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Abstract — As greater amounts of solar power are included 

in the power system, it is becoming increasingly important to 
have a better characterization of the variability of solar power 
over the timescales that are relevant to power system 
operations.  In this paper, we examine the distribution of ramp 
events that occur in global horizontal irradiance measurements 
from a number of sites in the western United States.  The 
distributions are found to be significantly non-normal over 
multiple timescales from 1 minute to 1 hour.  A hyberbolic 
distribution is suggested for more accurately representing the 
observed ramp distributions.  Additionally, the ramp 
distributions that occur during different classifications of 
weather patterns are characterized and significant differences 
are observed between patterns. 
 

Index Terms—Solar photovoltaic power generation, 
stochastic systems 

I.  INTRODUCTION 
olar photovoltaic (PV) power is expected to play an 

increasing role in power systems operations over the 
coming decade.  The variable and uncertain nature of PV 
power output may present issues in maintaining the 
continued reliable system operation at higher penetration 
levels of solar PV power.  One important consideration in 
solar PV integration is the characterization of how the plant 
output can change over multiple timescales and during 
different weather patterns.  A better understanding of the 
ramps that may occur in PV power output can help in 
creating better solar power forecasts, as well as help the 
system operator decide on the reserve levels necessary to 
counteract any changes in PV output levels.  In addition, 
better characterization of solar ramps can lead to more 
realistic synthesized datasets in solar integration studies.  
Mills et al. provides a general overview of the implications 
of PV integration into the larger power system, as well as a 
summary of the current state of knowledge in the field [1]. 

One important consideration in the analysis of solar PV 
power and irradiance data is the impact of geographic 
smoothing of PV power output.  Since at very short 
timescales (such as 1 minute) solar irradiance is not 
perfectly correlated, even between sites that are very close 
together, the combined output of multiple plants has smaller 
magnitude ramps in output than individual sites.  This 
geographic smoothing is noticeable even at relatively small 
scales such as between a single pyranometer and a PV plant.  
For example, Marcos et al. examined one year’s worth of 
power and irradiance data from six PV plants in Spain at the 
1-second timescale [2].  They found that the power output 
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was much smoother than the irradiance measurements due 
to the smoothing effect of the relatively large plant sizes 
(from 775 kW to 7.2 MW) compared to the point irradiance 
measurements.  Subsequent work by the same authors 
modeled the smoothing effect as a low pass filter to create a 
model that can simulate the power output of a PV plant of 
different sizes from irradiance data [3].  This geographic 
smoothing is even more pronounced when the distances 
involved are on the scale of those between cities.  Wiemken 
et al. examined the 5-minute power fluctuations from 100 
small PV plants spread out over Germany [4].  While 
individual systems could experience 5-minute power output 
changes of up to 50% of installed capacity, the combined 
100 systems did not have any events above 5% of capacity.  
Curtright and Apt used a power spectral density approach to 
investigate the ramps in four PV systems situated in Arizona 
[5].  They concluded that the power fluctuations in the range 
of 10 minutes to several hours were greater for PV systems 
than for wind systems, based on the slope of the power 
spectra observed.  Lave and Kleissl examine the individual 
and aggregate ramp rates of global horizontal irradiance 
(GHI) at four locations in the state of Colorado [6], 
including two used in this work.  A power spectral analysis 
was conducted and the aggregated output from the four sites 
was found to be smoother than the GHI ramps observed at 
each of the individual sites.   While the aforementioned 
studies have tended to focus on GHI, others have examined 
the related issues of clearness index distributions [7] and 
fluctuations in the clearness index [8]. 

In this paper, we focus only on the changes in irradiance 
at single sites.  The ramps in irradiance are statistically 
characterized for different short-term timescales, from 1- 
minute to 1-hour averages.  Additionally, the ramps that can 
be expected during different weather patterns are also 
characterized, as they can differ widely, for example 
between clear sky and overcast days.  Using statistical 
measures beyond the mean and standard deviation to help 
characterize the distributions is an important component of 
the analysis.  Many integration studies make an implicit 
assumption that a solar related variable is normally 
distributed by using the standard deviation as the sole metric 
[9].  As will be demonstrated in Section III, this may be a 
very poor assumption.  Solar data distributions can vary 
strongly depending on both the timescale and geographic 
aggregation under consideration.  Therefore, it is important 
to first analyze the observed distributions for the questions 
under study before choosing a model distribution. 

