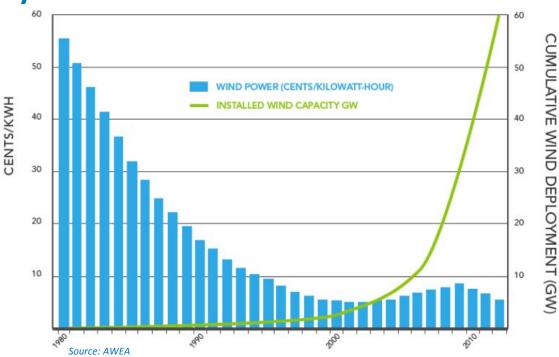


Wind Turbine Drivetrain Testing and Research at the National Renewable Energy Laboratory

Pennsylvania State University University Park, Pennsylvania

September 15, 2014


Wind Power Industry Overview

• Wind energy today...

- Multibillion dollar industry with multinational corporations
- 60+ gigawatts (GW) deployed (~5% of U.S. electricity)
- Land-based wind @ 7-8 ¢/kilowatt-hour (kWh); beating coal
- Leads all renewable technology deployment.

Tremendous opportunity remains...

- Achieve parity with natural gas at 5–6 ¢/kWh
- Establish offshore wind
- Provide research and development (R&D) to achieve 30% wind.

National Wind Technology Center Overview

U.S. Department of Energy National Wind Technology Center

- Turbine testing since 1977
- Leader in development of design and analysis codes
- Pioneers in component testing
- Modern utility-scale turbines

- Unique test facilities:
 - Megawatt-scale turbines and sites
 - Blade testing
 - Dynamometers
 - Controls research turbines

- 130–160 personnel on-site
- Partnerships with industry, CRADAs, and work-for-others
- Leadership roles for international standards
- Offshore wind and marine and hydrokinetic technology development.

Current Test Facilities

• Field

- Field test sites and infrastructure
- DOE 1.5, industry megawatt (MW) turbines, small turbines
- Controls Advanced Research Turbines (CARTs)
- Research-grade inflow meteorological data.

• Drivetrain

- 225-kW, 2.5-MW, and 5-MW dynamometers
- Dynamic torque testing of fully integrated drivetrain systems (gearboxes, generators, PE)
- Model-in-the-loop (to simulate turbulence).
- Non-torque loading to simulate rotor loads

• Blade

- Static testing and resonant fatigue testing to 50 meters (m)
- Accredited (A2LA) fatigue (resonant) and static testing of blades to IEC standards, modal and blade property measurements, profiling
- Innovative blade test methodology R&D
- Massachusetts large blade test facility.

ISO 17025, A2LA-accredited to IEC Standards

 Power performance, power quality, acoustic emissions, structural loads, duration, and structural and fatigue testing.

Multimegawatt Turbines

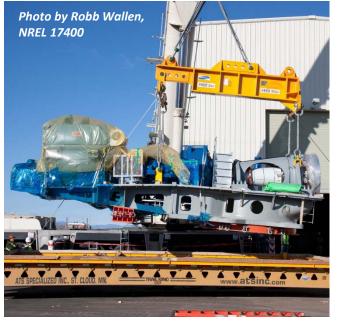
• GE 1.5 MW

- Model: GE 1.5 SLE
- Tower height: 80 m; rotor diameter: 77 m
- DOE-owned; used for research and education
- Turbine commissioned September 2009.

Siemens 2.3 MW

- Model: SWT-2.3-101
- Tower height: 80 m; rotor diameter: 101 m.

Alstom 3 MW


- Model: ECO 110
- Tower height: 90 m; rotor diameter: 110 m.

