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Abstract

Background: Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield)
information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our
objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop
calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated
by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration
models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus.

Results: We present individual model statistics to demonstrate model performance and validation samples to more
accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin,
and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict
glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed
to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan
for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary
methods used to develop the models.

Conclusion: It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate
release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good
uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly
screening sample populations to identify unusual samples.

Keywords: FT-NIR, NIR spectroscopy, Biomass conversion, Pretreatment, Enzymatic hydrolysis, High-throughput assay,
Compositional analysis, Cellulosic biomass, Herbaceous feedstocks, PLS, Reactivity, Biofuels, Multivariate analysis
Background
High-throughput methods for the determination of
biomass composition and recalcitrance, as it relates to
the production of biofuels and chemicals, are increasingly
valuable for screening large numbers of plants for suitability
as biofuel feedstocks, as well as determining plants that
may require further genetic modification of traits that lead
to higher fuel yields [1,2]. These methods are vital in
reducing the cost of biofuel production by allowing
for a more rapid assessment of cost-effective paths
forward [1]. The technique of relating near-infrared
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(NIR) spectral data to a variety of qualitative and
quantitative parameters using multivariate analysis has
seen a wide variety of applications [3]. In the biofuel
sector, NIR rapid analysis has been used at several
points in the conversion process, and analysts have
developed and published multivariate models to predict
composition of native biomass and washed and dried
dilute acid pretreated biomass, and dilute acid pretreated
biomass slurries [4-6]. NIR spectroscopy has the advantage
of requiring little or no sample preparation, is nonde-
structive, fast, portable, and has process applications.
Nonetheless, it is a secondary method and requires
primary methods, such as bench top compositional
analysis, to build the predictive models for rapid analysis.
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The limits of current bench top methods of biomass
analysis have been thoroughly discussed in the literature
and largely include time and cost as the major limiting
variables [1]. Improvements have been made to increase
the batch size for these methods, such as with 96-well
plates or small vials [7-9]. Nonetheless, these methods are
important as the foundation for more rapid secondary
methods such as NIR paired with multivariate analysis.
Proper execution of these primary methods is also vital
because they dictate the quality and performance of the
model. Building predictive models is not a trivial process,
whether it is in their development or maintenance [10,11].
However, once a model has been established, having
used primary methods for quantification of chemical
composition and recalcitrance, NIR is a fast and non-
destructive method of sample analysis.
Models have been developed for feedstock composition,

pretreatment, and enzymatic digestibility using a single
feedstock type such as miscanthus, switchgrass, or wheat
straw [12-15]. Hames et al. have filed patents to cover a
broad range of methods and individual feedstock types [16].
Single feedstock models, though effective, are limiting and
unresponsive to the needs of disparate geographical regions
cultivating different or multiple energy crops. Second gen-
eration biofuels composed of multi-resource/multispecies
feedstocks, such as biomass in the Conservation Reserve
Program (CRP), will require multispecies broad-based
calibrations for rapid analysis. For example, one particular
publication of CRP research evaluated 34 sites in the
northeastern part of the United States which were
determined to have 12 to 60 different species per site
with an average of 34 species per site [17]. Multispecies
broad-based calibrations can also be useful in situations
where a well developed single feedstock population is not
available. Here the term, “broad-based” is used to refer to
multiple cultivars or varietals within a single species. For
example, samples of the feedstock species rice straw may
be composed of the main varietals Indica and Japonica
and additional varietals within those two groups, such as
the varietals Nipponbare, Moroberekan, and Azucena
within Japonica.
Multispecies broad-based models have been developed

for various compositional constituents; however, there
are none that we are aware of that developed multispecies
models for composition, sugar release, and enzymatic
hydrolysis [18-24]. The forage industry has considered
mixed species samples in grasslands. However, the calibra-
tions were developed to predict forage nutritive parameters
such as crude protein (CP), neutral detergent fiber
(NDF), and acid detergent fiber (ADF) for composition,
and various in vitro organic matter digestibility assays for
carbohydrate convertibility [17,25]. More complex chemical
information is required for appropriate evaluation and
improvement of biomass conversion processes [2,26]. For
biomass feedstock composition, glucan, xylan, and lignin,
as the three most abundant cell wall components, are
important for composition model development [27].
Glucan and xylan provide information on the major
carbohydrates available for bioconversion, while lignin
has been implicated in hindering access to carbohydrates,
often referred to as recalcitrance [28-30]. Ash is often
included because it is relatively easy to measure and
has implications on the pretreatment process.
To shed light on the true accessibility of these major

carbohydrates for bioconversion, models for release of
glucan and xylan through various pretreatment and
enzymatic hydrolysis assays are also important. For
biochemical conversion of lignocellulosic biomass to
fuels, a pretreatment step is regularly used to reduce
recalcitrance, thus making complex structural carbo-
hydrates more readily available for hydrolysis. Enzymatic
hydrolysis is then often employed to reduce polysaccharides
to monosaccharides for further bioconversion. Therefore,
while composition provides the carbohydrate content for a
given feedstock, it does not necessarily reflect the ability to
access these carbohydrates with current pretreatment and
saccharification processes.
The primary object of this work was to build upon the

research presented by Wolfrum et al. in their recent
publication of a laboratory-scale pretreatment and
enzymatic hydrolysis assay, by further developing a more
rapid screening process for the determination of
composition and reactivity (measures of carbohydrate
release and yield) [31]. In their work, a detailed analysis of
assay conditions and differences in reactivity results based
on differences in feedstock type is presented. Here, we
accomplish a more rapid screening method by determining
the feasibility of developing multispecies calibrations
for composition and reactivity using NIR spectroscopy
and partial least squares (PLS) multivariate analysis.
Additionally, this work was used to demonstrate the
ability to develop these models using a high-throughput
form of scanning. Not only does this provide the analyst
with a rapid, cost efficient means to predict composition
and reactivity for a relatively wide variety of feedstocks
simultaneously, but also with the ability to scan large
numbers of samples relatively quickly. These methods
provide powerful tools for the selection of more promising
samples for further research and development.