The remainder of the paper is organized as follows.  In 
Section II, the methods and data used in this study are 
detailed.  Section III reports on the results of analyzing the 
ramping event distributions over different timescales and 
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weather patterns, and demonstrates the effectiveness of 
modeling the observed ramping distributions with a model 
distribution. Conclusions are then drawn and future areas for 
examination outlined in Section IV. 

II.  METHODS AND DATA 
In this section, some of the important methods utilized in 

the study are described.  Section II-A contains information 
on the datasets analyzed.  Section II-B gives some statistical 
background that may be aid the reader in understanding the 
subsequent results. 

A.  Data Utilized 
In this paper, we have examined solar irradiance data 

exclusively from the Western Interconnection area in the 
United States, utilizing data from the National Renewable 
Energy Laboratory’s (NREL) Measurement and 
Instrumentation Data Center [10].  Each dataset contains 1 
year of GHI data at the one minute resolution level.  GHI 
data consists of two different components: the direct normal 
irradiance and the diffuse horizontal irradiance.  While for 
concentrating solar plants, only the direct normal irradiance 
is important, both components contribute for solar PV 
plants, and thus changes in GHI are examined in this study.  
Seven different sites are included in the datasets, as 
summarized in Table I.  The sites include: Solar Radiation 
Research Laboratory (SRRL), National Wind Technology 
Center (NWTC), Nevada Power Clark Station (NPCS), 
University of Nevada, Las Vegas (UNLV), Humboldt State 
University (HSU), Loyola Marymount University (LMU), 
and Sun Spot One (SSO).  Most sites have multiple years of 
data, resulting in 26 total datasets.  The datasets studied are 
all one full year of observed 1-minute GHI readings between 
the years 2005 to 2010.  Corresponding clear sky profiles 
were created for all of the datasets using the Bird clear sky 
model [11].  This data represents the expected amount of 
GHI that would be seen at each site based on the assumption 
of a clear sky, the location of the site, and the time of day 
and year.  The difference between the expected clear sky 
values and the observed 1-minute GHI values may be seen 
in Fig. 1.  While this method does not predict exact clear sky 
spectra, it is suitable for our purposes where no additional 
atmospheric measurements are available.  This clear sky 
data is used to remove the expected ramps in irradiance due 
to diurnal patterns out of the data sets.  Therefore, all 
subsequent discussion of irradiance ramps refers only to the 
unexpected ramps, i.e., those not due to diurnal patterns. 
 

TABLE I 
LOCATION AND YEARS FOR THE DATASETS USED IN THE ANALYSIS 

 
Site Location ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 

SRRL Golden, CO X X X X X X 
NWTC Boulder, CO X X X X X X 
NPCS Las Vegas, NV  X X X X  
UNLV Las Vegas, NV  X X X X X 
HSU Arcata, CA    X X  
LMU Los Angeles, CA     X X 
SSO Monte Vista, CO     X  

B.  Statistical Distributions 
 The probability density function is used to characterize 
the range of values that a random variable can take, as well 
as the likelihood of a sample falling in an interval.  To help 

characterize the observed distributions of GHI changes, we 
will utilize two further statistical measures, in addition to the 
standard deviation and mean.  The third standardized 
moment, skewness (γ), is a measure of the asymmetry of the 
probability distribution.  A positive skew is one where more 
of the values lie on the left side of the mean and the right 
side has a longer tail, while a negative skew indicates the 
opposite.  The fourth standardized moment, kurtosis (κ), is a 
measure of the peakedness of the distribution, as well as the 
thickness of the distribution tails.  Distributions with high 
kurtosis values are known as leptokurtic and those with 
small values platykurtic.  Leptokurtic distributions have 
more pronounced peaks, slimmer shoulders, and longer tails 
when compared to a normal distribution with the same 
variance.  The difference between the kurtosis of a sample 
distribution and that of the normal distribution is known as 
the excess kurtosis.  In the rest of this work, kurtosis will be 
treated synonymously with excess kurtosis since the normal 
distribution is used as a baseline distribution. 

