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Abstract — Wind power forecasting is one important tool in 

the integration of large amounts of renewable generation into the 
electricity system.  Wind power forecasts from operational 
systems are not perfect, and thus, an understanding of the 
forecast error distributions can be important in system 
operations.  In this work, we examine the errors from 
operational wind power forecasting systems, both for a single 
wind plant and for an entire interconnection.  The resulting 
error distributions are compared with the normal distribution 
and the distribution obtained from the persistence forecasting 
model at multiple timescales.  A model distribution is fit to the 
operational system forecast errors and the potential impact on 
system operations highlighted through the generation of forecast 
confidence intervals. 
 

Index Terms— forecasting, distribution functions, power 
systems, wind power generation, stochastic systems 

I.  INTRODUCTION 
ind power is playing an increasingly important role 

in power system operations as the amount of energy 
supplied by wind continues to increase.  Wind power, 
however, has a maximum generation limit that changes 
through time (variability) and cannot be predicted with 
perfect accuracy (uncertainty). One way system operators 
attempt to deal with the variability and uncertainty of wind 
power is through wind power forecasting.  While forecasting 
can help to reduce the impact of wind power uncertainty, 
even the best forecasts are not perfectly accurate.  
Understanding how operational wind forecasting systems 
are inaccurate can lead to more efficient system operations.  
This may be in the form of a formal process for considering 
the forecast uncertainty, such as with a stochastic unit 
commitment process, or through informal decisions made to 
increase system flexibility when the consequences of an 
inaccurate forecast could significantly hinder system 
operations.  One method of utilizing the information 
contained in previous forecast errors is through the 
production of forecast confidence intervals.  Interval 
forecasts can complement the point forecasts normally used 
by establishing bounds on the expected value, within certain 
probabilities. Calculating the forecast confidence intervals 
usually relies on assuming an error distribution for the point 
forecast.  The wind power forecast errors are often assumed 
to follow a normal distribution [1-4], despite the fact that 
this provides a poor fit for most forecasting methods and 
timescales. Weibull [5], beta [6] and Cauchy [7] 
distributions have also been utilized. Lange studied wind 
power forecast- error distributions for timescales between 6 
and 48 hours ahead, focusing on the errors incurred while 
translating wind speed data to wind power output [8].  It was 
found that while numerical weather prediction (NWP) 

model wind speed error distributions were normal, the wind 
power error distributions were not.  Focken et al. 
demonstrated that geographic diversity in wind plant 
location could provide smoothing of the forecast errors of 
aggregate wind power at longer timescales [9].   

The remainder of the paper is organized as follows.  In 
Section II, the methods and data used in this study are 
detailed.  Section III reports on the results of analyzing wind 
power forecasting-error distributions from different 
forecasting methods over a number of timescales.  Section 
IV shows the results of matching a model distribution to the 
forecast errors.  Conclusions are then drawn and future areas 
for examination outlined in Section V. 

II.  METHODS AND DATA 
In this section, we describe some of the important 

methods and data utilized in the study.  Section II-A 
contains information on the datasets analyzed.  Section II-B 
provides some background on statistical distributions and 
methods of characterizing the same.   

A.  Data Utilized 
In this study, we have utilized data from two distinct 

areas of the United States.  One dataset includes aggregated 
wind power output and forecasts from all of the wind power 
plants installed in the ERCOT interconnection for a 13-
month period.  This dataset includes all day-ahead forecasts, 
made once a day at 16:00 the day prior, for the 13-month 
period.  Practically, this means that the data is for forecasts 
provided between 8 and 31 hours in advance.  Another 
dataset used in this work includes the forecasts and actual 
production from a wind plant in the Xcel Energy Colorado 
territory with an approximate nameplate capacity of 300 
MW.  This dataset includes three months of data from the 
summer and fall seasons with hourly forecasts produced 
every 15 minutes for the next 72 hours.  Both datasets 
provide useful information as the day-ahead ERCOT 
forecasts are those most likely to be used in the unit 
commitment process, while the Xcel forecasts provide 
information on how the forecasts improve with a shorter 
forecasting interval.  It is important to note that the two 
datasets utilize methodologically similar forecasting 
systems, based on NWP models, but the forecasts come 
from different forecast providers. 

