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Research Motivation 

• Survey of gearbox designers pointed out the importance 
of spline connections 
o What is a “good” spline design?  How do I design it? 

• How can the Gearbox Reliability Collaborative (GRC) 
illuminate this subject? 
o Damage to sun spline was evident 

from gearbox (GB) #1 tests believed to be 
mainly due to lubrication loss, but… 

o Poor load sharing & high frequency 
sun motion noted in GB #2 tests. 

• Fill gaps in standards by 
developing a new spline 
rating tool called 
“Gear SCouP” 
o Released and publicly available 

Photo by Robert Errichello, GEARTECH, NREL 19852  

Photo by Robert Errichello, GEARTECH, NREL 19853  
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GRC Gearbox and Sun Spline  

Sun 
Sun Spline 

Sun spline design affects gearbox reliability 

Sun Spline 

• Connects planetary and parallel stages 
• Articulated design allows the sun to float 

between the planets. 
o Equalizes load sharing among planets 
o Improves gearbox reliability. 

Sun Gear 

Carrier 
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Sun Gear Motion Instrumentation 

Sun gear proximity sensor (one 
of two) mounted on the carrier 

Photo by Edward Overly, NREL 26666 

Side View End View 

Illustration by McNiff Light Industry 

• Sun motion only 
• Extremely difficult to make any 

measurement on the spline itself 

to sense radial 
motion of sun 
relative to carrier 

Sun gear 



Analytic Spline Rating Model 
NREL/TP-5000-60637 
www.nrel.gov/docs/fy14osti/60637.pdf 
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Model Assumptions 

• Hub and sleeve shafts are considered rigid 
• Only angular misalignment is considered 
• Only torsional loading is considered 
• Tooth contact occurs only on the drive side 
• Tooth crowning leads to constant base pitch 

spacing in all planes 
• The bending and contact stiffnesses are derived 

at a specified torque 
• The spline teeth are equally spaced 

circumferentially 

Reasonable for  
wind 

applications 

Future work to 
include tooth 
spacing error 

Investigation of 
various tooth 

contact models 
underway 
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Analytical Model: Jam Angle 

• Jam angle is an important design parameter 
o Spline misalignment shall not exceed jam angle 

• Jam angle is defined by its geometry 
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Tooth Contact Models 

Analytical 2D FE 3D FE: 
Rigid Shaft 

3D FE: 
3D FE Shaft 

Torsional stiffness, 
Nm/rad 13.4 ×106 8.62×106 13.8×106 12.5×106 

1 2
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Single tooth stiffness 

Investigation on the effects of various tooth contact models is underway 

• Single tooth torsional stiffness is based on Buckingham’s 
experimental-based formula 
 
 

• 2D FE and 3D FE use different tooth contact models 
o 2D FE: conformal contact & FE based bending stiffness 
 Local contact not considered 

o 3D FE: line or conformal contact and computational surface 
integral of Green’s function. 
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Tooth Load Distribution and Global Stiffness 

• Load on individual tooth is distributed into NS slices 

 
 

• Contact tooth length on each tooth varies 
 
 
 
 

• Global stiffness 
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Analytical Model: Strength Calculation 

Hertzian contact stress 
 
 
 
 
Bending stress 
 
 
 
 
Shear stress (pitch line) 
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Fatigue and yield strength 
• Assumed surface-initiated fatigue 
• Modified Goodman's fatigue 

failure criterion 
• Used effective distortion energy 

stress for fatigue criteria 
• Used the maximum shear theory  
 for yield criteria 
 
• Through hardened, carburized, 

nitrided, and induction hardening 
to heat treatment considered 

 

 

Safety factors 

GEAR SCouP calculates safety factors 
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Flow Chart 

• Misalignment is an input 

→ 

• Various heat treatment 
approaches considered 

→ 

• Fatigue based on Goodman’s 
failure criterion. 

→ 
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Results—Tooth Load Distribution 

• Analytical model tooth stiffness based on Buckingham’s empirical model 
• Two-dimensional (2D)  and three-dimensional (3D)  finite element (FE) use different contact 

models. Analytical 2D FE 3D FE 
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Results—Effects of Misalignment 
• Code-code comparison among various models 
• Significant difference observed at large misalignment 
• Experimental validation at the National Wind Technology 

Center’s NWTC 5-MW dynamometer test facility. 

Photo by Mark McDade, NREL 28218 

NREL 5-MW Dyno 
Spline Coupling 
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Results—Spline Stiffness 

Dynamic models 
1. SIMPACK 
2. SAMCEF 
3. Lumped-parameter. 

Spline stiffness is an important input for multibody models. 

• Excellent agreement between SCouP and 3D FE 
o SCouP calculation can be used as input for multibody models. 

• Stiffness decreases with tooth modification & increases with 
torque. 
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Results—Safety Factor 
GRC test: spline misalignment 

GRC field torque spectrum 

• Direct measurement on spline is extremely difficult 
• When combined with GEAR SCouP or FE models, the 

sun orbit measurement facilitates the best available 
evaluation of the spline design. 
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Conclusions 

• Analytical model was developed for evaluating sun spline design 
o Results compare favorably with FE analyses, simulation time orders of magnitude less 
o Yields insights into spline design and resulting loads and stresses 
o Can be a real-time condition monitoring tool 
o Can be integrated with multibody dynamics models 

• Major findings through sensitivity analysis include: 
o When spline misaligned 
 Number of teeth in contact decreases and the maximum load increases sharply  

 Contact area deviates from tooth center and moves toward tooth ends 

 In the extreme, spline teeth are edge loaded and are at risk of failure 

o Torque affects spline load share, maximum tooth load, and safety factors  
 Evaluate the spline design within the entire torque spectrum 

• Upgrade of tooth contact model is ongoing 
o Conformal and nonconformal contact 

• Future development will account for geometric spacing error, fretting, and 
life calculation. 
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Contributions to AGMA 6123 

• Semiempirical assumptions are made regarding number of 
teeth in contact, spline length, and load distribution factor 
o Gear SCouP calculates these parameters and their effects on 

safety factors 
• Section 10.4.3 oversimplifies the load distribution factor 
o GEAR SCouP calculates effects of misalignment and crowning. 

• Section 10.4.4.3 states “teeth should be crowned to avoid high 
end loading…” but gives no method 
o Gear SCouP is suitable for performing an optimization study. 

• Section 10.4.8.2 suggests designing “couplings…with adequate 
…clearance so that they will not jam” but gives no method 
o This study derives the jam angle and can reduce the number 

of design iterations required to determine the spline 
geometry. 



Gear SCouP and Demonstration 
https://pfs.nrel.gov 
Username: grc_public 
Password:  GRC_ALL 

      Email: yi.guo@nrel.gov 
      Phone: 303-384-7187 

https://pfs.nrel.gov/
mailto:yi.guo@nrel.gov
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