconsumption 
problems in the HVAC system that manifest themselves in the last day, week, and month; build
ing 3 exhibits underconsumption in LTG, especially during the last week, which could speak to 
failed light sources or delamping measures not yet accounted for in the model; finally, building 4 
suffers from multiple symptoms: overconsumption in HVAC and EQP, and underconsumption in 
LTG. 
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Figure 31. Example of four buildings managed by a building operator 

4.2 Bayesian Parameter Updating Case Studies 

Results related to the probabilistic inference and updating of the uncertain model parameters 
are presented for September 21, at which point measurements over the past 30 days are used to 
update the five input parameter distributions that are deemed uncertain. The high consumption 
case representing the 95th percentile of the fault-free conditional distributions is used to compute 
the likelihood functions for HVAC, LTG, and EQP for each of the nearly 10,000 parameter 
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combinations. Based on the simplifying assumptions articulated above, we can then find the 
marginal posterior distribution for each selected uncertain parameter. Please note that white 
Gaussian noise with a signal-to-noise ratio of 25 was added to the time series data of the high 
consumption case to simulate common measurement noise affecting building measurements. 
Recent work by the same authors has shown the Bayesian inference approach to be robust with 
respect to a wide range of signal-to-noise ratios and noise colors (Pavlak et al., 2014). 

Table 9 shows the nominal values used to generate the prior input parameter distributions as 
well as the parameter values associated with the low, medium, and high cases investigated in 
this section. The latter represent the ground truth values that will be compared to the posterior 
distributions for each model parameter to determine whether the measured data are used to 
update our belief of the uncertain parameters in a way that is consistent with the ground truth 
data. 

The table shows that several individual parameters appear inconsistent with the case they be
long to. As one example, in the low consumption case, the DX coil-rated COP is 3.1, which is 
below the nominal value. One would expect a higher COP to be associated with the low con
sumption case. However, given the tradeoffs between lighting and equipment power consumption 
and the efficiency of the cooling equipment, the low consumption case, at the 5th percentile of 
10,000 simulation runs, was the result of a less efficient RTU with strongly reduced lighting 
and equipment power densities. The median consumption case resulted from a slightly higher 
lighting power density, lower equipment power density, lower occupant density, and higher RTU 
COP, all relative to the nominal values. The high consumption case, at the 95th percentile of all 
cases, is characterized by higher lighting, equipment, and occupancy densities, and lower HVAC 
equipment efficiency. In this case of higher consumption, the individual parameter values are all 
consistent with the theme of the case. 

Later sections discuss that whatever tradeoffs were at play in leading to the low, medium, and 
high cases, the Bayesian parameter updating process is changing the posterior parameter dis
tributions toward the ground truth values that form the basis of the measured (here surrogate) 
consumption data. To that effect, each of the following figures 32 to 46 shows the sampled prior 
distribution of the uncertain parameter as blue bars, the sampled posterior distribution as red bars, 
and the ground truth value that formed the basis of the surrogate measured data as a green vertical 
line. 

Gas heating efficiency should have no impact on electricity consumption; thus, increased electric
ity consumption should be independent from gas heating coil efficiency. All the figures showing 
gas heating efficiency distributions illustrate that the gas heating efficiency posterior distribution 
is being smeared out; i.e., becoming less informative, because the evidence used in the likelihood 
function does not offer any clear clues about how to shape the posterior. Although we show the 
prior and posterior distributions for gas heating efficiency for all three cases, the independence of 
electricity consumption from gas heating efficiency is seen in a widening posterior in each case. 
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Table 9. Building Model Truth Parameters
 

Parameter Nominal Low Medium High Units 

Lighting power density 32.30 26.99 33.09 36.15 W/m2 

Equipment power density 5.23 4.92 4.96 5.94 W/m2 

Occupant density 0.141 0.149 0.137 0.151 per/m2 

DX coil rated COP 3.20 3.10 3.39 2.94 -
Gas heating coil efficiency 80 74 70 77 % 

4.2.1 High Energy Consumption Case 

Figures 32 through 36 clearly illustrate how the measured data would be harnessed to update 
our belief about the uncertain parameters. Each figure shows the empirical prior distribution as 
blue bars; the empirical posterior distribution is shown as red bars. Where the two distributions 
overlap, a darker, purple hue appears. As stated above, in the high energy consumption case, 
all individual building parameter truth values are consistent with the theme of high energy con
sumption. Lighting and equipment power density posteriors move to higher values relative to 
the nominal values that served as the mean of the normal prior distributions and gravitate toward 
the truth values (green vertical lines) used to generate the surrogate measured data. Similarly, 
occupancy densities in people per square meter are also slightly higher and the DX coil-rated 
COP is significantly lower than the nominal value, gravitating toward the truth values. Thus, the 
Bayesian inference "learns" the truth values that form the basis of the measured data. 

Figure 32. Lighting power density prior
 
(blue) and posterior (red) distributions on
 

September 21 based on past 30 days
 
of high energy consumption. Truth
 

value is shown as a green vertical line.
 

Figure 33. Equipment power density 
prior (blue) and posterior (red) distribu
tions on September 21 based on past 30 
days of high energy consumption. Truth 
value is shown as a green vertical line. 
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Figure 34. Occupant density prior (blue)
 
and posterior (red) distributions on
 

September 21 based on past 30 days
 
of high energy consumption. Truth
 

value is shown as a green vertical line.
 

Figure 35. DX Coil Rated COP prior (blue)
 
and posterior (red) distributions on
 

September 21 based on past 30 days
 
of high energy consumption. Truth
 

value is shown as a green vertical line.
 