B.  Statistical Distributions 
 Probability density functions are used to describe the 
range of values that a random variable can take, and the 
likelihood of a sample falling in a particular range.  A 
number of different probability distribution functions have 
been applied to wind power forecasting errors including the 
normal distribution [1-4], the Weibull distribution [5], the 
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beta distribution [6] and the Cauchy-Lorentz distribution 
[7].  In addition to these model parametric distributions, we 
will also consider the Laplace and hyperbolic distributions.  
The Laplace distribution can help to better represent the 
ends of the distribution when there are semi-heavy tails, an 
important consideration in wind power forecasting.  The 
hyperbolic distribution is similar to the Laplace distribution, 
except that it allows asymmetry between the two sides of the 
distribution.  Both are subclasses of the generalized 
hyperbolic distribution. Fig. 1 shows examples of some of 
the different distributions thus far mentioned. 
 

 
Fig. 1.  Illustration of the different probability distributions on the x-
interval [0,1].  The Cauchy distribution displayed has parameter values of 
xo = 0.5 and γ = 0.026.  The Laplace distribution has parameter values of μ 
= 0.5 and b = 0.055.  The hyperbolic distribution has parameters π = -0.24, 
ζ = 9.62 E-5, δ = 9.79 E-6, μ = 0.5. The normal distribution is shown with 
mean = 0.5 and standard deviation = 0.1.  
 
  While the first two standardized moments are often 
applied to the characterization of wind forecasting error 
distributions, we will also consider the third and fourth 
moments.   The third moment is known as skewness and is a 
measure of the probability distribution’s asymmetry.  A 
negative skew is one where the left side of the distribution 
has a longer tail, but the bulk of the values are on the right 
hand side.  A positive skew indicates the opposite is true.  
The fourth moment is known as kurtosis and is a measure of 
the magnitude of the peak of the distribution.  Alternatively, 
kurtosis is a measure of the thickness of the tails of the 
distribution.  A distribution with a high kurtosis value is 
known as leptokurtic.  Leptokurtic distributions possess a 
more pronounced peak, slimmer shoulders, and longer tails 
when compared to a normal distribution with the same mean 
and variance.  The Cauchy and Laplace distributions shown 
in Fig. 1 demonstrate a few examples of leptokurtic 
distributions.  In the rest of this work when we refer to the 
kurtosis of a distribution, we will mean specifically the 
excess kurtosis; that is the kurtosis above that of the normal 
distribution.  

III.  RESULTS 
 Having established the importance of forecast error 
distributions and described the relevant statistical 

background, we now characterize the distributions for the 
datasets under consideration.  Section III-A compares the 
distributions resulting from operational forecasting methods 
with the normal distribution. In Section III-B, we compare 
the wind power forecast error distributions from an 
operational system at a single wind plant with those 
obtained from the persistence model over multiple 
timescales.  

A.  Operational Distributions vs. the Normal Distribution 
While it has been common to assume that wind power 

forecasting errors follow a normal distribution, this 
simplistic assumption can lead to inaccuracies in both wind 
integration studies and actual system operations.  Forecast 
errors from the persistence model have been shown to 
deviate significantly from the normal distribution [7], and an 
examination of operational forecasting errors reveals that the 
same conclusion may be drawn for timescales relevant to 
power system operations.  Forecasts that are an aggregation 
of multiple plants and multiple timescales would be the most 
likely to follow a normal distribution, following the central 
limit theorem.  Yet even for the ERCOT day-ahead dataset, 
which is an aggregation of a number of wind plants 
(approximately 9000 MW of capacity) and 24 different 
forecasting periods, an examination of the forecast error 
distribution histogram reveals that the resulting errors are 
significantly non-normal, as seen in Fig. 2. 

