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Executive Summary 

Building science research supports installing exterior (soil side) foundation insulation as the 
optimal method to enhance the hygrothermal performance of new homes. With exterior 
foundation insulation, water management strategies are maximized while insulating the basement 
space and ensuring a more even temperature at the foundation wall. Controlling for bulk water, 
vapor, and wall temperature differential reduces the risk of rot and mold formation to insulation 
and building materials, thereby improving opportunities for structural integrity, indoor air 
quality, comfort, and energy efficiency.  

However, such an approach can be very costly and disruptive when applied to an existing home, 
requiring deep excavation around the entire house. In addition, removed soil must be stockpiled 
close to the excavation, increasing the size of the project area and attendant landscape impact. A 
uniform and continuous exterior excavation around the perimeters of existing homes is further 
complicated by barriers and constructed elements. These include items such as attached garages, 
porches, decks, cantilevered floors, concrete steps and stoops, and mature plantings. These costs 
and impacts are generally sufficient to prevent most homeowners and contractors from pursuing 
an exterior approach.  

The NorthernSTAR Building America Partnership team implemented an innovative, minimally 
invasive foundation insulation upgrade technique on an existing home. The approach consisted 
of using hydrovac excavation technology combined with a liquid insulating foam. The team was 
able to excavate a continuous 4-in. wide × 4–5-ft deep trench around the entire house, 128 linear 
ft, except for one small part under the stoop that was obstructed with concrete debris. The 
combination pressure washer and vacuum extraction technology also enabled the elimination of 
large trenches and soil stockpiles normally produced by backhoe excavation. It accommodated 
obstructions to remain in place or be minimally modified. The resulting trench was filled with 
liquid insulating foam, which also served as a water-control layer of the assembly. The insulation 
was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top 
of the rim joist.  

Two houses were originally selected for this field study. One was not ready for retrofit at the 
time of study and had to be eliminated. The collaborative nature of the one field installation, 
however, enabled the team to advance the methodology as the work progressed. Improvements 
to the method of installation and reduction of costs were developed on site. Cost savings over the 
traditional excavation process ranged from 23% to 50%. The excavationless process could result 
in even greater savings since replacement of building structures, exterior features, utility meters, 
and landscaping would be minimal or nonexistent in an excavationless process.
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1 Introduction 

The growing cultural focus on energy efficiency and homeowner desire to expand living space to 
the basement, create urgency for good, usable information on best practice strategies for 
insulation systems, especially for existing homes in cold climates. The principal risks to 
basement spaces that are surrounded by soil and experience both above-grade (AG) and below-
grade (BG) conditions concern hygrothermal durability. Foundation walls almost always 
experience variations in temperature and drying potential from the top (AG) to the footing (BG), 
from season to season, and from wall to wall depending on solar orientation and design. Lack of 
waterproofing, capillary breaks, and drainage at the footing provide further risk for increased 
moisture stress resulting from bulk water intrusion or capillary wicking.  

While the soil prevents a foundation wall from drying to the exterior, interior insulation and the 
presence of vapor impermeable materials can reduce the opportunity for the foundation wall to 
dry to the interior, creating continually wet insulation and building materials. Temperature 
difference from top of the wall to the bottom may also exacerbate the movement of water vapor 
towards the sill and rim, especially in hollow core masonry block. Moisture accumulation may 
lead to deterioration and rot of the building structure components, loss of energy efficiency and 
occupant comfort, as well as the opportunity for mold growth and resultant poor indoor 
environmental quality.  

There is a growing body of research and field experience indicating that applying insulation to 
the exterior of the foundation during new home construction and implementing proper bulk 
water management strategies greatly reduces the risks related to water/vapor flow and foundation 
wall temperature differential. (Mosiman et al. 2012) The results are indicating a more 
comfortable, durable basement environment along with energy efficiency gains. The following 
illustration (Figure 1) highlights the key elements for insulation and water management on the 
exterior side of the foundation wall.  
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Figure 1. Thermal and water management strategies of exterior foundation insulation 

(Adapted from: Carmody et al. 2005) 
 
Although it is relatively simple to employ this exterior insulation system in new construction 
prior to backfilling, there are significant barriers to its use in upgrading existing homes. Applying 
insulation to the exterior of existing homes is costly and destructive due to the need to excavate a 
large trench using a backhoe to facilitate application of insulation and water proofing materials to 
the foundation wall (Figure 2). Gaining access to the foundation walls may also mean the 
removal and replacement of stoops, patios, porches, and landscaping with significant cost and 
coordination to attend to underground utilities.  
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Figure 2. Traditional excavation 

 
In a previous Building America (BA) report (Mosiman et al. 2012), the NorthernSTAR Building 
America Team identified a new, minimally invasive excavation and insulation technique for 
existing home foundation, referred to as excavationless. It is based on existing hydrovac and 
airvac technology that is capable of precisely excavating a trench directly adjacent to the 
foundation wall. The team also identified three pourable materials capable of curing in place to 
serve as a moisture-resistant, insulating material.  

In this study, the team sought to test the excavationless process using a combination of the 
hydrovac technology and a liquid foam insulation product in the field to answer some basic 
questions about the new approach. Although the technology and materials identified in the initial 
exploratory study are mature, the combination has not been tried. A field application would 
provide a sense of the general feasibility of the proposed excavation and exterior foundation 
methodology for existing homes. Lessons learned from the study will help inform future research 
for the development of an exterior-side, foundation insulation system for existing homes that 
could be deployed by the industry while avoiding many of the moisture-related issues common 
to many interior insulation strategies in common use. 
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2 Background 

2.1 Overview 
In the upper Midwest, where annual frost depths of 3–6 ft are not uncommon, basements are a 
common occurrence in older housing stock. With foundation walls for homes typically extending 
4 or more ft BG (a structural code requirement to protect the foundation from frost heave), the 
construction of a full basement was and is a matter of practicality. Basements often contain 
mechanical equipment and plumbing systems, which are at risk if the temperature of the 
basement falls below freezing. Therefore, whether occupied or not, basement spaces in very cold 
climates are usually functionally inside the thermal envelope and must remain so in order to 
protect the systems located within them. Despite the fact that most basements in homes are 
heated either directly or indirectly, insulating basement walls or slabs was not common practice 
until energy code requirements mandated this practice. Thus, most basements in homes built 
before 1993 (the time when the first model energy code began to be adopted in the United States) 
are uninsulated. 

Heat loss through uninsulated basement walls is a significant energy penalty in heating climates. 
As more and more attention is focused nationwide on improving the energy efficiency of the 
existing housing stock, it becomes imperative that “a home with a basement must have basement 
insulation to be called ‘energy efficient” (Lstiburek and Yost 2002). 