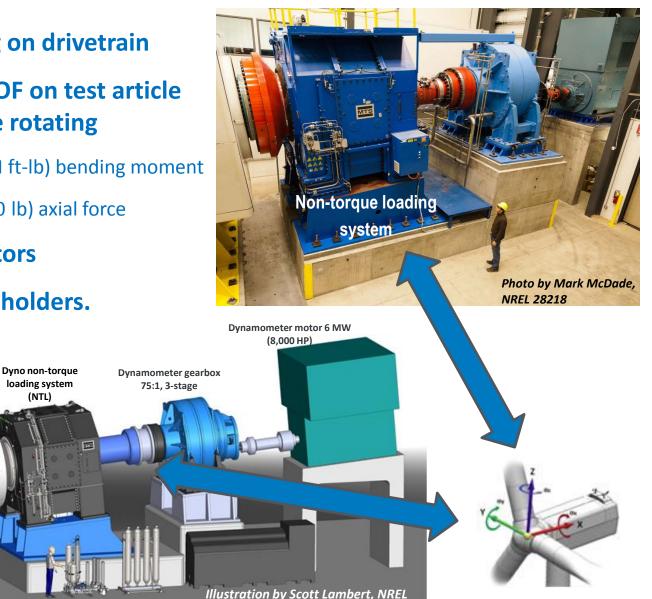
Gamesa 2 MW

- Model G97
- Tower height: 90 m; rotor diameter: 97 m.

Dynamometer Facilities

2.5-MW Dynamometer

- 2.5 MW (low-speed shaft)
- 17–31 rpm (at full power)
- 1.64 MNm (1.2 M ft-lb) max torque
- Non-torque loads in 3
 degrees of freedom (DOF)
- Single 50-ton crane
- 12.2 m x 15.2 m test bay
- 0–6 degree drive table tilt


New 5-MW Dynamometer

- 5.8 MW (low-speed shaft)
- 12–4 rpm (at full power)
- 4.6 MNm (3.4 M ft-lb) max torque
- Non-torque loads in 5 DOF
- Dual 75-ton cranes
- 20 m x 12 m test bay
- 5 degree drive table tilt

Designed to test entire integrated wind turbine drivetrain system

5-MW Dynamometer Non-Torque Loading System (NTL)

- Emulate rotor loading on drivetrain
- Produce forces in 5 DOF on test article low-speed shaft while rotating
 - Up to 7.2 MNm (5.5 M ft-lb) bending moment
 - Up to 3.5 MN (800,000 lb) axial force
- Hydraulic force actuators
- High priority for stakeholders.

Test article

NWTC Controllable Grid Interface (CGI) Facility

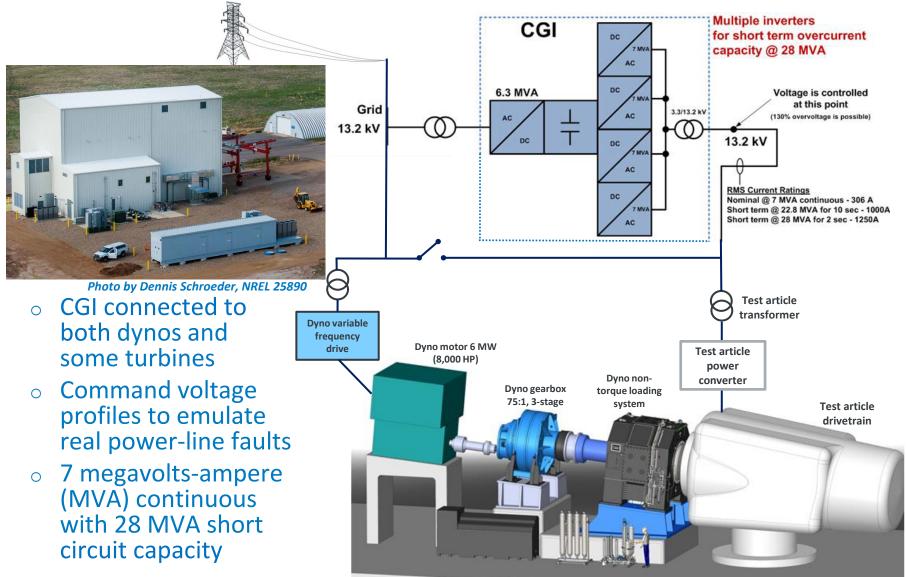
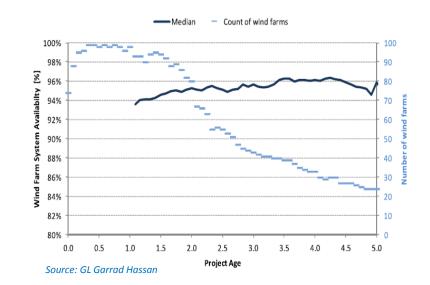
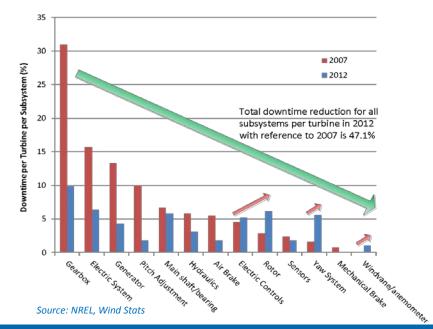