Results and discussion
A set of 279 samples was assembled from a large popu-
lation of feedstock samples to develop broad-based
multi-feedstock models for composition and reactivity.
This population consisted of the major feedstocks: corn
stover (70), sorghum (69), miscanthus (38), switchgrass
(20), rice straw (16), and a variety of perennial cool season
grasses (58, including wheat straw, wild rye, brome, and



Table 1 Descriptive statistics of composition for the 232
calibration and the 25 validation sample sets

Calibration Validation

N Mean SD Min Max N Mean SD Min Max

Glucan 232 33.2 6.3 21.4 47.8 25 35.0 7.9 23.6 45.6

Xylan 232 17.8 3.4 9.5 28.7 25 17.6 3.0 10.4 21.7

Lignin 232 15.2 3.8 6.7 29.0 25 16.4 4.7 9.5 23.4

Ash 232 6.7 3.6 0.9 16.4 25 6.0 4.1 0.9 16.4

Composition statistics are reported on a dry weight basis. Both calibration and
validation sample sets include six herbaceous feedstock types.
N number of samples, SD standard deviation, Min minimum value, Max
maximum value.
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fescue). These samples were assembled from a wide
variety of independent collections, including samples
from well-developed single feedstock calibrations.
These single feedstock calibrations were, in some
cases, developed over more than a decade and are
comprised of samples from a variety of locations
across the US, a variety of cultivars or varietals within a
specific feedstock, multiple harvest years, and anatomical
fractions. When samples were selected from well-
developed calibrations, they were chosen from the larger
calibration set using principle component analysis
(PCA) scoring. This method was employed to ensure the
selection of an evenly distributed population representa-
tive of the spectral, and therefore compositional, range of
the initial population. Samples were also largely selected
because they were previously analyzed for chemical
composition and in some cases reactivity.
All 279 samples were analyzed for composition; 193 of

those samples were analyzed for sugar release (glucose
and xylose) and sugar yield from a high-throughput
pretreatment and enzymatic hydrolysis assay. One
hundred fifty of the 193 samples were previously reported
by Wolfrum et al. in their manuscript on reactivity [31].
The populations used for the composition and reactivity
models presented in this work are similar but not identical
to each other largely because some samples in the biomass
composition model did not have enough material for
reactivity analysis. Similarly, the sample sets reported here
differ slightly from those in the Wolfrum et al. reactivity
manuscript simply because we have analyzed additional
samples for biomass composition and reactivity as they
became available since the Wolfrum et al. manuscript was
published.
Based on the preceding explanation of the assembled

population, we believed it was suitable to select both
calibration and validation sets for composition and reactiv-
ity from this population. Specific details for the selection of
validation samples from the larger population are further
described in the “Methods” section of this paper. However,
the validation set does straddle the line between being truly
independent for some samples (no relation to the calibra-
tion population) and more of a training set for others (some
relation to the calibration population). Therefore, it is
subsequently referred to as an external validation set.
All 279 samples were scanned using two different NIR

spectrometers and three distinct scanning geometries.
Samples were scanned on a Thermo Antaris II FT-NIR
using the 40-place autosampler (AS) carousel with
disposable glass vials and using the spinning ring cup
(SRC) attachment with reusable cups possessing optical
glass interfaces. Samples were also scanned on a dispersive
NIR instrument, Foss XDS Rapid Content analyzer, which
also uses sampling cups with optical glass interfaces. These
three scanning methods were investigated to compare
slower methods of scanning, which use a larger sample size
and optical glass containers, with a faster method using
containers of lesser quality and sample size. The FT-NIR
autosampler data is reported here in detail because it best
supports a rapid method for feedstock screening. Results
for models built using the other two methods are reported
in Additional files 1, 2, 3, and 4 and will be discussed
briefly for comparison.

Composition model
A set of 232 herbaceous feedstock samples, from the
assembled population of 279, consisting of the six different
herbaceous feedstock species was selected as the calibration
set for composition. Feedstocks included in this model were
corn stover (56), sorghum (64), switchgrass (16), mis-
canthus (30), cool season grasses (52), and rice straw (14).
A set of 25 external validation samples was also selected
and included the six feedstock types: corn stover (4),
sorghum (5), switchgrass (2), miscanthus (8), cool season
grasses (5), and rice straw (1). Several constituents were
available for evaluation; however, glucan, xylan, and lignin,
as the three most abundant cell wall components, were the
focus of model development [27]. Glucan and xylan
content provide information on the major carbohydrates
available for bioconversion and lignin content provides
information on the level of recalcitrance hindering access
to these carbohydrates [28-30]. Ash was also included
because of its negative effect on the bioconversion process.
However, in contrast to the other modeled constituents
which contain organic bonds, ash cannot be directly mea-
sured by NIR which measures vibrations in organic bonds.
Instead, this inorganic material is indirectly measured by its
association or affect on adjacent organic bonds [4].
Descriptive statistics of these constituents for the

calibration and external validation sample sets are reported
in Table 1. The broad range of values for each constituent
can largely be attributed to the range in feedstock species
and cultivar. Histograms for the calibration set are provided
in Figure 1 and show the breadth in the range of values.
They also show that for some constituents, the majority of
the samples fell within a smaller binned range. The blue