With uninsulated, conditioned basements a common occurrence in cold climate regions, it 
follows that millions of homes could potentially benefit from basement insulation retrofit 
measures including: 

• Homes with finished basements 

• Homes with inaccessible basement walls 

• Homes with expensive landscaping 

• Homes with crawlspaces 

• Homes that need waterproofing 

• Homes, townhomes, and apartment buildings with slab foundations 

• Buildings that need foundation repair 

• Homes that need insulation under porches and sidewalks.  

Based on the 2011 American Housing Survey (U.S. Census 2011), there are an estimated 81 
million single-unit homes in the United States. More than 79 million of those units have a 
basement under all or part of the structure, a crawlspace, or were built on a concrete slab. In the 
cold climate states of the Northeast and Midwest there are 32 million units that could potentially 
benefit from exterior insulation.  

An affordable, durable, scalable method for insulating basement foundation walls does not 
currently exist in practice. If such a method could be identified it would become a valuable part 
of the integrated approach utilized in the BA program’s adoption and implementation strategies 
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aimed at climate-specific solutions that result in 50% home energy reduction while addressing 
occupant health and durability. 

2.2 Difficulty of Insulating Existing Foundation Walls 
“There are only three ways to insulate a basement wall,” Lstiburek and Yost (2002) stated in a 
research report: “on the interior, on the exterior, or in the middle.” They further noted that of the 
three approaches, the most common was to insulate on the interior, and that the reason for this is 
mainly about cost. Applying insulation to the exterior of the foundation and implementing proper 
bulk water management strategies both AG and BG, however, reduces the risks of building 
damage related to water and vapor flows and foundation wall temperature differential.  

In existing basements, it could be argued there are only two ways to insulate a basement wall: 
from the interior or from the exterior. It is rare that an existing basement wall is constructed in 
such a way as to facilitate the addition of insulation to the middle of the wall. It is possible to 
insulate an existing wall from both the interior and the exterior but practicality would suggest 
that such an approach would also be rare since insulating both the interior and exterior of an 
existing basement wall would be the most disruptive approach and would not be cost effective. 
When an existing basement is insulated, it is most commonly done so from the interior, often in 
conjunction with an attempt to “finish” the basement for the occupants’ living use. The practice 
of an interior insulation upgrade makes sense when the factors being considered focus on initial 
cost of the upgrade, disruption to the existing structure, and the interest in providing living space 
in the basement. However, the practice introduces risks to the building and its occupants that 
suggest that this common practice is far from “best practice.” 

An unfinished, uninsulated, largely unoccupied basement typically provides conditions allowing 
the foundation walls (and floor slab) the ability to dry to the inside. In addition, an unfinished 
basement by definition isn’t filled with building materials (wood studs or furring, insulation, 
gypsum drywall, wood paneling) that invite and support mold growth when interior moisture is 
present. The practice of finishing and insulating a basement interior can be risky business and the 
popularity of insulating basements to the inside has grown along with the popularity of 
“finishing” basements, despite a clear body of research that advises against this practice. 

Fugler (2002) reported in detail on the occupant health risks and building durability risks 
associated with finishing or adding insulation to the interior of a basement with moisture 
problems. Those risks include toxigenic or pathogenic mold growth potentially harmful to 
occupants (especially children). It was estimated that in Canada 20%–50% of basements visited 
had moisture problems. Fugler advised that the interior basement walls should be left unfinished 
in a cold climate because, among other things, “there is too much risk in disturbing the moisture 
and temperature environment that has maintained this foundation for decades. Accumulated 
moisture in the foundation wall could not escape and dry to the inside faster than it could 
accumulate within the new interior finishes, where mold and mildew now had a chance to 
flourish. However, Fugler concludes the report noting that “if the homeowners are also prepared 
to add exterior drainage and insulation, interior finishing would pose no problem,” meaning that 
the risk could be mitigated by preventing moisture intrusion into the wall and managing bulk 
water with an exterior upgrade. 
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Lstiburek and Yost (2002) also concluded that “continued use of these approaches by the home 
building industry will likely lead to a disaster of unprecedented proportions and may result in the 
construction of energy efficient homes being set back a generation.” These 2002 reports, 
published by recognized building science experts in both Canada and the United States, 
identified and described the inherent risks in a basement retrofit approach that is still in common 
practice today. Little has changed in the materials and methods still in use and it appears that 
Lstiburek and Yost’s warning of disaster wasn’t off the mark. Mold and mildew in homes have 
become such a pronounced and expensive occurrence that many property and casualty insurance 
policies no longer cover damage from mold. In addition, while a causal link between mold in 
interior environments and respiratory illnesses such as asthma, an associative link has been 
widely accepted and reported on in journals, articles, websites, and books.  

The research by the National Research Council of Canada (Swinton et al. 1999) identified the 
benefits of an exterior retrofit approach using the conventional method of full depth excavation 
with a trench wide enough to accommodate the installation of drain tile, waterproof material and 
insulation, but it does not address costs or other barriers to this approach. The National Research 
Council of Canada research was conducted on an International Residential Code test house, so 
occupants were neither disrupted nor financially responsible. In addition, this test house did not 
appear to have exterior physical barriers present that are common in many existing homes.  

In the previous NorthernSTAR report (Mosiman et al. 2012), two recently completed projects in 
northern Minnesota provide examples and current cost information about the “conventional” 
approach to exterior foundation insulation retrofits. A similar backhoe insulation strategy was 
employed on the two foundations. In each case, the walls were waterproofed, draintile was added 
or remained, and extruded polystyrene (XPS) rigid foam insulation was mechanically fastened to 
the existing foundation wall, from top of foundation wall to top of footing. The final costs for 
this type of approach was within the cost range estimated for current advanced approaches to 
deep energy retrofits at $7–$15/ft2 (Mosiman et al. 2012).  

Figure 3 illustrates the negative impact of insulating an existing foundation wall from the interior 
compared to the benefits of applying it to the exterior. Noted, however, is the cost to upgrade an 
existing wall using conventional backhoe methods that often prevents homeowners from 
pursuing this option. 
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Figure 3. Foundation wall insulation comparisons 

 
The previous BA report (Mosiman et al. 2012) also presented results from a Neighborhood 
Obstruction Analysis of five Minneapolis, Minnesota neighborhoods to try to quantify the type 
and occurrence of obstructions that would interfere with full access to the foundation walls. Most 
of the time 75% or more of the foundation perimeter appeared to be accessible to some form of 
excavation without removal of the obstacle. The single most frequently occurring obstacle is the 
presence of a concrete stoop at the front entry. Since this element often sits on a foundation that 
extends several feet or more into the ground for frost protection, removing and replacing this 
obstacle would not be desirable. Additional frequently occurring obstacles included adjacent but 
not abutting sidewalks, plantings and the existence of a projecting bay without a foundation. 
These obstacles make conventional excavation methods unsuitable. 