III.  RESULTS 
 Having established the importance of characterizing solar 
GHI variability and described the relevant statistical 
background, we now characterize the distributions for the 
datasets under consideration.  In Section III-A, we compare 
the statistical distribution of solar GHI changes at varying 
timescales through both graphical and numerical techniques.  
Section III-B presents a further disaggregation of the data by 
examining the changes that occur during different weather 
patterns.   

A.  Distribution of Ramps by Timescale 
 In this analysis, we examine the changes in GHI values at 
each of the sites at five different timescales.  The original 
data provides 1-minute averages, and additional datasets 
were created by averaging the 1-minute values over 5, 15, 
30, and 60-minute intervals.  As would be expected, the 
volatility of the data decreases with increasing timescale 
because the averaging serves as a low pass filter.  This is 
illustrated in Fig. 1, where the same daily data is shown at 
different levels of aggregation. 
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Fig. 1.  Plot of the GHI ramps during the daylight hours on February 7th, 
2007 at site #8.  The 15-minute and 1-hour series are trailing averages over 
those timeframes.  The clear sky time series shows the expected output with 
no cloud activity. 
 
Histograms 
 Histograms of the data provide graphical representations 
of the GHI ramps that are useful for noticing patterns and 
making comparisons with model distributions. The number 
of bins used exceeded the number needed according to 
Scott’s rule [12] in all of the examples, and a value of n = 
200 was found to work well for most of the timescales and 
weather pattern combinations. Fig. 2 presents a comparison 
between the one minute GHI ramps observed at site #20 
with a normal distribution that has the same mean and 
standard deviation.  It is important to note that this figure is 
a magnified view centered on the bulk of the observations; 
the large standard deviation is caused by a relatively small 
number of observed ramp events with magnitude outside of 
the scale of the current figure.  The histogram is very 
peaked, demonstrating a high kurtosis value and indicating a 
large number of very small magnitude ramps, along with a 
small but significant amount of ramps with large 
magnitudes.  Additionally, the distribution is fairly 
symmetric, with only a relatively small negative skew.  As 
may be seen in Tables II and III, the kurtosis and skewness 
values for this particular site are fairly typical of the 1-
minute ramp distributions for all of the sites. 
 Fig. 3 shows a histogram of the 15-minute GHI ramps for 
site #19.  The distribution displays a much smaller kurtosis 
value than the 1-minute ramp distribution, but still possesses 
a pronounced peak and has clearly visible heavy tails.  The 
distribution also has a slightly positive skew, with larger 
magnitude instances visible on the positive side.  Once 
again, this is a typical site for the 15-minute ramp 
distributions and the decreasing kurtosis values for the 
larger timescale confirm the decreasing variability of the 
datasets with the application of the averaging low pass filter.  
As the distributions increase in timescale, they tend to 
become more normal in nature with distribution mass being 
transferred from the peak to the shoulders. 
 
 

 
 
Fig. 2.  Histogram of the one-minute GHI ramps over a 1-year period at site 
#20. γ = -0.199; κ = 70.12.  The blue line represents a normal distribution 
with the same mean and standard deviation. The number of bins used in this 
example is n = 1000. 
 

 
 
Fig. 3.  Histogram of the 15-minute GHI ramps over a 1-year period at site 
#19. γ = 0.368; κ = 11.42.  The blue line represents a normal distribution 
with the same mean and standard deviation. The number of bins used in this 
example is n = 200. 
 
Normal Quantile –Quantile Plots 
 One way that two different distributions may be 
compared is by the examination of a quantile-quantile (Q-Q) 
plot.  A normal Q-Q plot is one in which the observed 
distribution is compared to the normal distribution.  While 
the histograms of GHI ramps strongly suggest the 
distributions to be non-normal, the Q-Q plots provide 
additional reassurance.  As may be seen in fig. 4, the one-
minute GHI ramps at site #5 clearly exhibit non-normal 
behavior.  At the one minute level the high degree of 
kurtosis evidenced by the near horizontal points between the 
first and third quartiles in the Q-Q plot is typical for all of 
the sites.  If the observed distribution were normal in nature, 
the Q-Q plot would display a relatively straight line running 
from the bottom left of the figure to the top right. 
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Fig. 4.  Normal Q-Q plot for the 1-minute GHI ramps at site #5.                  
γ = -0.069; κ = 47.04.  The line in the graph passes through the first and 
third quartiles of the observed data and should run through all of the data 
points if the distribution is normal.  
 