Illustration by Scott Lambert, NREL

Gearbox Reliability Collaborative

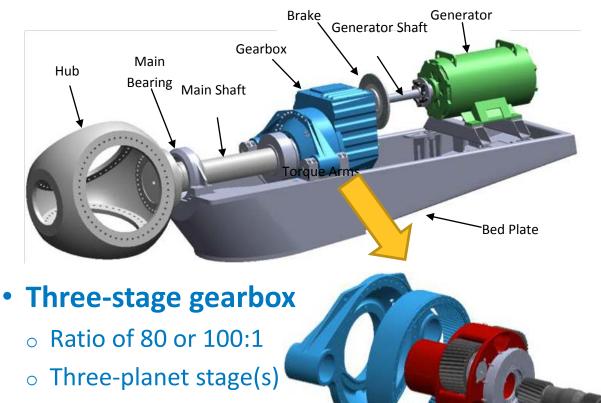
http://www.nrel.gov/wind/grc/index.html


Sponsor: DOE EERE Wind


U.S. DEPARTMENT OF

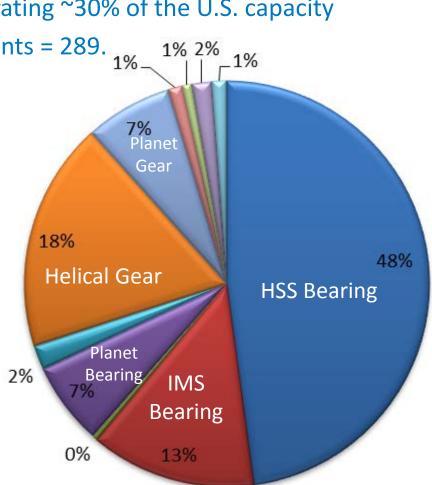
Energy Efficiency & Renewable Energy

Wind Turbine Reliability


- Plant availability often 95%+
 - Adjusted for curtailment
- Subsystem reliability improving, but still an operation and maintenance (O&M) cost driver
 - Decrease in downtime of gearbox, generator, and electrical system
 - Gearboxes continue to be the largest source of downtime
 - Generator, power conversion, and main bearing not far behind
- Need to maintain availability with less cost and effort.

Typical Wind Turbine Drivetrain Architecture

- Modular, three-point mounting system
 - Main bearing and gearbox torque arms


- Floating sun
- Parallel stage(s).

NREL Gearbox Failure Database

- Gearbox failure event data highlighting damaged components, failure modes, and possible root causes
 - Twenty partners involved in operating ~30% of the U.S. capacity
 - Number of gearbox failure incidents = 289. $\frac{1\%}{1\%}$

Observations

- Bearings 70%
- Gears 26%
- Parallel section faults most common
- High-speed and intermediate-speed stage (HSS and IMS) bearing axial cracking most common failure mode.

Gearbox Reliability Collaborative

• Potential causes:

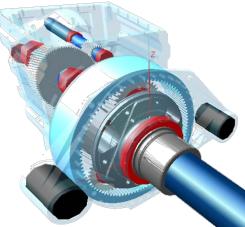
- o Underspecified loads?
- o Inaccurate design tools?
- o Inadequate design practice?
- o Insufficient testing?

Solution process:

- Conduct field and dynamometer testing to measure responses (150+ signals)
- Validate modeling approaches (multibody, finite element analysis)
- Analyze design deficiencies (cylindrical roller bearing [CRB] clearance)
- Redesign gearbox to correct (preloaded tapered roller bearings [TRBs])
- $_{\odot}~$ Propagate lessons learned to industry and standards.