2.3 Excavationless 
The “excavationless” process proposed by the Team in the previous report (Mosiman et al. 2012) 
presents a minimally invasive foundation insulation retrofit technique in existing homes that 
combines two existing processes in a new format. The trenching technology (hydrovac or airvac) 
uses pressurized water or compressed air to loosen soil, while simultaneously applying suction 
from a truck- or trailer-mounted vacuum to remove the spoil. This technology is currently used 
for a wide variety of excavation processes, including exposing existing foundations. The method 
was initially developed to expose buried utilities for inspection or location purposes, so it is 
unlikely to cause damage to utility lines that are encountered in a foundation wall excavation 
process. The narrow width of the cut minimizes damage to the area around the foundation while 
the long, flexible vacuum hose can “tunnel” under obstacles.  

In addition, the previous work identified three liquid materials that cure in place as a moisture-
resistant, insulating material that may be appropriate in this application: cellular concrete, perlite 
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aggregate concrete, and liquid polyurethane foam. All three materials are in current use in BG 
applications. The trench is filled with the liquid insulating material, which when cured forms the 
insulating (and potentially water-control) layer around the foundation. 

The benefits of insulating from the exterior using this excavationless approach could include:  

• Reduced whole-house energy use 

• A foundation wall that is warm on the interior side for improved comfort 

• Improved airtightness of the house 

• A liquid insulation product that tends to be forgiving of existing envelope defects 

• Vacuum excavation method that greatly reduces landscape impacts 

• Many landscape features (walks, stoops, decks, etc.) that would be removed for 
traditional excavation can be tunneled under 

• A quick process estimated at one to two days for a simple home 

• Opportunities to add interior and exterior draintile with the hydrovac equipment 

• Using the hydrovac equipment to underpin a foundation to lower the floor 

• Potential waterproofing and reduction in bulk water intrusion from the cured insulation 

• Costs likely to be lower than backhoe methods of exterior insulation and landscape 
repair. 

There are possible tradeoffs to doing a minimally invasive, excavationless foundation retrofit 
approach versus a traditional interior or exterior foundation wall retrofit. Those include:  

• Method does not address moisture loading from sources such as capillarity from the 
footing or through the slab. 

• More expensive than typical interior insulation methods. 

• Long-term thermal properties are not known; potential for moisture accumulation within 
pore spaces may cause thermal degradation. 

• Large obstructions (patio slabs, sidewalks that abut the foundation) will need to be saw-
cut to the trench width, or removed and replaced. 

• Extent of waterproofing ability, and durability of that solution, is not well characterized. 

• Creating an undercut pocket at the bottom of the trench to properly install draintile 
appears possible given the flexibility of the hydrovac equipment but has not been tested. 

Further study regarding the ability to add draintile to the narrow trench created by the hydrovac 
system has further merit for study: Excavationless could address what could be considered 
missed opportunities. Homes that are near a lake or high water table often experience active 
water issues. A local excavation contractor that uses a conventional backhoe excavator was 
interviewed for this project. A significant part of his business involves trenching around the 
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foundations of luxury homes situated near lakes to install waterproofing and draintile. He stated 
that the cost of the process, which includes his services as well as the efforts to restore 
landscaping, is very high. Homeowners pursue his services to solve their water intrusion 
problems.  

When asked what kind of insulation the contractor used after the typical application of a peel and 
stick waterproofing membrane, he responded, “What insulation?” The contractor further 
explained he was hired to excavate, install the waterproofing membrane, and then backfill the 
trench. He was never asked to apply insulation. It is not known how many opportunities to 
address insulation alongside water management could be addressed with excavationless.  
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3 Excavationless Project Description 

The primary purpose of this project was to perform a complete excavationless process as 
proposed in the previous BA report (Mosiman et al. 2012) using the hydrovac technology 
combined with the liquid insulation. Field installation would provide opportunities to further 
understand the proposed benefits and tradeoffs while understanding how best to combine the 
systems in the field. The field process would also help develop solutions to insulation and 
aesthetic design transitions at the AG wall/rim/wall cladding. The field installation would help us 
learn what issues might occur BG with a narrow trench such as soils caving in, rocks, metal 
scrap, and other previous construction debris that could hinder the excavation process. A field 
study would also provide insight into material cost, time cost, and potential for damage in the 
yard that will need to be repaired. 

3.1 Research Questions  
The following research questions served as a guide: 

• What is the impact of the hydrovac equipment on the landscaping?  

• What issues result when digging a narrow trench around the foundation? 

• How are obstacles such as sidewalks and stoops handled? 

• How is insulation handled AG in order to minimize costs and maximize benefits of the 
system? 

• How are transition details handled from AG insulation to wall? 

• What are the costs associated with installation of the system? 

3.2 Partners  
Along with NorthernSTAR team members, the following group helped develop the means and 
methods of the excavationless both in planning and on site. They will continue to work with us to 
ensure a quality product is developed and can be replicated at a significant scale. 

• Urban Homeworks: Is a faith-based, nonprofit that develops housing and community 
development programs in neighborhoods across Minneapolis and St. Paul. Along with 
creating housing opportunities, it has facilitated construction training, and worked with 
17,000 volunteers to produce hundreds of units of housing. 

• Cocoon: Is an insulation, home performance testing, and radon mitigation contractor. 
Steve Schirber, general manager and principal, is a Building Performance Institute-
certified envelope specialist and building analyst. Cocoon’s work is primarily conducted 
in Minnesota. 

• BASF Corporation: Is a global chemical company. Brian Oman has been a technical 
sales representative in the Minnesota region with BASF since 2007. He provides training 
and technical assistance with spray polyurethane foam insulation.  

• American Environmental, LLC: Provides industrial vacuum and hydro excavation 
services. Tony Traxler is the business owner. 
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3.3 Subject House 
The subject home was built in 1906 on a corner lot in the northern section of Minneapolis, 
Minnesota. This vacant and boarded home was purchased by Urban Homeworks in order to be 
rehabilitated and sold to a low-income family. It was unoccupied at the time with the intent that 
it be completely gutted for energy and interior/exterior improvements. 

Figure 4 represent the home prior to the upgrades. The footprint of the home is 38 ft × 26 ft. The 
foundation is made of stone. Prior to the excavationless process and as part of the planned 
improvements, the general contractor, Urban Homeworks, removed all the exterior siding, the 
garage with footings, the back porch with footings, and bump out room with footings. The front 
entry had a concrete stoop.  