Figure 1 Histograms for glucan, xylan, lignin, and ash of the 232 sample calibration set. Composition was measured on a percent dry
weight basis. Frequency refers to the number of samples with a given weight percent for each constituent. The blue lines represent normal
distributions and are intended to highlight any discrepancy between the histogram and normality. The calibration set does not have normal
distribution for any of the constituents, which is not unexpected for a multispecies feedstock population.
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lines overlaid on each histogram represent normal
distributions and are intended to highlight any dis-
crepancy between the histogram and normality. We
made no attempts to correct for bimodal (glucan and
lignin), skewed (xylan), or uniform distributions.
A partial least square two (PLS-2) multivariate calibration

model was developed using Thermo FT-NIR autosampler
spectral data for the prediction of the four constituents.
Spectral data were mathematically preprocessed and the
spectral range reduced prior to model development. The
spectra were also weighted by one over the standard
deviation for each wavenumber (cm−1) in the spectral
range. The chemical constituents were not weighted. The
model was fully cross-validated using the “leave-one-out”
method. In this method, a single sample is removed from
the model, and the model rebuilt without the sample. The
optimal number of factors for the model was determined
by comparing the explained variance in the spectral data
Table 2 Summary statistics for the PLS-2 calibration model fo
with autosampler

Constituent Samples Factors RMSEC

Glucan 232 9 1.7

Xylan 232 9 1.1

Lignin 232 9 1.1

Ash 232 9 1.3

RMSECV values are slightly higher than the uncertainty of the primary analytical me
RMSEC root-mean-square-error of the calibration model, RMSECV root-mean-square-
cross-validated model.
of the calibration, for all four constituents, to the maxima
of the explained variance in the spectral data of the
cross-validation. The root-mean-square-error of the
calibration (RMSEC) and the root-mean-square-error
of the cross-validation (RMSECV) were also used to
determine the appropriate number of factors for the
model. The number of factors which resulted in RMSEC
and RMSECV values that approximated the uncertainties
in the primary methods were considered along with the
explained variance [32]. RMSEC and RMSECV values
were higher than those reported for our primary methods
but are consistent with our experience in working with a
large variety of feedstock types. In this case, nine factors
proved sufficient and possibly conservative, but without
danger of over fitting.
Summary statistics for the model are provided in

Table 2. This summary includes the RMSEC and the
RMSECV. As previously stated, these values approximate
r composition using the Thermo FT-NIR spectrometer

RMSECV R2 Slope Intercept

1.9 0.91 0.91 2.9

1.2 0.87 0.87 2.3

1.2 0.88 0.89 1.7

1.4 0.84 0.84 1.0

thods. Slope and intercept describe the line of best fit for cross-validation.
error of cross-validated model, R2 square of the correlation coefficient of the
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the uncertainties in the primary methods of measurement
[32]. Also included in the table is the square of the correl-
ation coefficient or coefficient of determination of the
cross-validation (R2). This value is generally lower than for
the calibration but gives a better indication of the model’s
performance. Slope and intercept are also provided and
describe the line of best fit for the cross-validated
model. Figure 2 illustrates the good correlations (R2 > 0.8)
between predicted and reference values for glucan, xylan,
and lignin in the calibration model. Ash is not depicted
for ease of visibility of the other constituents but is
reasonably well modeled.
The 25 external validation samples were also predicted

using the calibration model. Summary statistics for the
prediction of these samples are provided in Table 3. This
summary includes the root-mean-square-error of the
prediction (RMSEP), which approximates the uncertainties
in the primary methods of measurement. Also included in
the table are the square of the correlation coefficients of
the external validation (R2). Slope and intercept are also
provided and describe the line of best fit for the external
validation. Figure 3 further illustrates the good correlations
(R2 > 0.8) between predicted and reference values for
glucan, xylan, and lignin from the calibration model.
Again, ash is not depicted for ease of visibility of the
other constituents. The validation set is well predicted
Figure 2 Predicted versus measured values of glucan, xylan, and lign
values obtained from primary methods measured on a percent dry weight
prediction from the PLS-2 calibration equation. Ash is not pictured here for
by the model which further demonstrates the utility
of a multi-feedstock broad-based model for composition.
This model performs better or similarly to the corn stover
model reported by Wolfrum and Sluiter [6] when compar-
ing values of R2 and RMSECV for the cross-validated
model for glucan, xylan, and lignin [6]. The model does
have slightly lower values for R2 and higher values for
RMSECV when compared to the sorghum cross-validated
model reported by Wolfrum et al. [33]. A review of the
literature from 2010 to the present suggests this model is
similar to single feedstock models for glucan, xylan, and
lignin when comparing values of R2 and RMSECV for the
cross-validated model [13,15,20,34-38]. This model’s
performance is also very similar to the multispecies
feedstock models reported by da Silva Perez et al. 2010
and Monono et al. [18,19].

