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Effects of Second-Order Hydrodynamic Forces on Floating 
Offshore Wind Turbines 

 

Tiago M. Duarte* and António JNA. Sarmento† 
Instituto Superior Técnico, Lisboa, 1049-001 Portugal 

and 

Jason Jonkman‡ 
National Renewable Energy Laboratory (NREL), Golden, Colorado, 80401 

Relative to first-order, second-order wave-excitation loads are known to cause significant 
motions and additional loads in offshore oil and gas platforms. The design of floating 
offshore wind turbines was partially inherited from the offshore oil and gas industry. 
Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic 
tools; however, most of the existing work on floating offshore wind turbines has neglected 
the contribution of second-order wave-excitation loads. As a result, this paper presents a 
computationally efficient methodology to consider these loads within FAST, a wind turbine 
computer-aided engineering tool developed by the National Renewable Energy Laboratory. 
The method implemented was verified against the commercial OrcaFlex tool, with good 
agreement, and low computational time. A reference floating offshore wind turbine was 
studied under several wind and wave load conditions, including the effects of second-order 
slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the 
turbine’s natural frequencies, namely the surge and pitch natural frequencies. 

Nomenclature 
𝐴𝑘  =   complex wave amplitude 
𝐹𝑒𝑥(1)  = first-order wave-excitation loads 
𝐹𝑒𝑥(2)  =  second-order wave-excitation loads 
𝑋𝑖(𝜔𝑘)  = first-order excitation transfer function 
𝑋𝑖+(𝜔𝑘 ,𝜔𝑙)  =    sum-frequency quadratic transfer function (QTF) 
𝑋𝑖−(𝜔𝑘 ,𝜔𝑙)  =    difference-frequency quadratic transfer function (QTF) 
𝜔𝑘  = wave frequency 

I. Introduction 
EEP water offshore wind has the potential to be an almost endless source of renewable energy. Several floating 
platforms are currently under development to support wind turbines, based on the knowledge developed in the 

offshore oil and gas industry. However, floating offshore wind turbines (FOWTs) are not only subject to the same 
wind loads as land-based turbines, but also current and wave loads. Most of the existing state-of-the-art tools for 
simulating the coupled aero-hydro-servo-elastic dynamics of FOWTs consider only the first-order wave-excitation 
loads. However, the second-order wave-excitation forces are known to produce significant slow-drift motions and 
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ringing effects in offshore oil and gas platforms. Because little work has been conducted on this subject to date, it is 
still not clear how these loads affect FOWTs.  
 The second-order effects, proportional to the square of the wave amplitudes, are derived based on the interaction 
of a pair of regular waves, with frequencies 𝜔𝑘and 𝜔𝑙. This interaction generates low-frequency loads with a 
frequency of |𝜔𝑘 − 𝜔𝑙|, known as difference-frequency loads. In the same way, it also creates loads at 𝜔𝑘 + 𝜔𝑙 , 
known as sum-frequency loads. The difference-frequency loads are known to excite the slow-drift motions in 
slacked moored structures, and are responsible for the mean-drift loads generated by the waves. These loads are 
particularly important for soft-moored platforms (e.g., catenary), which usually have very high natural periods 
(100−150 s in surge). The sum-frequency loads are typically important for stiffer structures, like fixed-bottom 
monopole or jacket foundations or tension-leg floating platforms (TLPs), in which they are known to cause ringing 
effects in these type of structures. For FOWTs, the range of frequencies of the sum-frequency force may also excite 
the first tower-bending modes.  
 Figure 1 presents the preliminary results of the first- and second-order wave-excitation loads for the Offshore 
Code Comparison Collaboration (OC3)-Hywind spar buoy FOWT1, under an irregular sea-state modeled by a 
JONSWAP spectrum, with a significant wave height of 6 m and a peak-spectral wave period of 10 s. The vertical 
black lines represent the natural frequency values of the different modes of the floating turbine. As shown in the 
figure, the second-order loads are often neglected because they have a smaller magnitude than the first-order wave-
excitation loads. In addition, the platform natural frequencies tend to be far from the peak of the first-order 
excitation loads to avoid significant resonance. (The natural frequencies of a FOWT are designed to be either below 
the wave-excitation frequencies (lower than 0.05 Hz) or above the wave-excitation frequencies (above 0.25 Hz).  In 
the OC3-Hywind FOWT, the first tower fore-aft and side-to-side bending modes are around 0.45 Hz and the first 
blade-bending modes are around 0.65 Hz.) This shows that the difference-frequency loads, while small, may excite 
the platform motions, while the sum-frequency loads may excite the turbine degrees of freedom (DOFs). 