 

Figure 4. Subject house in north Minneapolis prior to renovation 

 

3.4 Excavation Equipment 
The key to the success of this approach was the vacuum excavation truck, Figure 5, also called 
suction excavator that has been around for decades. These trucks, equipped with high pressure 
water, pressurized air, or both come in various sizes to perform large or small excavations. For 
smaller jobs, they also come mounted on a trailer, pulled by a small truck. They are used for 
locating utilities and digging in places where a large backhoe might cause harm to the 
underground piping or wires. They are also used to clean out culverts and other underground 
service areas.  
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Figure 5. The hydrovac truck 

 
The truck used by the excavation contractor, American Environmental, had two diesel engines. 
The main engine, which also powers the truck on the road, helped generate power for the 
mechanical systems. The second engine ran the large fan that creates suction for soil removal. 
The unit also had: 

• 1000 gallon water tank capacity  

• 12 cubic yard debris body  

• Water pressures up to 14 gpm @ 3000 psi 

• Airflow of 5800 cfm capable of removing debris at 220 mph. 

• Rear-mounted 8-ft telescoping boom capable of 19–27-ft reach, 335° rotation, 45° 
upward, and 25° downward pivot  

• Debris collector body features ejector plate unloading with raise/tilt capability 

• 450,000 Btu water heater for excavation of frozen soils.  

The unit can roll out up to 400 ft of 8-in. hose to meet the availability of space and access. In this 
case, the home is located on the corner lot of the block so minimal hose length was needed. The 
truck could be positioned in two locations if needed. 

The unit has its own onboard pressurized water system that can operate at 14 gpm (Figure 6).  
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Figure 6. The vacuum hose and truck-mounted pressurized water system 

 
The hydrovac operator also brought a secondary portable pressure washer, shown in Figure 7. It 
also operates at 3,000 psi but uses only 2.7 gpm and can be operated with a garden hose. The two 
soil removal systems were a benefit to the project. The operator could switch to the smaller 
pressure washer when appropriate. Once a truck tank is full, work at the job site shuts down until 
the load is taken to a dump site to empty. The smaller pressure washer minimized the amount of 
water and soil sent to the tank, thus extending the time before filling a truck load and stopping 
work to empty the tank. In this project we were able to work the entire day before the tank was 
filled and needed to be emptied. 

 

Figure 7. The portable pressurized water system 
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The pressurized water “wand” has several nozzle shapes. One is round like a pencil, and the 
other is flat, spreading out like a spade shovel. General digging was done with the spade shape 
and tunneling was aided by the pencil shape. To initiate digging, the pressurized wand was 
pointed at the soil, which immediately became loose and broke apart. The vacuum tube was 
placed next to the water wand and immediately removed the loose soil.  

3.5 Insulation 
3.5.1 Below-Grade Insulation 
The foam used in this excavationless process was developed by BASF chemists specifically for 
this project. Our specifications required a liquid foam that could be used BG and in contact with 
soils and moisture. BASF chose cast-in-place, naturally hydrophobic closed cell polyurethane 
foam, R-5/in., where 90% of the foam’s mass is comprised of individual cells which will not 
allow for the transfer of moisture from one cell to another. In addition, a specialized formulation 
was developed for this specific application utilizing materials that would further reduce the 
chance for water intrusion and further increase its hydrophobicity while also enabling the foam 
to aggressively adhere to smooth or rough surfaces.  

Using liquid foam would be beneficial in the following ways: 

• It would replace all the soil that was removed requiring very little backfill. 

• It would conform easily to the space BG and obstacles such as tree roots, pipes, and 
stones. 

• It would conform and adhere to the rough stone foundation. 

• It could act as insulation and water control layer. 

3.5.2 Above-Grade Insulation 
A hybrid rigid/liquid foam combination was used from 6–12 in. BG to the top of rim. Rigid XPS 
was fastened to the rim using wood standoffs. The gap would provide space for the liquid foam 
to expand against rough, imperfect surfaces. The XPS would provide a plumb surface for 
exterior cladding or parge layer. 

3.6 Draintile 
The subject home had no active water issues. The costs that would be required for creating the 
appropriate trench and adding draintile were allocated to other parts of the whole house retrofit.  

3.7 BEopt Modeling 
The NorthernSTAR team used the Building Energy Optimization (BEopt™) software version 
2.2.0.0 to better understand the potential reduction in annual energy use that could result from 
the addition of exterior insulation. Actual energy testing on the study home was outside the scope 
of work, as it would not be rehabilitated until after the excavationless process and the next 
occupant and their willingness to participate in an energy study was unknown.  

The BEopt software was used to simulate the energy performance of an existing reference home 
in Minneapolis, Minnesota. The NorthernSTAR team developed the reference home, named 
NSTAR 1, to be used for various research projects conducted on 1 ½-story houses. While the 
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excavationless test home is two-story, it had been gutted prior to start of the project. There were 
no existing building parameters to guide the BEopt inputs. Using the NSTAR 1 reference home 
would provide some context for the results as NSTAR 1was created to reflect housing typical to 
the Minneapolis area. The 28-ft × 36-ft foundation with full basement, first floor, and attic living 
space yield 2,664 ft2 of conditioned living space. Some of the BEopt defaults were changed to 
reflect what is typically seen in Minneapolis. This included R-7 insulation in walls and 
kneewalls, R-7 in the finished roof, R-25 attic floor insulation in the kneewall area, and double-
pane windows with nonmetal frames.  

The column on the left in Figure 8 represents the average source energy use per year 
(MMBtu/yr) of the existing home. The column on the right represents the impact on source 
energy use per year after the installation of R-15 exterior foundation insulation via the 
excavationless process. The computer simulation indicates an 8% reduction in whole-house 
energy use with the majority of the savings coming from a reduction in heating energy.  

 

Figure 8. Predicted energy savings from the addition of exterior insulation 

 
The 8% energy savings, however, may underrepresent the reduction in energy use due to 
limitations of the BEopt program that constrains the ability to model rim and AG basement heat 
flows: Only the BG impacts are measured. Greater energy use reductions than demonstrated may 
be experienced in a home where the rim and AG foundation wall are insulated, such as in the 
excavationless field study house. 
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4 Field Installation and Results 

4.1 Prep Work 
The subject house was vacant at the time of purchase and slated for complete exterior/interior 
rehabilitation. After the contractor removed the wall cladding, improvements were made to the 
rim using new oriented strand board as filler for missing sheathing. Window wells were 
removed. Windows and frames were removed and openings were filled with a backing of rigid 
foam board flush with the foundation wall.  