 

 
Fig. 2.  Histogram of all of the day-ahead forecasts for the ERCOT system 
over a 13-month period.  Note that this includes forecasts at different 
timescales, from 8 to 31 hours ahead.  γ = -0.62; κ = 1.03.  The blue line 
represents a normal distribution with the same mean and standard 
deviation. 

 
The quantile-quantile (Q-Q) plot is a means by which two 

distributions can be graphically compared. Though the 
histogram shown in Fig. 2 seems to indicate that the forecast 
error distribution of the ERCOT day-ahead forecasts is not 
normal, the use of a normal Q-Q plot provides additional 
assurance.  As is readily apparent in Fig. 3, the sample 
distribution deviates significantly from the normal 
distribution.  A Shapiro-Wilk [10] test was run for the data, 
with the null hypothesis, that the sample ERCOT data 
comes from a normal distribution, being rejected at a 
significance level of α = 0.000001, i.e., the 99.9999% 
confidence interval. 
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Fig. 3.  Normal Q-Q plot for the ERCOT day-ahead forecasts over a 13-
month period with forecasts made once per day.  The line in the graph 
passes through the first and third quartiles of the observed data and should 
run through all of the data points if the distribution is normal.    

 
Considering the operational forecast distributions for the 

single Xcel plant demonstrates that the normal distribution 
is also a poor representation of the observed forecast errors 
for smaller systems and shorter timescales.  This is shown in 
the normal Q-Q plot of hour-ahead forecast errors in Fig. 4.  
The observed Xcel data deviates very strongly from the 
normal assumption throughout the distribution.  A Shapiro-
Wilk test on the hour-ahead forecast errors confirms the 
visual analysis and rejects the normal distribution hypothesis 
at the 99.9999% confidence interval.  Further visual 
evidence is provided in the histogram of Fig. 6. 

 

 
 

Fig. 4.  Normal Q-Q plot for the Xcel plant one-hour forecasts over a 3-
month period with forecasts made once per hour.  The line in the graph 
passes through the first and third quartiles of the observed data and should 
run through all of the data points if the distribution is normal.  

B.  Operational vs. Persistence Forecasting Models 
The persistence model is often used as a naïve method for 

short-term wind forecasting, especially in wind integration 
studies without access to NWP models.  For this reason, it is 
interesting to compare the forecast error distributions that 
result from the persistence model with those from an 
operational model.  One method used to examine the error 
distributions of the two forecasting methods is to graphically 
represent the distributions with histograms.  The number of 
bins used exceeded the number needed according to Scott’s 
rule [11] in all cases, and a value of n = 100 was found to 
work well over all of the timescales for the Xcel data.   

First we will examine the hour-ahead timeframe, which is 
commonly used in the economic dispatch process.  As may 
be seen in Fig. 5, the persistence model is fairly accurate at 
this timescale, producing many very accurate forecasts with 
a few large errors.  However, the operational forecasting 
method significantly outperforms persistence, and creates a 
much different error distribution in the process.  Fig. 6 
shows the histogram from the operation forecasting system, 
with a significantly higher kurtosis value and a smaller 
skew; this indicates more accurate forecasts and less 
forecasting bias. 

 

Fig. 5.  Histogram of the one-hour-ahead persistence forecasts for one Xcel 
wind plant over a three-month period.  γ = -0.51; κ = 5.97.  The blue line 
represents a normal distribution with the same mean and standard 
deviation. 
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 Fig. 6.  Histogram of the one hour-ahead forecasts for one Xcel wind plant 
over a three month period.  γ = -0.01; κ = 17.62.  The blue line represents a 
normal distribution with the same mean and standard deviation. 
 