Fig. 5 shows an example Q-Q plot for the 60-minute GHI 
ramps from site #23.  While the length of the flat section is 
shorter than for the one minute ramps, the plot still shows a 
significantly non-normal distribution, despite a kurtosis 
value that is seven times less than the preceding 1-minute 
example.  These two Q-Q plots are fairly typical for the 
timescales under consideration and once again demonstrate 
the trend of increasing normality of the observed GHI ramp 
distributions with increasing timescale.  Additional 
confirmation of the non-normality of the data can be 
provided through the use of numerical tests of distributional 
adequacy. The Shapiro-Wilk test [13] was run for both of 
the datasets displayed in Figs. 4 and 5, with the null 
hypothesis, that the observed GHI ramp data comes from a 
normal distribution, being rejected at a significance level of 
α = 0.000001, i.e., the 99.9999% confidence interval. 
 

   
Fig. 5.  Normal Q-Q plot for the 60-minute GHI ramps at site #23.                  
γ = -0.345; κ = 7.05.  The line in the graph passes through the first and third 
quartiles of the observed data and should run through all of the data points 
if the distribution is normal.  

 
Skewness 
 One tool that may be used to more fully characterize the 
GHI ramps is calculating the skewness of the distribution.  
The skewness is a measure of the symmetry of the 
distribution and can be useful for identifying if the ramping 
events occur more frequently, or with greater magnitude, in 
the up or down direction.  The skewness values for the GHI 
ramp distributions at each site and over the timescales 
considered are given in Table II.  While the relatively low 
values that are common throughout the datasets and 
timescales shown indicate that the distributions are fairly 
symmetric, there is a slight trend toward negative skew.  
This indicates that while positive ramps occur slightly more 
frequently, the negative ramps tend to be larger in 
magnitude.  This can partially be explained by the 
phenomenon of cloud focusing events, especially for the 
smaller timescales considered.  It often occurs that during a 
period of clear sky just before a cloud passes over the spot 
of irradiance measurement there will be a brief period where 
the measured irradiance will be significantly greater than the 
estimated clear sky value.  This occurs because of a greater 
reflection of light from the soon-to-pass-over cloud onto the 
spot of measurement.  This temporarily raises the measured 
irradiance so that when the cloud does pass over, the 
magnitude of the decrease in measured irradiance may be 
greater than expected irradiance level at that time. 
 

TABLE II 
SKEWNESS VALUES FOR THE DATASETS AT THE CONSIDERED TIMESCALES 

 
Site  1-Min 5-Min 15-Min 30-Min 60-Min 

1 -0.064 -0.228 -0.323 -0.331 -0.234 
2 -0.907 -0.150 -0.453 -0.384 -0.331 
3 -0.328 -0.013 -0.109 -0.251 -0.175 
4 -0.166 -0.022 0.143 -0.195 -0.333 
5 -0.069 -0.063 -0.262 -0.586 -0.584 
6 -1.517 -0.105 -0.264 -0.188 -0.190 
7 0.039 0.053 -0.071 0.071 -0.198 
8 0.068 -0.188 -0.072 0.097 -0.057 
9 -0.158 -0.312 -0.417 -0.712 -0.635 

10 -0.394 -0.284 -0.408 -0.513 -0.382 
11 -0.098 -0.137 -0.472 -0.523 -0.193 
12 0.164 0.305 0.378 0.578 0.451 
13 0.001 -0.1117 -0.474 -0.411 -0.379 
14 -0.065 -0.261 -0.444 -0.408 -0.262 
15 -1.373 -0.299 -0.192 -0.351 -0.643 
16 -0.118 -0.145 -0.280 -0.304 -0.316 
17 0.050 -0.264 -0.462 -0.624 -0.725 
18 -0.161 0.156 0.074 0.330 0.308 
19 0.034 -0.035 0.368 0.447 0.427 
20 -0.167 -0.180 -0.617 -0.746 -0.859 
21 -0.149 -0.118 -0.532 -0.868 -0.948 
22 -2.248 -0.073 -0.221 -0.131 -0.172 
23 -0.115 -0.145 -0.369 -0.442 -0.345 
24 0.231 0.399 0.868 0.311 0.180 
25 -0.046 -0.120 0.054 -0.145 0.003 
26 -0.004 -0.124 -0.068 -0.270 -0.365 