4.2 Excavation 
The standard tube in the hydrovac is 8 in. diameter. Our desired trench width was meant to be 4 
in. wide. To accommodate the difference between equipment and desired trench width, the 
vacuum tube and water wand were placed in the middle of a section of wall and made to “dig” 
downward to the desired depth. In this project it was determined that excavation depth would be 
approximately 4 ft, 6 in. BG yielding a total insulation height of 6 ft. The wand was moved away 
from the vacuum tube along the wall cutting as narrow a trench as possible. Figure 9 shows how 
the wand pushed the sludge toward the vacuum tube as it cut through the soil. It can push water 
8–10 linear ft before the vacuum tube must move to a new location, preferably a corner of the 
building.  

 

Figure 9. The vacuum tube and water wand 

 
Figure 10 shows how precise the trench created by the hydrovac can be with stable soils and 
minimal debris.  



 

17 

 

Figure 10. The trench after vacuuming 

 
One question we had prior to undertaking the study was what we would find in the soil during 
the trenching process. Of major concern was the potential for soft soil to give way and fall into 
the hole, leaving a large gap. This did occur during the project, but the vacuum was able to 
quickly clear the loose soil so the crew could continue trenching (Figure 11). 

 

Figure 11. Soil collapse being cleared by vacuum 

 
The soil near the foundation contained dozens of rocks that had to be pulled out by hand. There 
was a considerable amount of debris including metal and glass buried along with several old 
service pipes of unknown type (Figure 12). 
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Figure 12. Debris encountered during trenching 

 
The excavation contractor was able to complete the task of excavating around the whole 
foundation in 12 hours, including travel time to and from the shop and the dump site. The 
contractor told the team that this one experience provided him with ideas on how to improve the 
next installation. He estimated that digging 6 ft deep around a 30-ft × 40-ft house with relatively 
clean fill could take as little as 6 hours—or, half the time it took for this first project. 

4.3 Obstacles 
One of the critical benefits of the hydrovac excavation method is the ability to excavate under 
porches, sidewalks, driveways, retaining walls, and air conditioning units, which cannot be 
accomplished with conventional excavation. The equipment is capable of cutting a narrow trench 
approximately 8 ft down and 6 ft horizontally. To tunnel under a 12-ft wide driveway, for 
instance, the excavator would tunnel 6 ft from each side of the driveway toward the center. In 
situations where the obstacle is greater than 1 ft wide or one side of the obstacle can’t be 
accessed, a sawcut is made through the obstacle 4 in. from the foundation. The 4-in. piece is 
removed to allow for excavation. Repair is required after completion of the job. 

A concrete stoop is typically not a problem according to American Environmental; however, in 
this study we were not able to excavate under the front stoop of the house (Figure 4). After 
digging a few feet it became obvious there was a significant amount of concrete dumped in a 
hole under the slab and the slab was poured on top of the buried concrete. This made access to 
the foundation wall very difficult. It was decided to apply closed cell spray polyurethane foam on 
a portion of the interior foundation wall to make up for the absence of insulation and air sealing 
on this section. 

4.4 Insulation Process 
4.4.1 Below-Grade Insulation  
Adding liquid foam insulation to the trench was fairly straightforward, as shown in Figures 13 
through 15. The insulation contractor, Cocoon, dispensed the foam in the same manner as 
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pressurized closed cell foam, using the same equipment, but with a special nozzle that squirted 
the liquid through a small tube. The foam rose rapidly in the trench as it cured. The operator used 
approximately 10 in. lifts back and forth within a length of trench until the desired elevation was 
reached. Our design called for the foam to terminate at 6–12 in. BG in order to install the AG 
rigid foam/liquid foam finishing process. This transition to the rigid foam would provide a 
smooth surface for the application of a stucco-type parge.  

 

Figure 13. Dispensing liquid foam 

 

 

Figure 14. The operator using a 10-in. lift process 
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Figure 15. Foam terminated 6–12 in. BG 

 
In areas where the soil collapsed during trenching, the resulting trench was wider than the 
desired 4 in. The crew from Cocoon addressed this issue by fashioning a panel form that was 
inserted into the trench to contain the foam expansion as it cured (see Figure 16).  

 

Figure 16. Rigid panel used to contain liquid foam in areas of soil collapse 

 
4.4.2 Above-Grade Insulation  
The design for AG insulation called for a smooth surface from the top of the rim joist to 6–12 in. 
BG so the general contractor could later apply a parge coat. Figures 17 through 20 demonstrate 
the process of preparing the rigid/liquid foam hybrid insulation. Wood stand-offs, 1 ½-in. thick 
square by 10-in. length, were fastened to the rim joist with screws. The 1 ½-in. thick XPS was 
fastened to the wood standoffs. The resulting cavity provided room for the liquid foam to expand 
along the rough side of the foundation wall down to the BG foam to form continuous foundation 
insulation.  
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Figure 17. Wood standoffs attached to rim 

 

 

Figure 18. Smooth XPS foam board attached to wood standoffs 
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Figure 19. Liquid foam dispensed between wall and XPS 

 

 

Figure 20. View of above-grade wall after liquid foam was added 

 
As the first application of foam rose behind the XPS, it was immediately observed that the foam 
was able to push the XPS slightly out of alignment as it cured. The solution was to attach a 2-ft × 
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8-ft sheet of plywood temporarily to the outside of the XPS by fastening it with screws driven 
into the standoffs (Figure 21). It was removed once the liquid foam hardened.  

 

 

Figure 21. Temporary plywood to control foam expansion 

 
After the AG foam cured, the excess was trimmed off, the plywood supports were removed, and 
the job was complete (Figure 22).  

 

 
Figure 22. Final result of XPS/liquid foam AG insulation 

 
4.5 Transition to Wall Cladding 
While the excavationless process is designed to minimize the trench width, there will be an 
added thickness where the AG wall transitions to the rim. How this area is addressed depends on 
wall cladding material and work being done on the AG wall. Figure 23 is a final image from one 
of the study homes in Minnesota that underwent traditional backhoe trenching and exterior 
insulation in the previous excavationless report (Mosiman et al. 2012). A secondary trim board 
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with beveled cap was added between the top of the metal-capped rim and the existing wall 
cladding as a step transition to address the plane change and minimize the visual difference. 