Another important timeframe in power system operations 
is the day-ahead forecasting that occurs for the unit 
commitment process.  While day-ahead forecasts span a 
number of hours, usually from 12-36 hours in advance, here 
we will highlight the 24-hour-ahead forecast as a 
representative sample.  At the 24-hour-ahead forecast 
interval the performance of the persistence method is 
significantly worse, and has a noticeably different error 
distribution.  Forecast errors that span the entire plant 
capacity are relatively common, as seen in Fig. 7.  
 

 
Fig. 7.  Histogram of the 24-hour-ahead persistence forecasts for one Xcel 
wind plant over a three-month period.  γ = -0.03; κ = 0.15.  The blue line 
represents a normal distribution with the same mean and standard 
deviation. 
 

The operational performance of the operational 
forecasting system at the 24-hour-ahead timeframe is also 
significantly worse than for the hour-ahead interval, as seen 
in Fig. 8.  However, the performance of the operational 
method is still significantly better than the persistence 
method.  An interesting trend in the error distributions from 
the operational method is that a significant skewness starts 
to develop at longer time frames with many small 
overproduction forecasts, but underproduction forecasts that 
are larger in magnitude.  

 
Fig. 8.  Histogram of the 24-hour-ahead forecasts for one Xcel wind plant 
over a three-month period.  γ = -0.65; κ = 1.05.  The blue line represents a 
normal distribution with the same mean and standard deviation. 
 

A comparison of the skewness and kurtosis values for 
both the persistence and operational forecasts over multiple 
forecasting intervals gives an idea of the trends that occur at 
increasing timescales.  At increasingly large timescales the 
persistence model tends to trend toward an almost uniform 
distribution, though with significant mass remaining at the 
center.  The operational model has significant skewness over 
most of the timescales considered, indicating a bias toward 
overproduction.  The kurtosis values also indicate that the 
accuracy of the forecasts for both models decrease 
significantly as the forecasting period becomes longer, as 
would be expected. 
 

TABLE I 
SKEWNESS AND KURTOSIS VALUES FOR PERSISTENCE AND OPERATIONAL 
FORECAST ERRORS FOR THE XCEL DATASET AT DIFFERENT TIMESCALES 

 
 Persistence Operational 

Timescale Skewness Kurtosis Skewness Kurtosis 
15 Minutes   -0.68 30.64 
30 Minutes   -1.36 30.88 

1 Hour -0.51 5.97 -0.01 17.62 
3 Hour -0.21 1.81 -0.88 1.97 

24 Hour -0.03 0.15 -0.65 1.05 
72 Hour -0.03 0.06 -0.56 0.84 

IV.  DISTRIBUTION MODELING 
Having established that the normal distribution is a poor 

representation of operational wind power forecasting errors 
over a number of timescales, we now examine how we may 
use a model distribution to better represent the observed 
error distributions.  One of the most important 
considerations when examining the forecast error 
distributions is accurately modeling rare events, as 
represented by the tails of the error distribution.  While 
operational forecasting systems produce very many accurate 
forecasts, they also regularly produce forecasts that are quite 
inaccurate, and could potentially lead to operational issues, 
depending on the state of the rest of the system.  
Understanding the frequency and magnitude of large 
forecast errors will help the system operator prepare for 
these contingency-like events. 

To better represent the distributions obtained from 
operational forecasting systems, we have chosen the 
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hyperbolic distribution as a model distribution.  Distribution 
parameters were fit to the data using a maximum likelihood 
method implemented in the hyperbFit function of the 
HyperbolicDist package [12] in the R statistical computing 
environment [13].  Visual inspection of the histogram reveals 
that the fitted hyperbolic function provides a better 
representation for the observed error distribution for the 
ERCOT day-ahead forecasts than does the normal 
distribution, as shown in Fig. 9.  The improvement is even 
more noticeable for the case of the single Xcel wind plant at 
the one-hour forecasting interval, displayed in Fig. 10.  Both 
fitted distributions are able to capture the leptokurtic nature of 
the observed errors, as well as the skewness of the 
distribution.  The fitted distributions tend to more accurately 
represent the taller peaks and slimmer shoulders of the error 
distributions when compared with the normal distribution.  
Additionally, the semi-heavy tails of the forecast error 
distributions are more accurately accounted for with the 
model distributions. 