Release and yield models
A set of 164 to 167 feedstock samples, depending on the
constituent modeled, consisting of six to seven different
herbaceous and two woody feedstocks were selected as
the calibration set for the carbohydrate release and yield
models. Feedstocks included in these models were corn
stover, sorghum, switchgrass, miscanthus, a variety of
cool season grasses, sugarcane bagasse, rice straw, pine, and
poplar. A single set of 18 validation samples was selected
in for the 232 calibration samples. The x-axis represents constituent
basis (wt%). The y-axis represents values for composition obtained by
ease of visibility.



Table 3 Summary statistics for external validation of the
PLS-2 calibration model for composition

Constituent Samples Factors RMSEP R2 Slope Intercept

Glucan 25 9 1.8 0.95 0.92 3.1

Xylan 25 9 1.0 0.90 0.97 0.6

Lignin 25 9 1.5 0.91 0.86 2.0

Ash 25 9 1.3 0.89 0.90 0.3

The RMSEP values are slightly higher than the uncertainty of the primary
analytical methods. The slope and intercept describe the line of best fit for
these samples.
RMSEP root-mean-square-error of prediction, R2 square of the correlation
coefficient for the external validation predictions.
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for external validation of the models and included sorghum,
corn stover, miscanthus, cool season grasses, switchgrass,
and poplar feedstock types. The following constituents
were modeled as a combined result of pretreatment and
enzymatic hydrolysis: glucose released (G.Release), xylose
released (X.Release), the sum of glucose and xylose
released (GX.Release), glucan yield (G.Yield), xylan yield
(X.Yield), and the sum of glucan and xylan yields (GX.
Yield). Descriptive statistics of these constituents for the
calibration and external validation sample sets are re-
ported in Table 4. Histograms are also provided to give
Figure 3 Predicted versus measured values of glucan, xylan, and lign
constituent values obtained from primary methods measured on a percent
obtained by prediction form the PLS-2 calibration equation. Ash is not pict
not used to build the calibration model.
an alternative view of the range in values of the six
constituents for the calibration set (Figure 4).
Partial least square one and two (PLS-1 and PLS-2)

multivariate calibration models were developed using
Thermo FT-NIR autosampler spectral data for the
prediction of the six variables. PLS-1 was used to
model GX.Release and GX.Yield, while PLS-2 was
used to model G.Release and X.Release in one model,
and G.Yield and X.Yield in another. Spectral data
were mathematically preprocessed and the spectral
range reduced prior to model development. The spectra
were also weighted or standardized one over the standard
deviation for each wavenumber (cm−1) in the spectral
range. The chemical constituents were weighted in the
PLS-2 models, one over the standard deviation (1/SD).
All models were fully cross-validated using the “leave-one-
out” method as previously described. The optimal num-
ber of factors for each model was also determined as
previously described by comparing the explained
variance in the spectral data of the calibration to the
explained variance in the spectral data of the cross-
validation, for each constituent. The appropriate num-
bers of factors determined for each model are listed
in Table 5.
in for the 25 external validation samples. The x-axis represents
dry weight basis (wt%). The y-axis represents values for composition
ured here for ease of visibility. The external validation samples were



Table 4 Descriptive statistics for carbohydrate release
and yield following pretreatment and enzymatic
hydrolysis for calibration and validation sample sets

Calibration Validation

N Mean SD Min Max N Mean SD Min Max

GX.Release 166 0.38 0.07 0.13 0.56 18 0.39 0.12 0.20 0.66

G.Release 167 0.24 0.06 0.10 0.44 18 0.25 0.09 0.12 0.48

X.Release 167 0.13 0.04 0.03 0.24 18 0.14 0.05 0.07 0.28

GX.Yield 164 0.65 0.14 0.27 0.9 18 0.65 0.21 0.28 0.97

G.Yield 165 0.65 0.18 0.23 1.02 18 0.64 0.25 0.24 1.00

X.Yield 165 0.65 0.10 0.32 0.91 18 0.66 0.13 0.37 0.96

G.Release and X.Release are glucose and xylose release (grams per gram
feedstock). GX.Release is the release of both carbohydrates. G.Yield and X.Yield
are the yields of glucan or xylan, while GX.Yield refers to the sum of the two
carbohydrate yields. Yield data are expressed as the fraction of structural
carbohydrate released into solution.
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Table 5 also includes summary statistics for the four
individual release and yield models. This summary includes
values for RMSEC and RMSECV. The values reported here
are comparable to the uncertainties reported for the bench
top total assay [31]. Also included in the table are R2 values
for the cross-validation. Again, this value is generally lower
than for the calibration but gives a better indication of the
model’s performance. Slope and intercept are also provided
and describe the line of best fit for the cross-validated
Figure 4 Histograms of glucose and xylose release and yield for the s
carbohydrates released following pretreatment and enzymatic hydrolysis. G
pretreatment and enzymatic hydrolysis. Release was measured as the mass
G.Yield refers to the ratio of glucose release (as previously defined and anhyd
X.Yield refers to the ratio of xylose release to the xylan mass fraction in the fe
previously explained. Frequency on the y-axis refers to the number of sample
normal distributions and are intended to highlight any discrepancy between
normal distribution for any of the constituents, which is not unexpected for a
model. Figures 5A and 6B illustrate the correlations
between predicted and reference values for the release and
yield calibration models, respectively. Both the release and
yield models have good correlations (R2 > 0.8, except X.
Yield which is 0.78) and uncertainties that approximate
errors in the total assay. Uncertainties for the yield
models are twice those of the release models but also
include the uncertainties from the wet chemistry.
The 18 external validation samples were predicted on

the previously described calibration models, and summary
statistics for the prediction of these samples are provided
in Table 6. This summary includes RMSEP and R2 for the
external validation set. Slope and intercept are also pro-
vided for validation. Figures 5B and 6B further illustrate
the correlations between predicted and reference values
for release and yield of the validation set, respectively.
Both sets of models, release and yield, predict the 18
external validation samples reasonably well, though both
models tend to under estimate accessible carbohydrates at
high reactivity. Nonetheless, these models are quite valu-
able in their ability to separate samples into low, medium,
and high release and low, medium, and high yield.