 

Figure 23. Step design at wall/rim transition 

 
The project home in this study will be insulated from the exterior with rigid foam board 
insulation. As a result, the difference in depth between the wall and rim will be minimized. 
Figure 24 illustrates recommended materials and the layering process to align the air and thermal 
boundaries of the new external wall and foundation insulation while promoting water drainage. 
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Figure 24. Transition of external wall and foundation insulation 
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5 Cost Analysis 

Table 1 represents a comparison of costs for foundation insulation applied to a reference home 
with a 28-ft × 36-ft foundation using a traditional backhoe and the excavationless processes. In 
all cases, the average exposed height AG, including the rim, is 1.5 in. The AG area (128 linear ft 
× 1.5 ft) is 192 ft2. The average BG depth is 4 ft, 6 in. The excavation area (128 linear ft × 4 ft, 
6 in.) is 576. Total insulation area is 768 ft2. Barriers such as sidewalks and porches were not 
considered. 

The cost numbers in row 1 are based on a traditional foundation retrofit project using a backhoe, 
water barrier applied to the foundation wall, and R-15 XPS insulation. The costs for the 
traditional backhoe excavation and water barrier were acquired by interviewing contractors in the 
Minneapolis, Minnesota region. 

Row 2 represents the cost numbers applied to the excavationless process used in the field study. 
The BASF liquid foam cost $1.50/ ft2. To create the 4-in. trench, the hydrovac contractor 
charged $275/h. While the field study took more than 12 hours to complete, the hydrovac 
contractor estimated that lessons learned on the first project should enable him to cut his time in 
half on subsequent projects. He did note, that final costs for any project are subject to change 
from an estimate due to unforeseen circumstances such as rocks, debris, and cave-ins 
encountered during the trenching process. 

Row 3 is a newly proposed method that was developed by the insulation contractor after their 
involvement with the field study. Rather than filling the trench with 4 in. of liquid foam and 
using the hybrid XPS/liquid foam AG, the hybrid XPS/liquid foam would be used from bottom 
of trench to top of rim. This would allow the less costly XPS to replace some of the liquid foam.  

In this newly suggested process, 1-in. thick wooden spacers would be used to hold 8-ft × 4-ft × 1 
½-in. rigid XPS against the foundation wall. The liquid foam would be poured into the gap 
created by the spacers. A sheet of plywood would be attached at the rim temporarily to prevent 
the XPS from bowing.  
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Table 1. Comparison of Costs: Excavationless Versus 
Traditional Foundation Retrofit With Backhoe 

Retrofit Approach Insulation 
Type 

Nominal Wall 
R-Value 

Material 
Cost 

Labor 
Cost 

Cost/ft2/ 
R-Value 

Excavation 
Cost 

Total 
Cost* 

1  
Traditional 
Excavation 

3-in. XPS @ 
$1.25/ft2 R-15 

$960 XPS, 
$833 for 

water 
barrier 

$2,880 $0.40 

$2,920 
(traditional 

power 
shovel 

$7,593 

2  
Excavationless as 

Applied in the Field 
Study 

Liquid foam (4 
in.) BG, 
hybrid 

XPS/liquid AG 

R-20 (ave) $4,224 BG, 
$698 AG Included $0.32 $1,650 

(hydrovac) $6,572 

3  
Excavationless With 
Proposed Changes 

1.5-in. XPS 
plus 1-in.liquid 
foam from top 

of rim to bottom 
of trench 

R-12.5 $2,142 Included $0.22 $1,650 
(hydrovac) $3,792 

*Does not include repairs to landscape, building structures such as porches and stoops, exterior features such as driveways, sidewalks, patios, or utilities. 
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The table of comparisons demonstrates a 23% reduction in cost from the traditional excavation 
process to the excavationless field study. The final cost of the traditional excavation process, 
however, is not indicative of final true costs. Final true costs will vary, but may include repairs to 
landscape, building structures such as porches and stoops, exterior features such as driveways, 
sidewalks, patios, or utilities. These costs often create the hurdle that prevents homeowners from 
insulating foundations from the exterior. The advantage of the hydrovac process is that 
disruption to landscaping, structures, exterior features, and utilities can be minimal. 

The excavationless process with proposed changes (row 3) highlights additional cost reduction 
opportunities discovered during the field study. Using the hybrid XPS/liquid foam from top of 
rim to bottom of trench reduces the total cost by 35%. When the International Energy 
Conservation Code is adopted, however, an additional ½ in. of XPS will be needed to meet the 
R-15 code requirement. Using today’s XPS cost would result in an additional cost to the project 
of $384.  
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6 Conclusions 

6.1 Research Questions 
The following summarizes responses to the research questions based on the application of the 
excavationless process in the field.  

What is the impact of hydrovac equipment on landscaping? 

The abandoned home that served as our test house had no landscaping other than grass. 
Significant disruption to the yard had already been done by the general contractor to prepare the 
home for the improvements that would occur after the foundation insulation was added. This 
provided the opportunity to work around the home with minimal concern as we installed the 
excavationless process for the first time and addressed unexpected issues.  

In a home with established landscaping, the precision of the hydrovac process allows minimal 
excavation of roughly 3–4 in. around the perimeter of the foundation. This width from the 
foundation should not impact properly planted landscape trees, shrubs and plants. In future 
projects, landscape items could be fenced or covered temporarily to prevent accidental harm 
from the workers and equipment. A temporary plywood walkway could also be used along the 
foundation or on the grass to reduce the risk of impact.  

What issues result when digging a narrow trench around a foundation? 

During excavation there is the possibility of soil cave-ins with unstable soils or debris from 
previous construction work. The hydrovac equipment can remove loose soil and small debris, 
leaving a clean hole. Upon completion of work, the hole would need to be filled.  

The hydrovac is capable of tunneling under obstacles to remove soil. The ability of the hydrovac 
to get the job completed as planned is dependent upon unknown obstacles in the soil. In this 
study, concrete debris under the front porch prohibited the use of the excavationless process. 
Insulation of that portion of the foundation wall had to be done from the inside instead of the 
outside.  

How are obstacles such as sidewalks and stoops handled? 

The hydrovac used in this excavation was capable of tunneling 8 ft down and 6 ft horizontally. If 
the obstacle is wider than 12 ft or there is no access to the obstacle from both sides, a 4-in. 
sawcut can be made in the obstacle to gain access to the foundation. The obstacle will need 
repair upon completion.  

How is the insulation handled AG in order to minimize costs and maximize benefits of the 
system? 

This field installation provided the team with plenty of opportunities to learn how to improve on 
ideas that were envisioned during the design phase. This installation used a hybrid system of 
rigid XPS and liquid foam AG that was connected to the BG liquid foam. The XPS AG provided 
a smooth surface to accept architectural materials while the liquid foam could fill in the uneven 
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surfaces of the rim. In future installations it is recommended that the AG hybrid approach be 
used from the top of the rim to the bottom of the trench, eliminating the need for a different 
approach below and AG. 

How are transition details handled from AG insulation to the wall? 