Validate Analyze

e Redesign

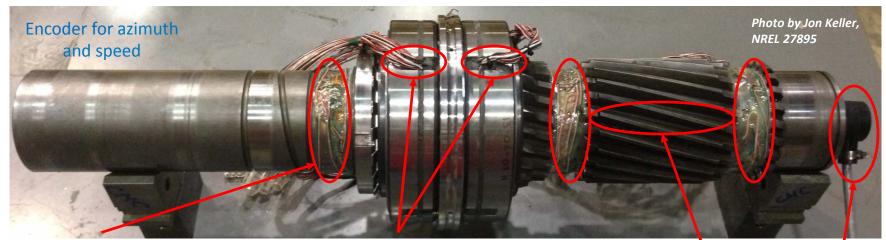

Photo by Jeroen van Dam, NREL 19257

Propagate

NREL dynamometer. Photo by Lee Jay Fingersh, NREL 16913

Analysis

- Load cases
- System loads
- Internal loads


GRC Implementation

- Use smaller 750-kW drivetrain to control costs
- Lack of public models → re-design/re-build commercial gearbox (GB)
 - First iteration (GB 1&2) brings to state of the art circa 2007
 - Second iteration (GB 3) brings to state of the art circa 2012.
- Significant internal and external instrumentation
 - Main shaft, gearbox, coupling, and generator displacements
 - Planetary section loads, motions, and temperatures
 - HSS, pinion, and bearing loads recently added.

NREL dynamometer. Photo by Lee Jay Fingersh, NREL 16913

New HSS Instrumentation

Shaft bending strainBearing strain for relative loading(two axes, three axial locations,) (four axial slots, two Poisson gauges per slot,)
and shaft torsion for torqueand temperature (both bearings)

Pinion tooth toot strain for Gear $K_{h\beta}$

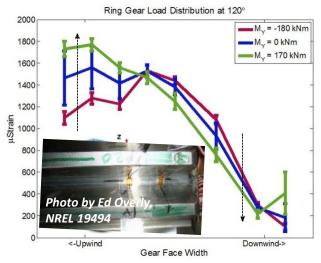
Slip rings

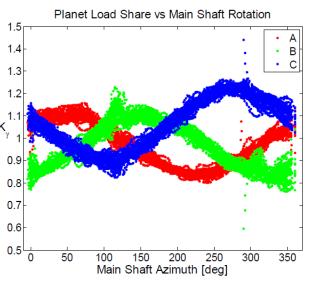
Test Summary

- Phase 1 (300+ hours of data)
 - o GB 1 field load test
 - Oil loss event led to GB damage
- Phase 2 (700+ hours of data)
 - GB 2 dynamometer static load test
 - GB 1 dynamometer test
 - Condition monitoring and GB teardown
- Phase 3 (underway)
 - o GB 2 dyno re-test
 - HSS loads, dynamic field loads, and generator misalignment
 - Improved GB 3 test.