 
Fig. 9.  Histogram of all of the day-ahead forecasts for the ERCOT system 
over a 13-month period. The blue line represents a normal distribution with 
the same mean and standard deviation.  The black line represents a 
hyperbolic distribution fit to the data with: π = 0.083, ζ = 1.601, δ = 0.105, 
μ = 0.006.  

 
Fig. 10.  Histogram of all of the one-hour forecasts for the Xcel plant over a 
3- month period. The blue line represents a normal distribution with the 
same mean and standard deviation.  The black line represents a hyperbolic 
distribution fit to the data with: π = 0.087, ζ = 3.88 E-5, δ = 1.76 E-6, μ = 
0.005. 

 One way that fitting a model distribution to the observed 
forecast errors may be useful is that it allows for the 
production of forecast bounds at different confidence levels 
to be computed, and subsequently applied to system 
operations.  By comparing the forecast confidence intervals 
obtained with the fitted distribution with those generated 
using a normal distribution assumption, we can get a 
glimpse of the impact that this assumption would have on 
system operations. 
 Fig. 11 provides an example from the Xcel wind plant at 
the one-hour forecasting interval for a one-day period.  The 
forecast and actual power outputs are displayed alongside 
the 95% confidence intervals of the forecast, based on a 
hyperbolic distribution in blue and a normal distribution in 
red.  The confidence intervals are based on 10,000 samples 
from the respective distributions and reflect physical 
generation limits such as the maximum and minimum 
capacities.  Since the one-hour forecast interval error 
distribution for this plant is extremely leptokurtic, the fitted 
hyperbolic distribution produces a tighter confidence 
interval due to its larger mass in the peak of the distribution.  
The total difference between the intervals produced using 
the different distributions reaches a maximum of 18 MW.  
This is an important difference as it represents 
approximately 6% of the total plant capacity.  In a small 
balancing area, or during certain system conditions, this 
difference could require a change in the economic dispatch 
to increase system flexibility and ensure that any wind 
forecasting error could be easily accommodated.  It is also 
interesting to see that the actual output does lie outside of 
the confidence intervals produced by both distributions once 
during the day, approximately the rate that would expected 
over larger sample sizes. 
 

 
Fig.11. Plot of the wind power forecasts, actual power output, and 
associated forecast confidence intervals for the Xcel plant during a single-
day interval.  The solid black line represents the actual power output and 
the dashed black line the forecast output.  The normal distribution 
confidence intervals at 95% are shown in red.  The Cauchy distribution 
confidence intervals at 95% are shown in blue. 
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V.  CONCLUSION 
In this work, we have examined the shapes of wind 

power forecasting distributions from operational forecasting 
systems at multiple timescales through a statistical analysis.  
An important result of this work is the recognition that 
operational wind power forecasting errors may be poorly 
represented by the normal distribution, an assumption 
common to wind integration studies.  It is also important to 
note that the distributions obtained from operational 
forecasting systems also differ significantly from those 
created by the persistence method, even at relatively short 
timescales.  Wind power forecast error distributions can 
differ greatly depending on a number of factors, such as size 
of the wind plant or balancing area, forecasting method 
used, and timescale considered.  Therefore, it is important to 
examine the shape of the distribution for the system being 
considered, and to keep in mind the goal of the study, before 
making any assumptions on the wind power forecast error 
distribution shape.  For example, differences that may be 
critical in an operational study may be unimportant in a 
planning study.  We have also suggested a distribution that 
may represent some types of wind power forecasting errors 
better than previously utilized parametric distributions.  
Further work will focus on a more detailed examination of 
the performance of the operational systems under different 
environmental states and power system conditions. 
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