These details are dependent upon the style of the home and the difference in thickness of the AG 
wall and the new foundation insulation. In this home, the contractor will be adding external 
insulation to the home, bringing the plane of the wall in line with the foundation. Appropriate 
water and air management materials will be engaged but the transition details are minimal.  

If the AG wall is not altered and a large transition occurs, adding an additional trim board at the 
rim can help create a step process and minimize the visual impact. 

What are the costs associated with installation of the system? 

The installed costs (materials and labor) for the excavationless method applied to the home in 
Minneapolis included the hydrovac truck, XPS foam, and liquid foam insulation. Compared to a 
reference home using traditional excavation methodology, the excavationless process in the field 
study reduced costs by 23%. Not included were any costs to repair cave-ins caused by the 
hydrovac process. In this project, they will be incurred by the general contractor as part of the 
overall project. Costs for this type of project in other regions of the state and country would be 
dependent upon labor costs and access to hydrovac contractors.  

The proposed method of using the hybrid XPS/liquid foam from top of rim to bottom of trench 
could potentially reduce excavationless costs by an additional 35%.  

Both the numbers from the field study and the proposed changes to the process represent a cost 
savings over the traditional excavation method of nearly 50% with the loss of some R-value. The 
excavationless process would result in even greater savings since replacement of building 
structures, exterior features, utility meters, and landscaping would be minimal or nonexistent in 
an excavationless process.  

6.2 General Conclusions 
This one field study provided plenty of opportunities to learn about the practical application of 
the excavationless process. In a matter of two days and with minimal impact to the yard, a 4-in. 
trench was created around the foundation of the test house and filled with a liquid insulation. The 
process was relatively straightforward since both processes and materials have been used in the 
field but never together. The test home is now fully insulated at the foundation and rim from the 
exterior. A means to reduce the cost of a second installation have already been developed. 

The hydrovac process confers an additional benefit to homes in cold climates. The 450,000 Btu 
water heater located on the truck will instantly melt frost and allow for trenching during cold 
weather months. The liquid foam can be kept warm during application enabling the 
excavationless trenching and insulation process to be used during the winter. 
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While the process of using the excavationless method to apply exterior foundation insulation 
appears to be very successful, there are still unknown impacts. Hygrothermal testing would be an 
important step to help understand the role of the exterior insulation as a water management 
plane. 

The feasibility and cost to install draintile using the excavationless process were not part of this 
study. Studying both in future excavationless installations would continue to help refine the steps 
that can be included in an excavationless process to address bulk water management and 
determine costs to do so.  

The excavationless process could also be used as part of a deep energy retrofit from foundation 
to roof with minimal transition at the rim when external AG wall insulation is used. It would also 
promote thorough alignment of the water and air barriers at the rim/foundation wall transition.  

The market for this measure is very broad. There are tens of millions of existing homes in cold 
climates with uninsulated basements, partial basements, crawl spaces, and slabs. Homes with 
finished basements, expensive landscaping, and other barriers, such as porches, can be helped. 
Homes in need of water proofing, drain tile, or repair will also benefit. Excavationless provides a 
cost-effective, exterior-side foundation insulation system for existing homes that could be 
deployed by the industry while avoiding many of the health and moisture-related issues common 
to many interior insulation retrofits. 
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Appendix: Solution Center Guide Submission 

Guide Title: Exterior-Side Foundation Insulation for Existing Homes 
 
Keywords: Thermal enclosure, walls below grade, foundation insulation, liquid insulating foam, 
hydrovac excavation technology 

Climate Zone: All climate zones 

Construction Type: Existing Homes 

Scope: Thermal Enclosure Upgrades for Existing Homes 

Install exterior foundation insulation on foundation walls, crawlspaces, and slab edges that meet 
or exceed local code requirements or the most recent International Energy Conservation Code. 
Install insulation without misalignments, compressions, gaps or voids in all wall cavities along 
the thermal barrier of the house.  

 
 
Image Title: Continuous Rigid/Liquid Foam Exterior Insulation 
Image Source: NorthernSTAR Team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_rigid-liquid-exterior-scope_TE.jpg 
 

A. Determine desired R-value of exterior foundation insulation. 
B. Excavate 3” to 4” wide trench along existing foundation wall using hydrovac pressurized 

water system and vacuum extraction to desired depth. Width of trench determined by 
final R-Value desired considering the following: 

a. Liquid insulating foam R-5/inch 
b. XPS R-5/inch 

C. Attach 1” thick wood stand-offs to rim. 
D. Attach XPS rigid insulation with polyethylene outer layer facing soil to wood stand-offs. 
E. Apply temporary bracing to rigid foam 
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F. Pour closed cell polyurethane liquid insulating foam, R-5, into gap between wall and 
rigid foam using 10” lifts back and forth across trench to desired elevation. 

G. Remove temporary bracing.  
H. Trim foam even with top of XPS 
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Description 
Foundation walls almost always experience variations in temperature and drying potential from 
the top (above grade) to the footing (below grade), from season to season, and from wall to wall 
depending on solar orientation and design. Lack of waterproofing, capillary breaks, and drainage 
at the footing provide further risk for increased moisture stress resulting from bulk water 
intrusion or capillary wicking. Interior insulation and the presence of vapor impermeable 
materials can further exacerbate the ability of a foundation wall to dry to the interior – creating 
continually wet insulation and building materials. Temperature difference from top of the wall 
(above grade) to the bottom (below grade) may also exacerbate the movement of water vapor 
towards the sill and rim – especially in hollow core masonry block. Moisture accumulation may 
lead to deterioration and rot of the building structure components, loss of energy efficiency and 
occupant comfort, as well as the opportunity for mold growth and resultant poor indoor 
environmental quality.  
Insulating existing foundation walls can be time and cost efficient using the excavationless 
process that combines hydrovac excavation technology with liquid insulating foam. The 
hydrovac technology consisting of pressurized water system and vacuum extraction enables 
precise trenching adjacent to the foundation with minimal disruption and in minimal time 
compared to traditional backhoe excavation. 

Applying closed cell foam insulation to the exterior of the foundation and implementing proper 
bulk water management strategies greatly reduces the risks related to water/vapor flow and 
foundation wall temperature differential. The liquid insulating foam from BASF can be used 
below grade and in contact with soils and moisture. It is a cast-in-place, naturally hydrophobic 
closed cell polyurethane foam, R-5/inch, where 90% of the foam’s mass is comprised of 
individual cells which will not allow for the transfer of moisture from one cell to another. In 
addition, a specialized formulation was developed for this specific application utilizing materials 
that would further reduce the chance for water intrusion and further increase its hydrophobicity 
while also enabling the foam to aggressively adhere to smooth or rough surfaces. The XPS has a 
polyethylene film added to the panel sides for vapor resistance. 