 
Figure 1. First- and second-order excitation loads and turbine natural frequencies (vertical black lines), for 

the OC3-Hywind spar buoy under a 6-m, 10-s JONSWAP wave spectrum. 

Some studies have already highlighted the importance of second-order loads for FOWTs in low wind conditions. 
Furthermore, results from scaled wind-wave-tank tests presented in Robertson et al. 2 indicated the importance of the 
second-order loads for these types of systems. Significant differences were found between the experimental results 
and FAST simulations outside the peak wave-energy range with only first-order hydrodynamic loads. The 
contribution of the low-frequency loads was clearly identified for all three floating platforms tested. Moreover, some 
differences between the experimental results and the first-order predictions were found for higher frequencies, which 
indicate the influence of sum-frequency loads, especially for the TLP and tower-base bending loads. Lucas3 
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compared the influence of second-order hydrodynamic loads on the OC3-Hywind spar-type floater and on the 
semisubmersible platform WindFloat. The six rigid-body DOFs of the floating platform were compared for regular 
and irregular waves, and the comparison showed that the spar is mainly dominated by the first-order component, 
while the second-order component is important mainly for the surge and pitch DOFs. For the semisubmersible 
platform, the second-order loads dominated the response, or at least they were on the same order of magnitude as the 
first-order loads.  

This paper presents the methodology used to implement second-order hydrodynamic loads in the time-domain 
within the wind turbine aero-hydro-servo-elastic tool FAST4. It makes use of quadratic transfer functions (QTFs), 
which are determined by a frequency-domain panel code (e.g., WAMIT) preprocess step. This method is described 
in Section II. Section IV includes results from a time-domain analysis for a reference FOWT under load cases 
presented in Section III.  

II. Calculation of Second-Order Forces 
This section presents the method used to compute the time-domain second-order wave-excitation loads, which are 

based on the outputs derived with a panel code. WAMIT 6.1S was used to derive the required QTFs for the 
examples presented in this paper.  

A. Time-Domain Implementation 
In order to include the second-order hydrodynamic effects, the second-order loads can be linearly superimposed 

with the first-order loads. Consider the equation of motion of a rigid platform with six DOFs subject to 
hydrodynamic loads, as given by the Cummins equation: 

(𝑀 + 𝐴∞)𝑞̈𝑡𝑜𝑡 + � 𝐾(𝑡 − 𝜏)𝑞̇𝑡𝑜𝑡(𝜏)𝑑𝜏
𝑡

0
+ 𝐶ℎ𝑦𝑑𝑟𝑜𝑞𝑡𝑜𝑡 = 𝐹𝑒𝑥(1) + 𝐹𝑒𝑥(2) (1) 

where 𝑀 is the mass matrix of the body, 𝐴∞ is the added-mass matrix, 𝐾 is the retardation matrix, 𝐶ℎ𝑦𝑑𝑟𝑜 is the 
hydrostatic stiffness matrix, and 𝑞̈𝑡𝑜𝑡 , 𝑞̇𝑡𝑜𝑡, and 𝑞𝑡𝑜𝑡 are the body acceleration, velocity, and displacements. The first- 
and second-order wave-excitation loads are described by the terms 𝐹𝑒𝑥(1) and 𝐹𝑒𝑥(2). For a single regular incoming 
wave train, the first-order wave loads are computed using: 