 
Kurtosis 
 Another way of characterizing the distribution of GHI 
ramps is an examination of their fourth moment, i.e., 
kurtosis.  As was seen in Figs. 2 and 3, the observed ramp 
distributions are very strongly peaked, indicating a large 
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number of very small changes, with the variance mostly due 
to a smaller number of large changes.  Measuring the 
kurtosis of the distribution provides a means to compare the 
relative frequency of large and small ramps between 
different sites and timescales.  As may be seen in Table II, 
every one of the GHI ramps distributions studied has a 
kurtosis value that exceeds the normal distribution, often 
significantly so.  It is important to recall here our previous 
definition of kurtosis as excess kurtosis, so that the kurtosis 
of a normally distributed dataset would give a kurtosis value 
of zero.  In addition, the decreasing volatility with increased 
timescale, due to the effects of averaging the data over those 
timescales, is also clearly visible in the decreasing trend of 
kurtosis values at longer timescales.  This provides 
numerical evidence for the phenomenon demonstrated in 
Fig. 1, and is a result of the central limit theorem.  This is 
most visible in the strong decrease in kurtosis values 
between the 1-minute and 5-minute datasets, as this is the 
largest proportional aggregation of the data considered 
among the timescales shown. 
 

TABLE III 
KURTOSIS VALUES FOR THE DATASETS AT THE CONSIDERED TIMESCALES 

 
Site  1-Min 5-Min 15-Min 30-Min 60-Min 

1 50.11 22.53 13.54 11.02 7.46 
2 146.38 22.86 13.46 9.96 6.18 
3 101.99 42.56 24.59 13.15 5.30 
4 108.44 40.38 24.69 14.64 6.85 
5 47.04 21.49 12.89 9.41 7.24 
6 246.96 22.27 13.45 9.46 6.73 
7 105.14 40.16 26.79 22.58 18.48 
8 87.49 39.77 23.19 19.41 17.02 
9 51.18 23.87 15.75 15.49 8.96 

10 75.88 20.74 13.66 10.12 7.80 
11 89.74 43.33 26.89 14.36 9.32 
12 51.87 22.82 11.87 7.21 2.48 
13 78.95 39.81 24.35 21.64 20.30 
14 59.83 26.74 16.12 9.75 3.97 
15 217.24 22.53 12.82 9.93 6.50 
16 48.77 19.52 12.92 9.47 6.93 
17 69.67 30.45 19.88 14.90 12.11 
18 94.74 40.28 22.28 13.10 6.77 
19 49.33 24.82 11.42 5.85 2.53 
20 70.64 30.602 20.41 16.97 13.52 
21 50.15 22.50 16.52 14.90 11.72 
22 336.15 22.68 13.12 10.11 6.94 
23 43.20 20.21 12.50 8.99 7.05 
24 60.27 42.91 21.87 4.20 0.22 
25 79.89 34.88 21.87 11.75 5.53 
26 45.32 21.76 13.36 9.98 6.97 

 
Distribution Fitting 
 Having established that the normal distribution provides 
an inaccurate representation of the ramps found in single site 
solar measured GHI, we provide an alternative parametric 
distribution that can be used to model the observed 
distribution.  The hyperbolic distribution provides a more 
accurate representation of the distinct peaks and heavy tails 
found in the observed distributions.  The tails of the 
distribution decrease exponentially, which is more slowly 
than for the normal distribution, and hence is better able to 
capture more of the observed tails of the distribution.  
Distribution parameters were fit to the data using a maximum 

likelihood method implemented in the hyperbFit function of 
the HyperbolicDist package [14] in the R statistical 
computing environment [15].  A typical example from the 
datasets of how a fit hyperbolic distribution can more 
accurately represent the observed GHI ramps than a normal 
distribution with the same mean and variance is shown in Fig. 
6. The hyperbolic distribution fit to the 1-minute GHI ramps 
for site #12 is more peaked and has heavier tails than normal 
distribution shown.  Visual inspection shows that while the fit 
of the model distribution to the observed distribution is not 
perfect, it provides a more accurate representation of the 
observed distribution’s pronounced peak and slim shoulders 
than a normal distribution with the same mean and standard 
deviation. 
 