HOW TO 

Insulating a foundation wall from the exterior during new construction is the most cost-effective 
way to achieve the hygrothermal benefits of exterior foundation insulation. Existing homes can 
be upgraded with exterior foundation as well using a minimally invasive 2-step process 
involving both hydrovac excavation and liquid foam application in a technique called 
excavationless. 

1. Check with local authorities to ensure all materials and work will comply with local code 
requirements such as the R-value of foundation insulation.  

2. Evaluate perimeter of foundation for obstacles. Hydrovac pressure wand can reach 6’ 
under obstacles in one direction. Patios and driveways greater than 6’ that are accessible 
only from one side might require a 4” saw cut near the foundation to accommodate the 
water wand and vacuum. Patios and driveways up to 12’ wide with access on both sides 
can be accommodated by the hydrovac process. Built structures greater than 6’ with 
access on only one side may need to be removed.  
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3. General contractor or insulation contractor to prepare the site and project: 
a. Use temporary fencing to protect landscape elements. 
b. Lay down plywood walk-way for workers if space permits.  
c. Apply temporary protection to protect first floor windows located close to work 

area. 
d. Repair any wood rot at rim.  
e. Order BASF liquid insulating foam directly from BASF. Foam to be shipped to 

regional distributors as needed until the demand grows. (It would be 
recommended to contact the authors first for direct connections. 
 

4. Hydrovac contractor to excavate a trench alongside the foundation wall 3” wide to 
desired depth using truck-mounted pressurized water system and portable pressurized 
water system combined with vacuum extraction.  

a. Start in center of wall. Create 8” wide hole using pressurized water. 
b. Position 8” wide vacuum tube in center of hole 
c. Dig 3” to 4” wide trench by moving water want away from stationary vacuum 

tube while keeping wand focused towards vacuum tube to direct soil-water slurry 
to it. 

 
 

Image Caption: Figure 1. Water wand and vacuum extraction for digging trench. 
Image Title: Water wand and vacuum extraction for digging trench 
Image Source: NorthernSTAR team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_water-wand-vacuum-extraction_TE.jpg 

 
d. Create new 8” wide hole at corner of house and move wand to center of wall. 

Reposition vacuum in center of new wall. 
 

5. Insulation contractor to screw 1.5” thick wood stand-offs to wood rim. Attach 1-1/2” thick 
extruded polystyrene (XPS) to wood stand-offs starting at the top of the rim with the XPS 

reaching to bottom of trench. 
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Image Caption: Figure 2. Wood stand-offs attached to rim.  
Image Title: Wood stand-offs attached to rim 
Image Source: NorthernSTAR team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_wood-stand-offs-rim_TE.jpg. 

 
6. Position temporary plywood to foam at rim to prevent bowing while liquid foam cures 

 
Image Caption: Figure 3. Temporary wood bracing. 
Image Title: Temporary wood bracing 
Image Source: NorthernSTAR team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_temp-wood-bracing_TE.jpg 

 
7. Pour liquid foam into trench using 10” lifts back and forth across width of wall until foam 

reaches the top of the XPS 
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Image Caption: Figure 4. Pouring liquid foam into trench. 
Image Title: Pouring liquid foam into trench  
Image Source: NorthernSTAR team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_pouring-liquid-foam_TE.jpg 

 
8. When foam is cured, remove bracing. Trim excess foam to top of XPS. 

 
 

Image Caption: Figure 5. Finished insulation.  
Image Title: Finished insulation 
Image Source: NorthernSTAR team, University of Minnesota, 2013, unpublished. 
Display Image Filename: NS_finished-insulation_TE.jpg 
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Ensuring Success 
 

CODE COMPLIANCE 

Check with local authorities to ensure all materials and work will comply with local code 
requirements such as the R-value of foundation insulation.  

 

SITE EVALUATION 

The hydrovac equipment is capable of reaching 6’ under obstacles in one direction. Patios and 
driveways greater than 6’ that are accessible only from one side might require a 4” saw cut near 
the foundation to accommodate the water wand and vacuum in areas out of reach. Patios and 
driveways up to 12’ wide with access on both sides can be accommodated by the hydrovac 
process. Built structures greater than 6’ with access on one side only may need to be removed or 
partly removed for access. 

 

SITE PREPARATION 

Use temporary fencing to protect landscape elements. 
Lay down plywood walk-way for workers if space permits.  
Apply temporary protection to protect first floor windows located close to work area. 
Repair any wood rot at rim.  
 

INSPECTION 

Visual inspection of the insulation installation will help identify areas in need of improvement 
prior to the addition of architectural elements or alignment of air, water, and thermal boundaries 
with above grade walls.   
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Climate-Specific Factors/Details 
The amount of insulation that must be installed on foundation walls in existing homes is 
specified by code and varies by climate. The U.S. Department of Energy Building Energy Code 
Program identifies the building codes currently in force for each state. 
 
The following is a guide for insulation requirements by location for 2012 IECC with a 
comparison to 2009 IECC included. 
 
Table 1. Minimum Insulation Levels for New Homes Required by the 2009 and 2012 IECC, 
Adapted from 2012 IECC Table R402.1.1 and 2009 IECC Table 402.1.1. (PNNL and ORNL 
2012).  
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Training 
No resources available. 
 
Architectural CAD Files 
None available. 
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Compliance 
Local building codes have specific requirements such as the R-value of insulation, fire and 
combustion requirements, radon mitigation requirements, flood prevention requirements, and 
requirements for a pest control inspection strip at the top and/or the bottom of the foundation 
wall. Begin by checking with local authorities to ensure that all materials and work will comply 
with local code requirements.  
2012 IECC 
The following is a guide for insulation requirements by location for 2012 IECC with a 
comparison to 2009 IECC included. 
 
Table 1. Minimum Insulation Levels for New Homes Required by the 2009 and 2012 IECC, 
Adapted from 2012 IECC Table R402.1.1 and 2009 IECC Table 402.1.1. (PNNL and ORNL 
2012).  
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More Info 
 
Case Study 
PNNL. 2014. Building America Case Study Technology Solutions for New and Existing Homes: 
Exterior-Side Foundation Insulation for Existing Homes. Prepared by the Pacific Northwest 
National Laboratory for the U.S. Department of Energy Building America Program. 

Climate Zone: All 

Case Study Type: Measure Specific 

Construction Type: Existing  

 

References 
PNNL and ORNL 2012. Building America Best Practices Series: Energy Renovations: 
Insulation - A Guide for Contractors to Share with Homeowners. Prepared by the Pacific 
Northwest National Laboratory and Oak Ridge National Laboratory.  
http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf 
Accessed May 20, 2014. 
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