Figure 36. Gas heating coil efficiency prior (blue) and posterior 
(red) distributions on September 21 based on past 30 days of high 
energy consumption. Truth value is shown as a green vertical line. 

4.2.2 Medium Energy Consumption Case 

Figures 37 through 41 show how in the medium consumption case, the data reveal the tradeoffs 
that form the basis of the medium consumption case: A slightly higher lighting power density 
is compensated for by a significantly lower equipment power density, because these two have 
the identical effects of adding convective internal gains to the sensible energy balance, paired 
with slightly higher COPs. Occupant density distribution has not materially changed from prior 
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to posterior in the medium consumption case. As in the high consumption case, the posterior 
distributions (except for gas heating efficiency, as explained above) have moved in the direction 
of the truth values that form the foundation of the surrogate measured data. 

Figure 37. Lighting power density prior 
(blue) and posterior (red) distributions 

on September 21 based on past 30 days 
of medium energy consumption. Truth 
value is shown as a green vertical line. 

Figure 38. Equipment power density prior
 
(blue) and posterior (red) distributions
 

on September 21 based on past 30 days
 
of medium energy consumption. Truth
 
value is shown as a green vertical line.
 

Figure 39. Occupant density prior (blue)
 
and posterior (red) distributions on
 

September 21 based on past 30 days
 
of medium energy consumption. Truth
 
value is shown as a green vertical line.
 

Figure 40. DX Coil Rated COP prior (blue)
 
and posterior (red) distributions on
 

September 21 based on past 30 days
 
of medium energy consumption. Truth
 
value is shown as a green vertical line.
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Figure 41. Gas heating coil efficiency prior (blue) and posterior (red)
 
distributions on September 21 based on past 30 days of medium
 

energy consumption. Truth value is shown as a green vertical line.
 

4.2.3 Low Energy Consumption Case 

Figures 42 through 46 again clearly illustrate how the measured data would be harnessed to 
update our belief about the uncertain parameters. In the low consumption case, the data suggest 
significantly lower lighting and equipment power densities, although occupant density seems to 
materially impact the measured data, which lead to a virtually unchanged posterior. 

As shown in Table 9, the truth value of the DX coil-rated COP is slightly lower than the nominal 
value, which is opposite to the theme of lower energy consumption. As explained above, the 
slightly inferior COP is more than compensated for by significantly lower lighting and equipment 
power densities. The posterior COP distribution is close2 to the prior but slightly less than it, 
feels like something is missing here suggesting that the Bayesian inference has "learned" the truth 
value. 

As before, electricity consumption should not and does not have informative power for gas 
heating efficiency, leaving the posterior smeared out relative to the prior. 

2A very heuristic, visual interpretation of "close" was used. We simply encourage the reader to determine in 
which direction the posterior distribution mass has been moving: to the left, to the right, or virtually unchanged 
relative to the prior distribution. In particular, the point of using such loose language is to avoid comparing the 
empirical prior and posterior distributions with a more rigorous metric such as the maximum distance of the two 
cumulative distribution functions as used in the two-sample Kolmogorov-Smirnof test. Future work will look into 
more rigorous metrics to automate the update process. The point we wanted to make in this work, however, is that 
evidence is collected and used to inform updates of the input parameter distributions. 
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Figure 42. Lighting power density prior 
(blue) and posterior (red) distributions 

on September 21 based on past 30 
days of low energy consumption. Truth 
value is shown as a green vertical line. 

Figure 44. Occupant density prior (blue)
 
and posterior (red) distributions on
 

September 21 based on past 30 days
 
of low energy consumption. Truth
 

value is shown as a green vertical line.
 

Figure 43. Equipment power density 
prior (blue) and posterior (red) distribu
tions on September 21 based on past 30 
days of low energy consumption. Truth 
value is shown as a green vertical line. 

Figure 45. DX Coil Rated COP prior 
(blue) and posterior (red) distributions 

on September 21 based on past 30 
days of low energy consumption. Truth 
value is shown as a green vertical line. 
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Figure 46. Gas heating coil efficiency prior (blue) and posterior
 
(red) distributions on September 21 based on past 30 days of low
 

energy consumption. Truth value is shown as a green vertical line.
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5 Summary and Conclusions 

A prototype energy signal tool was demonstrated for operational whole-building and system-level 
energy performance assessment. The purpose of the tool is to give an assessment that a building 
operator or other user can quickly comprehend. Toward this end, the energy signal tool estimates 
energy use for various end uses from a low-order lumped-parameter model, taking into account 
uncertainty (via a Monte Carlo method) in model parameters and inputs. The result of the model
ing phase is a probability distribution over estimated energy use. The range of estimated energy 
use is divided into intervals based on the observed energy use, and the probability that energy use 
is in an interval is computed as the mass of the estimated energy use distribution in that interval. 
An indicator (traffic light color) is chosen to minimize misclassification cost. Model parameter 
distributions are adjusted over time via Bayesian updating. 

The experimental study investigated whole-building energy signal accuracy in the presence of 
uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building 
level that are not detectable without submetering. Submetering of end uses is recommended to 
avoid confounding underconsumption and overconsumption among various end uses. An exam
ple of four building energy signal displays is offered to illustrate energy performance features 
that could be detected by the energy signal tool. The Bayesian inference results presented show 
that observations can be used to periodically update model parameter distributions and that the 
posterior distributions indeed gravitate toward the ground truth parameter values that formed the 
basis of the surrogate measured data. We presented results for a 30-day learning cycle. 

Future improvements in the inference process would eliminate the assumptions of temporal 
independence of subsequent observations of a particular variable and structural independence of 
multiple observed variables. Accounting for covariance among observed variables will help to 
better attribute observations to individual model parameters. 
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