Scanning method comparison
Calibration models for composition and reactivity, as
previously described using Thermo FT-NIR autosampler
ix calibration sets. G.Release and X.Release refer to the individual
X.Release refers to the sum of glucose and xylose released following
of carbohydrate release per unit of dry biomass in grams per gram.
ro corrected) to the glucan and sucrose mass fraction in the feedstock.
edstock. GX.Yield refers to the sum of the two carbohydrate yields as
s with a given value for each constituent. The blue lines represent
the histogram and normality. The calibration set does not have a
multispecies feedstock population.



Table 5 Summary statistics for calibration models for carbohydrate release and yield following pretreatment and
enzymatic hydrolysis

Constituent Samples Factors RMSEC RMSECV R2 Slope Intercept

GX.Release 166 9 0.03 0.03 0.78 0.80 0.07

G.Release 167 11 0.02 0.03 0.80 0.81 0.05

X.Release 167 11 0.01 0.01 0.82 0.84 0.02

GX.Yield 164 8 0.05 0.06 0.84 0.85 0.10

G.Yield 165 8 0.06 0.07 0.84 0.85 0.10

X.Yield 165 8 0.05 0.05 0.70 0.73 0.18

GX.Release and GX.Yield are separate PLS-1 models. G.Release and X.Release, and G.Yield and X.Yield are combined PLS-2 calibration models. “Factors:” optimal
number of factors for the model. RMSECV values are slightly higher than the uncertainties of the primary analytical methods. The slope and intercept describe the
line of best fit for cross-validation.
RMSEC root-mean-square-error of the calibration model, RMSECV root-mean-square-error of cross-validated model, R2 square of the correlation coefficient of the
cross-validated model.

Payne and Wolfrum Biotechnology for Biofuels  (2015) 8:43 Page 8 of 14
spectra, were developed using Foss XDS spectra and
Thermo FT-NIR SRC spectra. Calibration models using
SRC and XDS spectra were not individually optimized
based on the specific scanning geometry used. Instead,
SRC and XDS calibration models were developed using
the exact same calibration and validation sample sets,
spectral pretreatments, and PLS modeling parameters as
those previously described for the Thermo autosampler.
The full spectral range (400 to 2,500 nm) was used for
Foss XDS model development. A reduced wavelength range
(1,000 to 2,500 nm) did not provide superior results, as
demonstrated by RMSEC, RMSECV, RMSEP, and R2 values
associated with each of these statistics (data not shown).
Summary statistics for models developed using Foss XDS
spectra can be found in Additional files 1 and 3. Summary
statistics for models developed using Thermo FT-NIR SRC
spectra can be found in Additional files 2 and 4.
The purpose of this particular experiment was to

determine if the higher throughput scanning method
of the Thermo FT-NIR autosampler, which uses dis-
posable glass vials instead of cups with optical glass
interfaces, was inferior to traditional methods of scanning.
These slower manual methods, Foss XDS ring cups and
the Thermo FT-NIR SRC, might provide either more
spectral information due to a larger scanning window or
better spectral information through the reduction of
spectral noise or scatter by use of higher quality optical
glass. Based on this particular comparison, there are no
statistically significant differences (p = 0.05) between PLS-2
models for composition when comparing calibration,
cross-validation, and external validation statistics (R2 and
RMSE). This is also true for the PLS-1 and PLS-2 models
for reactivity. Furthermore, a t-test (p = 0.05) comparing
the external validation predictions, from each of the
scanning methods, to the reference values of the external
validation set, showed no statistically significant differences
for either composition or reactivity (data not shown). This
suggests that the autosampler is not an inferior method of
scanning despite its use of a low quality scanning interface.
It is however important to note that modeling with the
ASRS data did require the use of one or two additional
factors.
Using the Thermo FT-NIR autosampler for NIR rapid

analysis allows for a total analysis time of around 5 to
10 min per sample. The autosampler offers the
advantage of simultaneous sample preparation and
scanning. When using the Thermo FT-NIR SRC or
Foss XDS, this number increases as sample number
increases because simultaneous sample preparation
and scanning is limited. Estimating total analysis time
using NIR rapid analysis can be misleading. While it
takes less than a minute for either instrument or
scanning method to perform a scan, there are other
necessary steps involved in the process. This includes
sample preparation, scanning and prediction as well
as scanning and prediction of reference samples to
ensure instrument stability.
With respect to bench top methods, the total analysis

time per sample is difficult and potentially misleading to
estimate because analyses are preformed on multiple
samples at one time. The size of a sample set can vary,
and different analyses are performed by different
analysts essentially concurrently. Using the National
Renewable Energy Laboratory (NREL) published methods
for compositional analysis and the reactivity assay, for
pretreatment and enzymatic hydrolysis as outlined in
Wolfrum et al. the total time can be estimated at 10
to 12 days per sample set [31,39]. Composition and
reactivity equate to 7 to 10 days per sample set based
on analyst time. However, the enzymatic hydrolysis
requires 7 days for complete hydrolysis of the sub-
strate, which requires little analyst time and is inde-
pendent of batch size. Regardless of the ability to
more accurately estimate the time required for bench top
analyses, the ability to develop multivariate calibrations
using NIR spectroscopy imparts significant savings on
analysis time and therefore, cost once the models have
been developed.