 
 
Fig. 6.  Histogram of the one minute GHI ramps for site #12. The blue line 
represents a normal distribution with the same mean and standard 
deviation.  The black line represents a hyperbolic distribution fit to the data 
with: π = 0.0050, ζ = 0.0001, δ = 0.0015, μ = -0.1305. 
 

B.  Distribution of Ramps by Weather Pattern 

 In the absence of other sources of time-correlated weather 
data, we utilize a simple technique for classifying different 
types of weather patterns.  For each measurement site, clear 
sky GHI values were computed for each minute of the year 
based solely on the position of the sun for each day and a 
clear sky assumption using the Bird clear sky model.  We 
refer to these values as the clear sky irradiance values.  
Current weather patterns were then roughly classified by 
normalizing the measured GHI value by the clear sky GHI 
value for the previous three time steps.  Despite the higher 
variability at the smaller timescales, this simple 
classification method was found to be more effective for the 
smaller timescales due to the larger number of qualifying 
instances.  

 Three broad classifications were used: clear sky, 
intermittent cloud activity, and overcast.  To demonstrate 
the differences in GHI ramps between these three weather 
pattern classifications, we examine the distribution of GHI 
ramps from each weather pattern for the same site and at the 
same timescale.  The 5-minute timescale at site #26 was 
chosen because it serves as a good example of the 
differences between weather pattern ramp distributions.  
When examining the histograms it is important to notice the 
differences in the y-axis scale, while the x-axis scale 
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remains constant due to the normalization of ramp 
magnitudes. 
Clear Sky Conditions 
 When there is no cloud activity, the measured irradiance 
data will have considerably reduced variability.  During 
these times, the measured irradiance data will match the 
clear sky profiles reasonably well, with only relatively 
minor deviations from the expected irradiance levels.  The 
criteria for classifying a period as clear sky is that the 
normalized GHI value is between 0.95 and 1.05; i.e., 
between 95% and 105% of the expected clear sky value for 
each of the previous three time steps.  The upper bound is 
necessary due to cloud focusing events that can temporarily 
cause the measured GHI to far exceed the expected clear sky 
value, and are usually followed by a sharp drop in GHI, 
indicating intermittent cloud activity conditions are a better 
classification.  Fig 7 shows the histogram of averaged 5-
minute GHI ramps classified in the clear sky weather 
pattern.  Immediately noticeable is the small degree of 
variability in the distribution, as indicated by the very large 
kurtosis value and small standard deviation of the associated 
normal distribution.  Since most changes in measured GHI 
are due to the effects of clouds, once a time period has been 
identified as having a clear sky, most non-diurnal changes in 
measured GHI are relatively small.  Another interesting 
aspect is the relatively large skewness positive skewness 
value.  Since we are examining only the time periods 
immediately following clear sky conditions, this indicates a 
large number of occurrences of an increase in the measured 
GHI level to above that predicted by the clear sky model.  
Since we only examine a single data point past the clear sky 
classification, these data points capture the effects of cloud 
focusing events that temporarily increase the measured GHI 
before a large drop in GHI occurs due to the passing of a 
cloud. 
 

 
Fig. 7.  Histogram of the 5-minute GHI ramps over a 1-year period at site 
#26 for periods classified in the clear sky weather pattern. γ = 9.17; κ = 
119.89.  The blue line represents a normal distribution with the same mean 
and standard deviation. The number of bins used in this example is n = 200. 
 
Intermittent Cloud Activity Conditions 
 Irradiance measurements can vary quickly when, during a 
period of otherwise clear sky, a cloud momentarily passes 
overhead.  The magnitude and speed of the change in 
irradiance are dependent on the time of day and type of 
clouds present, and thus can vary widely. Therefore, periods 

of intermittent cloud activity are characterized by larger than 
normal variability.  We use a normalized GHI value in the 
range of 0.4 to 0.9 during the previous three time periods to 
classify intermittent cloud activity.  The increased 
variability seen during times of intermittent cloud activity is 
immediately apparent in Fig. 8.  The kurtosis value for this 
distribution is significantly less than for the clear sky 
weather pattern distribution and the standard deviation of 
the associated normal distribution is much greater.  The 
distribution is also slightly negatively skewed, indicating 
that large decreases are slightly more likely than large 
increases. 
 