𝐹𝑒𝑥
(1)

𝑖 = 𝑅𝑒(𝐴𝑋𝑖𝑒𝑗𝜔𝑡) ,   𝑖 =  1, 2, … , 6 (2) 

where 𝐴 represents the complex incoming wave amplitude (characterizing the wave amplitude and phase), 𝑗 is the 
imaginary number √−1, and X𝑖  describes the ith component of the first-order wave loads per unit amplitude. For 
long-crested (without directional spreading) irregular sea states, the total load can be seen as a superposition of the 
different wave-frequency components: 

𝐹𝑒𝑥
(1)

𝑖 = 𝑅𝑒(∑ 𝐴𝑘𝑋𝑖(𝜔𝑘)𝑒𝑗𝜔𝑘𝑡𝑁
𝑘=1 ) ,   𝑖 =  1, 2, … , 6, 𝜔𝑘 = (𝑘 − 1)𝛿𝜔 (3) 

The normalized first-order wave-excitation force 𝑋𝑖(𝜔𝑘) is a function of the platform shape, wave frequency, 
and wave direction. It is a complex-value vector that accounts for loads out-of-phase with the wave elevation. In 
FAST, Eq. (3) is implemented via a fast Fourier transform (FFT). 

Similar to the first-order excitation, the second-order hydrodynamic load is also frequency dependent. The 
second-order loads for long-crested (without directional spreading) irregular sea states are divided into the 
contributions of the sum- and difference-frequencies between pairs of incoming waves. For each pair of incoming 
waves with amplitude 𝐴𝑘 and 𝐴𝑙 and frequencies 𝜔𝑘 and 𝜔𝑙 , one can obtain two different QTFs, 𝑋𝑖+(𝜔𝑘 ,𝜔𝑙) and 
𝑋𝑖−(𝜔𝑘 ,𝜔𝑙), corresponding to the ith component of the sum- and difference-frequency loads. The second-order loads 
can therefore be obtained using the double Fourier transform: 

𝐹𝑒𝑥
(2)
𝑖 = 𝑅𝑒�∑ ∑ �𝐴𝑘𝐴𝑙𝑋𝑖+(𝜔𝑘,𝜔𝑙)𝑒

𝑗(𝜔𝑘+𝜔𝑙)𝑡 + 𝐴𝑘𝐴𝑙
∗𝑋𝑖

−(𝜔𝑘,𝜔𝑙)𝑒
𝑗(𝜔𝑘−𝜔𝑙)𝑡�𝑁

𝑙=1
𝑁
𝑘=1 � ,  𝑖 =  1, 2, … , 6 (4) 

where the asterisk (*) denotes the complex conjugate.  
1. Symmetry of the QTF Matrices 
One should note the following symmetry relations of the QTF matrices: 

𝑋𝑖+(𝜔𝑘 ,𝜔𝑙) = 𝑋𝑖+(𝜔𝑙 ,𝜔𝑘)  and 𝑋𝑖−(𝜔𝑘 ,𝜔𝑙) = 𝑋𝑖−(𝜔𝑙 ,𝜔𝑘)∗ (5) 
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Taking for now just the difference-frequency term of Eq. (4), one can separate the double summation into three 
regions: 𝑙 = 𝑘, 𝑙 > 𝑘, and 𝑙 < 𝑘. In addition, by introducing the variable 𝜇− = 𝑘 − 𝑙, the double summation 
becomes: 

𝐹𝑒𝑥
(−)(2)

𝑖 = 𝑅𝑒 �∑ 𝐴𝑘𝐴𝑘∗𝑋𝑖−(𝜔𝑘,𝜔𝑘)𝑁
𝑘=1 + ∑ ∑ 𝐴𝑙+𝜇−𝐴𝑙

∗𝑋𝑖
−�𝜔𝑙+𝜇− ,𝜔𝑙�𝑒

𝑗�𝜔𝜇−�𝑡𝑁−𝜇−

𝑙=1
𝑁−1
𝜇−=1

+∑ ∑ 𝐴𝑙𝐴𝑙+𝜇−
∗𝑋𝑖

−(𝜔𝑙,𝜔𝑙+𝜇−)𝑒−𝑗(𝜔𝜇−)𝑡𝑁−𝜇−

𝑙=1
𝑁−1
𝜇−=1

� ,    𝑖 =  1, 2, … , 6 (6) 