Figure 5 Predicted versus measured values of carbohydrate release following pretreatment and enzymatic hydrolysis. The x-axis
represents release values obtained from primary methods measured in grams per gram. The y-axis represents values for carbohydrates released
in grams per gram as predicted on the PLS-2 calibration equation for glucose and xylose separately (G.Release and X.Release), or as predicted on
the PLS-1 calibration equation for the sum of glucose and xylose released (GX.Release). Predictions are from the calibration models. (A) Predicted
versus measured values of carbohydrate release for the calibration samples. (B) Predicted versus measured values of carbohydrate release for the
18 external validation samples.
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Conclusion
We have demonstrated that it is possible to build effective
broad-based multispecies-feedstock models for composition
and reactivity using near-infrared (NIR) spectroscopy and
partial least squares (PLS) multivariate analysis. These
models represent no less than six feedstock types comprised



Figure 6 Predicted versus measured values of carbohydrate yield following pretreatment and enzymatic hydrolysis. The x-axis
represents yield values obtained from primary methods measured in grams per gram. The y-axis represents values for carbohydrate yield in
grams per gram as predicted on the PLS-2 calibration equation for glucan and xylan separately (G.Yield and X.Yield), or as predicted on the PLS-1
calibration equation for the sum of glucan and xylan yield (GX.Yield). Predictions are from the calibration models. (A) Predicted versus measured
values of carbohydrate yield for the calibration samples. (B) Predicted versus measured values of carbohydrate yield for the 18 external
validation samples.

Payne and Wolfrum Biotechnology for Biofuels  (2015) 8:43 Page 10 of 14
of multiple cultivars, harvest years, locations, and
anatomical fractions. The model for composition is
useful for predicting glucan, xylan, lignin, and ash
with good uncertainties. The release and yield models
have higher uncertainties than the model for composition.
However, these reactivity models are useful for rapidly
screening sample populations to separate samples into
low, medium, and high reactivity based on carbohydrate



Table 6 Summary statistics for external validation of the
PLS-1 and PLS-2 calibration models for carbohydrate
release and yield

Constituent Samples Factors RMSEP R2 Slope Intercept

GX.Release 18 9 0.04 0.94 0.81 0.06

G.Release 18 11 0.03 0.94 0.82 0.04

X.Release 18 11 0.02 0.88 0.71 0.04

GX.Yield 18 8 0.06 0.92 0.85 0.09

G.Yield 18 8 0.09 0.86 0.84 0.09

X.Yield 18 8 0.05 0.86 0.79 0.13

External validation samples were predicted using the following calibration
models: the PLS-1 GX.Release and GX.Yield calibration models, the PLS-2
G.Release and X.Release calibration model, and the PLS-2 G.Yield and X.Yield
calibration model. “Factors:” the optimal number of factors for the model.
The RMSEP values are higher than the uncertainty of the primary
analytical methods.
RMSEP root-mean-square-error of the prediction of the validation samples,
R2 square of the correlation coefficient of the predicted samples.
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release and yield. Therefore, unusual samples can be iden-
tified for further investigation.
The results from this work also demonstrate that it is

possible to build effective models using spectral data
obtain from a higher throughput method of scanning.
Though the use of this method required a low quality
borosilicate vial for scanning, our results have shown that it
does not significantly affect the quality or predictive ability
of the resulting model. These multispecies-feedstock
models for composition and reactivity combined with a
higher throughput form of scanning provide researchers
with a powerful set of tools to rapidly identify more promis-
ing samples for further development as biofuels feedstocks.

Methods
Sample selection
The 279 samples with chemical composition were divided
into samples for calibration and validation. Nine samples
were removed from the population prior to calibration
selection. These samples consisted of feedstocks which
were not well represented in number which included
samples of poplar, pine, and sugarcane bagasse. Once
these samples were eliminated, 245 calibration samples
were selected from the resulting population of 270 samples
using the Kennard-Stone algorithm applied to preprocessed
spectral data across two principal components (PC) [40].
This algorithm selects a pre-determined number of samples
from a population based on spectral variation across a
select number of PC. This left 25 samples that were used as
the external validation set. The 25 samples were well
distributed across the six herbaceous feedstock species.
The overlapping 193 samples with chemical composition

and reactivity data were also divided into samples for cali-
bration and external validation. The same algorithm was
applied to the preprocessed spectral data, which allowed
for the selection of 175 samples across two PCs. This left
18 samples that were used as an external validation set and
were well represented in number across feedstock type.
The number of samples in each of the previously

described calibration sets for composition and reactivity
were further reduced by the removal of sample outliers.
Base models were developed for the full calibration set, and
from these models, outliers were determined. To identify
outliers, we first calculated the difference between the
actual or reference value and the predicted values, and then
normalized these differences by dividing them by the
RMSEC of that constituent for the initial calibration model.
For example, given a single sample and the constituent
glucan, the following equation was used:

GlucanError ¼ abs YG
Ref−Y

G
Pre

� �

RMSECG

where “abs” refers to the absolute value of the difference,
YG

Ref is the reference glucan value, YG
Pre is the glucan

value predicted by the model, and the RMSECG is the
root-mean-square-error of calibration for glucan of the
model. We then compared these normalized values to a
“cut off” value, in this case 1.5 for composition and 2.0
for the release and yield models.
For a single sample, this calculation was preformed for

each constituent modeled (e.g., xylan, lignin, GX.Yield, etc.)
and the result of that calculation compared to the cutoff
values 1.5 or 2.0. In most cases, samples with calculated
values greater than the cutoff values were omitted as
outliers. For the composition model, the results of the error
calculation for glucan, xylan, and lignin were averaged for a
given sample and then compared to 1.5. Ash outliers were
removed separately using the same method.