 
Fig. 8.  Histogram of the 5-minute GHI ramps over a 1-year period at site 
#26 for periods classified in the intermittent cloud activity weather pattern. 
γ = -1.05; κ = 5.99.  The blue line represents a normal distribution with the 
same mean and standard deviation. The number of bins used in this 
example is n = 200. 
 
Overcast Conditions 
 During periods that can be described as overcast, the 
measured irradiance level is typically much lower than the 
expected clear sky value.  While the measured GHI values 
are often lower than during periods of intermittent cloud 
activity, the measured variability in the overcast case is 
often less because the magnitude of changes is smaller.  
That is, when the weather is generally overcast, there are 
less large magnitude changes because the range of measured 
GHI values is effectively limited to well below the clear sky 
value. Classification as a period with overcast conditions 
was made based on a normalized GHI value below 0.4.  As 
seen in Fig. 9, the time periods classified as overcast have 
less variability than those in the intermittent cloud activity 
weather pattern, as evidenced by the larger kurtosis value.  
The relatively large negative skew indicates that larger 
magnitude ramps occur more often in the downward 
direction than in the upward direction.  This indicates the 
persistence of overcast conditions once they have been 
experienced, as it is very rare to go from an overcast 
measurement to a near clear sky measurement, but a further 
reduction in GHI from the current level is seen often. 
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Fig.9.  Histogram of the 5-minute GHI ramps over a 1-year period at site 
#26 for periods classified in the overcast weather pattern. γ = -5.74; κ = 
36.64.  The blue line represents a normal distribution with the same mean 
and standard deviation. The number of bins used in this example is n = 200. 
 
Implications of Ramp Distributions by Weather Pattern 
 The observed differences in variability between the 
classified weather pattern types has implications for both 
solar power output forecasting, as well as the synthesis of 
solar data for integration studies.  Solar PV installations are 
often placed in locations that are judged to have the best 
resource.  In the case of solar power, this means locations 
that consistently experience extended periods of clear sky.  
This is important when synthesizing a dataset of solar 
irradiance at one of these locations. Using a single 
distribution to create variability in the dataset would 
significantly overestimate the variability during a large 
number of days during the year, if the distribution is based 
on a yearly metric, such as standard deviation of ramps.  As 
evidenced by the clear sky weather pattern histogram in Fig. 
7, the variability during periods of clear sky is significantly 
less than during the year as a whole.  A similar problem 
could occur when producing confidence intervals on a solar 
irradiance forecast.  If a single model distribution is used to 
create the confidence intervals around a point forecast for 
every time period, the uncertainty around the forecast would 
be significantly overstated during times of clear sky or 
overcast weather patterns.  On the other hand, the 
uncertainty could be understated during times of intermittent 
cloud activity.  The large differences in variability between 
easily identifiable and simply classified weather patterns 
suggest that more refined disaggregation techniques should 
be applied to both solar data uncertainty forecasting, as well 
as data synthesis algorithms. 

IV.  CONCLUSION 
In this paper, we have examined the shapes of solar 

irradiance ramping distributions at multiple timescales and 
during different weather conditions through a statistical 
analysis.  The characterization of ramping distributions can 
be important for creating solar power forecasts, as well as 
synthesizing solar irradiance data for integration studies.  
The distribution of GHI ramps at timescales ranging from 1-
minute to 1-hour were shown to be significantly non-normal 
for 26 datasets, consisting of 7 different measurement sites 
and 6 different years.  The distributions were found to be 

increasingly leptokurtic with decreasing timescale and a 
hyperbolic distribution was suggested as an alternative 
model distribution.  Portions of the GHI datasets were also 
classified into three categories, representing three commonly 
observed weather patterns.  The distribution of GHI ramps 
was found to differ significantly between classified weather 
patterns.  This suggests that individually developed model 
distributions should be used to characterize the variability of 
solar irradiance during different weather regimes. 
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