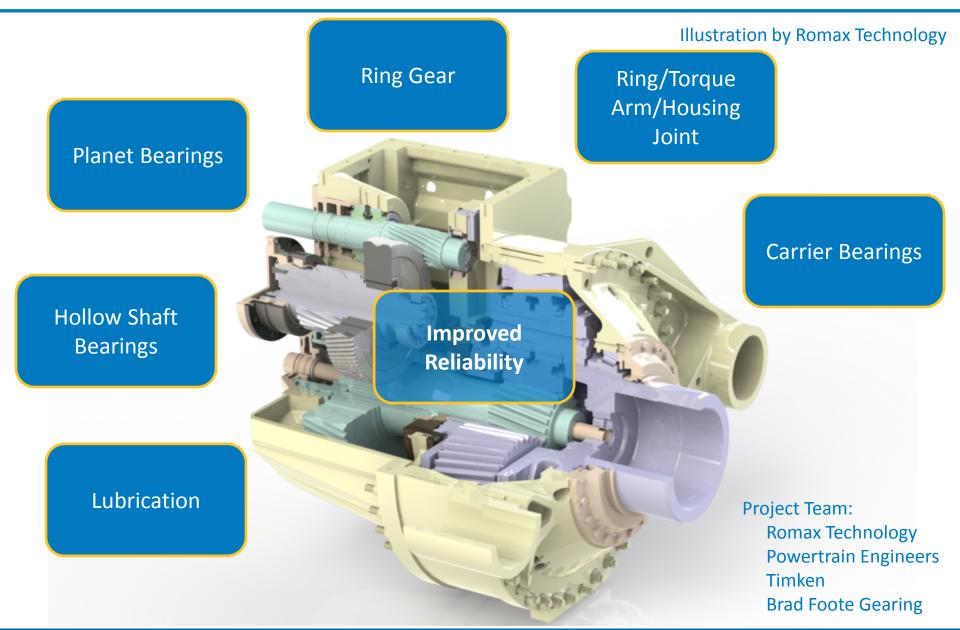
Jan

2013


Jan


2019

Gearbox 1 & 2 Design Deficiencies


Non-Torque and Planetary Loads

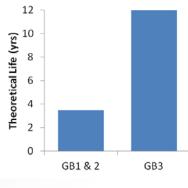
- Significant effect in three-point configuration
- Cause edge loading on planetary gear teeth
 - Misalignment between carrier and ring gear because of operating radial clearance in carrier bearings
- Cause poor load share between planets and upwind and downwind planetary bearings
 - Carrier wind-up and planetary pin deflection with operating radial clearance in the CRBs
 - High bearing skidding risks at low torque.

Gearbox 3 Design Improvements

Gearbox 3 Design Improvements

Nitrided to

improve fatigue life


Integral TRBs; improve load share and eliminate outer race fretting

X-arrangement; tighter inner rings to avoid slip

> Carrier radial feed; three feeds center plate; spray all gears; high-speed TRBs axial feed

Illustration by Romax Technology Robust bolt system to accommodate increased housing load from TRBs

> TRBs used to improve planetary alignments with load variation

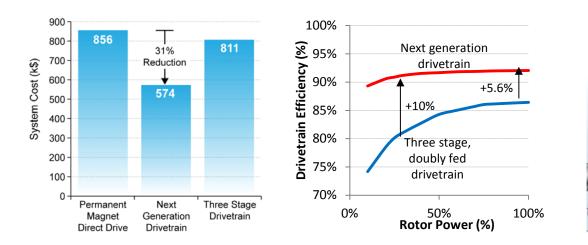
Next Generation Drivetrain

http://apps1.eere.energy.gov/wind/newsletter/detail.cfm/articleId=189

Sponsor: DOE EERE Wind

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


/Project Team: NREL CREE DNV KEMA Romax Technology Vattenfall Windpower

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Next Generation Drivetrain

Project Concept

- Medium-speed, medium-voltage drivetrain incorporating advances in the gearbox and power converter that increase efficiency, reliability, and annual energy production (AEP); and reduce O&M costs and cost of energy (COE) from wind
- Paper study proved the benefits and led to competitively selected funding for testing of key technologies
 - 5% increase in AEP and 13% decrease in COE at 5 MW.

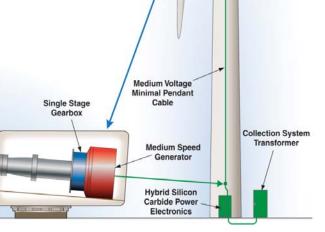


Illustration by Al Hicks, NREL

Technology Development and Testing

Dynamometer

- Gearbox journal bearing and flex pin robustness
 - Ferrium C61 explored on paper
- Converter grid fault control software effectiveness

650-kW drivetrain technology test bed

Power Converter Modules

 Medium voltage, hybrid Si/SiC module performance

Medium voltage Hybrid Si/SiC Module test bed

oto by DNV KEMA

Current Activities and Results

- Gearbox in manufacture at Brad Foote Gearing
- Converter software in development at DNV
 NERC/FERC grid interconnectivity requirements emerging
- Hybrid Si/SiC modules in manufacture at Powerex
 - High-efficiency, medium-voltage power conversion a focus in many industries
- Drivetrain and module testing complete early 2015.

Wrap-Up

Opportunities for Researchers and Students

Researchers

- Research Participant Program (RPP)
 - http://www.nrel.gov/rpp/
 - https://www.youtube.com/watch?v=0TBeFWGU0T8

Students and Educators

- Science Undergraduate Laboratory Internships (SULI)
 - http://www.nrel.gov/education/suli_intern.html
 - https://www.youtube.com/watch?v=tAppljjGXLM
- Graduate Fellowship Program
 - http://www.nrel.gov/education/scgsr.html
- Visiting Faculty Program
 - http://www.nrel.gov/education/teachers.html#fast

Full-time Employment

o http://www.nrel.gov/employment/