Composition and reactivity analysis
All samples were previously analyzed for chemical
composition using the publicly available NREL suite
of laboratory analytical procedures: www.nrel.gov/biomass/
analytical_procedures.html [39]. The history and typical
uncertainties related to these methods have been published
elsewhere [32,41]. These methods included a two phase
solvent extraction by water and then ethanol, followed by a
two-stage sulfuric acid hydrolysis. Ash and moisture were
determined gravimetrically and all measured constitu-
ents were corrected to a dry weight basis. Prior to
compositional analysis samples were dried to less than
10% moisture and milled to a 2-mm particle size using a
bench top or Wiley mill. Constituents measured were total
ash (structural and non-structural), protein (structural
and non-structural), sucrose, water extractives, ethanol
extractives, starch, lignin, glucan, xylan, galactan, arabinan,
fructan or mannan, and acetic acid.
A subset of 193 samples were analyzed for glucose

and xylose release and yield in a rapid reactivity assay

http://www.nrel.gov/biomass/analytical_procedures.html
http://www.nrel.gov/biomass/analytical_procedures.html
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developed by Wolfrum et al. 150 of those samples being
previously reported in that manuscript [31]. This assay
included a dilute acid pretreatment (PT) for the release of
carbohydrates by automated solvent extractor (ASE 350,
Dionex, Sunnyvale, CA) followed by enzymatic hydrolysis
(EH) of the remaining solid sample for the release of
additional carbohydrates. The specific methods used from
Wolfrum et al. were those developed for “optimal
pretreatment conditions for screening” which held the
pretreatment conditions constant [31]. The dilute acid
pretreatment used a constant temperature of 130°C for
7 min, 3.0 g sample, and 30 mL of a 1% sulfuric acid solu-
tion. The enzymatic hydrolysis method was similar to the
NREL LAP, “Enzymatic Hydrolysis of Lignocellulosic
Biomass” [39]. Both release and yield measurements
reflect the sum of each carbohydrate obtained after the
combined or total assay (PT plus EH). Glucose and xylose
release, as a result of pretreatment and subsequent enzym-
atic hydrolysis, was defined as the mass of carbohydrate re-
leased per unit of dry biomass. The xylan yield was defined
as the ratio of xylose release to the xylan mass fraction in
the feedstock, with anhydro correction for conversion of
xylose to xylan. The glucan yield was defined as the ratio of
glucose release to the glucose and sucrose mass fraction in
the feedstock, with anhydro correction for conversion of
glucose to glucan. A more detailed description of these
calculations and the assumptions inherent in them is
provided by Wolfrum et al. [31].

NIRS analysis
All samples scanned were milled to a 2-mm particle size
and dried to less than 10% moisture. Each sample was
scanned in duplicate from two separate samplings and
the duplicate spectra averaged. Samples were scanned
on both FT and dispersive NIR instruments: Thermo
Antaris II FT-NIR and Foss XDS Rapid Content
Analyzer. Samples scanned on the FT-NIR were scanned
using two different scanning attachments, the Autosampler
RS and the spinning ring cups. The autosampler uses
commercially available, disposable, borosilicate 2 dram
glass vials, while the spinning ring cups are Thermo
specific, reusable, and constructed from optical glass.
Both scanning geometries averaged 128 scans per
sample using the wave number range of 12,000 to
3,300 with a resolution of 8 cm−1 (3.857 cm−1 data spacing).
Samples scanned on the Foss XDS used either the ring or
quarter sampling cups both constructed with optical glass.
Samples scanned on the Foss averaged 32 scans per sample
using the wavelength range of 400 to 2,500 with 0.5 nm
data spacing.

Statistical analysis
Sample spectra were mathematically preprocessed and the
spectral range reduced prior to model development.
Spectra were first transformed using the standard-normal-
variate (SNV) for scatter correction. Then, a Savitzky-
Golay first derivative, second order polynomial, with
21 point smoothing, was applied to correct baseline
variation. The spectral range was then reduced to 4,000 to
8,998 cm−1 to remove spectral regions corresponding to
increased variations in the signal response but with
no significance for improved modeling of composition
and reactivity.
Partial least squares (PLS) multivariate calibrations were

developed using both Unscrambler X 10.3 (Camo USA)
and R open source software (http://www.r-project.org)
[42]. Using these software packages two different types of
PLS models were developed: PLS-1 and PLS-2. PLS-1
models relate a single dependent variable such as lignin to
a function of the dependent variable, the NIR spectra.
PLS-2 models relate more than one dependent variable
such as lignin, glucan, and xylan to a function of the
dependent variable, the spectra. Therefore, in this case,
PLS-1 models predict a single constituent while PLS-2
models predict multiple constituents. PLS-1 models were
developed for the sum of glucose and xylose released from
pretreatment and enzymatic hydrolysis, and the sum of
glucan and xylan yielded from pretreatment and enzymatic
hydrolysis. PLS-2 models were developed for composition
(glucan, xylan, lignin, and ash) and release of glucose and
xylose as measured independently as well as yield of glucan
and xylan as measured independently.
Additional files

Additional file 1: Summary statistics for the PLS-2 calibration model
for glucan, xylan, lignin, and ash content and external validation
statistics using spectra from the Foss XDS. RMSEC describes the
root-mean-square-error of the calibration model, while the RMSECV
describes the cross-validated model. RMSECV values are higher than the
primary methods of uncertainty, but closely resemble them. R2 is the
square of the correlation coefficient of the cross-validated model. This
value is generally lower than for the calibration model but gives a better
indication of the models performance. The slope and intercept describe the
line of best fit for the cross-validated model. Twenty-five external validation
samples were predicted using the nine factor calibration model for glucan,
xylan, lignin, and ash. RMSEP describes the root-mean-square-error of
prediction. These values are higher than the primary methods of
uncertainty, but closely resemble them. R2 is the square of the correlation
coefficient of the externally validated set. The slope and intercept describe
the line of best fit for the externally validated set.

Additional file 2: Summary statistics for the PLS-2 calibration model
for glucan, xylan, lignin, and ash content and external validation
statistics using spectra from the Thermo FT-NIR SRC. RMSEC
describes the root-mean-square-error of the calibration model, while the
RMSECV describes the cross-validated model. RMSECV values are higher
than the primary methods of uncertainty, but closely resemble them. R2

is the square of the correlation coefficient of the cross-validated model.
This value is generally lower than for the calibration model but gives a
better indication of the models performance. The slope and intercept
describe the line of best fit for the cross-validated model. Twenty-five
external validation samples were predicted using the nine factor calibration
model for glucan, xylan, lignin, and ash. RMSEP describes the
root-mean-square-error of prediction. These values are higher than the

http://www.r-project.org
http://www.biotechnologyforbiofuels.com/content/supplementary/s13068-015-0222-2-s1.csv
http://www.biotechnologyforbiofuels.com/content/supplementary/s13068-015-0222-2-s2.csv
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primary methods of uncertainty, but closely resemble them. R2 is the square
of the correlation coefficient of the externally validated set. The slope and
intercept describe the line of best fit for the externally validated set.

Additional file 3: Summary statistics for calibration models for
carbohydrate release and yield following pretreatment and
enzymatic hydrolysis including external validation statistics using
spectra from the Foss XDS. GX.Release and GX.Yield describe PLS-1
model statistics while G.Release and X.Release were combined for PLS-2
calibration. G.Yield and X.Yield were also combined for PLS-2 calibration.
The “Factors” column lists the number of factors used to build the model.
RMSEC describes the root-mean-square-error of the calibration model,
while the RMSECV describes the cross-validated model. RMSECV values
are higher than the primary methods of uncertainty. This is particularly
true for the yield models because they reflect the accumulated
uncertainty from composition, pretreatment, and enzymatic hydrolysis
measurements. R2 is the square of the correlation coefficient of the
cross-validated model. This value is generally lower than for the
calibration model but gives a better indication of the model’s performance.
The slope and intercept describe the line of best fit for the cross-validated
model. In the external validation table, GX.Release and GX.Yield describe
PLS-1 model statistics while G.Release and X.Release were combined for
PLS-2 calibration. The “Factors” column lists the number of factors used for
prediction. RMSEP describes the root-mean-square-error of the prediction:
the 18 validation samples predicted on the calibration model. These values
are higher than the primary methods of uncertainty. This is particularly true
for the yield models because they reflect the accumulated uncertainty from
composition, pretreatment, and enzymatic hydrolysis measurements. R2 is
the square of the correlation coefficient of the externally validated set. The
slope and intercept describe the line of best fit for the external validation.

Additional file 4: Summary statistics for calibration models for
carbohydrate release and yield following pretreatment and
enzymatic hydrolysis including external validation statistics using
spectra from the Thermo FT-NIR SRC. GX.Release and GX.Yield
describe PLS-1 model statistics, while G.Release and X.Release were
combined for PLS-2 calibration. G.Yield and X.Yield were also combined
for PLS-2 calibration. The “Factors” column lists the number of factors
used to build the model. RMSEC describes the root-mean-square-error of
the calibration model, while the RMSECV describes the cross-validated
model. RMSECV values are higher than the primary methods of uncertainty.
This is particularly true for the yield models because they reflect the
accumulated uncertainty from composition, pretreatment, and enzymatic
hydrolysis measurements. R2 is the square of the correlation coefficient of
the cross-validated model. This value is generally lower than for the
calibration model but gives a better indication of the model’s performance.
The slope and intercept describe the line of best fit for the cross-validated
model. In the external validation table, GX.Release and GX.Yield describe
PLS-1 model statistics while G.Release and X.Release were combined for
PLS-2 calibration. The “Factors” column lists the number of factors used for
prediction. RMSEP describes the root-mean-square-error of the prediction:
the 18 validation samples predicted on the calibration model. These values
are higher than the primary methods of uncertainty. This is particularly true
for the yield models because they reflect the accumulated uncertainty
from composition, pretreatment, and enzymatic hydrolysis. The slope and
intercept describe the line of best fit for the externally validated set.
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