Using the relation in Eq. (5), the last two terms of the previous equation can be grouped and one obtains5: 
𝐹𝑒𝑥(−)(2)

𝑖 = 𝑅𝑒�∑ 𝐴𝑘𝐴𝑘∗𝑋𝑖−(𝜔𝑘 ,𝜔𝑘)𝑁
𝑘=1 + 2∑ 𝐻𝜇−𝑒𝑗(𝜔𝜇−)𝑡𝑁−1

𝜇−=1 � ,  𝑖 =  1, 2, … , 6 (7) 

with   𝐻𝜇− = ∑ 𝐴𝑙+𝜇−𝐴𝑙∗𝑋𝑖−�𝜔𝑙+𝜇− ,𝜔𝑙�
𝑁−𝜇−
𝑙=1 ,   𝜇− = 1,2, . . . ,𝑁 − 1 (8) 

The first term in Eq. (7) corresponds to the mean-drift loads and equals the sum of the terms on the diagonal of 
Figure 2 (a). The second term represents the slow-drift load and corresponds to the sum of the terms with a circle 
over the blue lines.  

Figure 2. Symmetries of the difference-frequency QTF (left) and sum-frequency QTF (right) matrices, for 
𝑵 = 𝟏𝟎. 

  
a) b) 

Comparing Eq. (6) to the difference-frequency term of Eq. (4), it must be noted that the computational effort is 
significantly reduced, as one makes use of the symmetry and only takes the lower triangular part of the 
matrix 𝑋𝑖−(𝜔𝑘 ,𝜔𝑙). However, the great advantage of this method is that instead of computing a double inverse 
Fourier transform (over 𝜔𝑘 and 𝜔𝑙 as in Eq. (4)), it is only required to perform a single inverse Fourier transform 
over 𝜔𝜇− . Therefore, instead of having 𝑁 inverse Fourier transforms each with 𝑁 terms, only 𝑁 ∗ (𝑁 + 1)/2 sums 
and a single inverse Fourier transform with 𝑁 − 1 terms are employed.  

Extending this result to the sum-frequency QTF by introducing the variable 𝜇+ = 𝑘 + 𝑙, only a single Fourier 
transform over 𝜔𝜇+ can be performed. This corresponds to summing all the terms along each blue line in Figure 2 
(b). It should be noted that 0 ≤ 𝜔𝑘 ≤ 𝜔𝑚𝑎𝑥, and for the difference-frequency case 0 < 𝜔𝜇− ≤ 𝜔𝑚𝑎𝑥, but for the 
sum-frequency case 0 ≤ 𝜔𝜇+ ≤ 2𝜔𝑚𝑎𝑥. Therefore, we obtain: 

𝐹𝑒𝑥
(+)(2)

𝑖 = 𝑅𝑒�∑ 𝐻𝜇+𝑒𝑗(𝜔𝜇+−1)𝑡2𝑁
𝜇+=2 � ,  𝑖 =  1, 2, … , 6 (9) 

with:  �
𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖

+(𝜔𝑙 ,𝜔𝜇+−𝑙)
𝜇+−1
𝑙=1 ,               𝜇+ = 2,3, . . . ,𝑁 + 1

𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖
+(𝜔𝑙 ,𝜔𝜇+−𝑙)

𝑁
𝑙=𝜇+−𝑁 ,           𝜇+ = 𝑁 + 2, . . . ,2𝑁

 (10) 
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The approach simplifies the computation of the sum-frequency loads, using only 𝑁2 sums and a single inverse 
Fourier transform with 2𝑁 − 1 terms, instead of a double inverse Fourier transform with 𝑁2 terms in Eq. (4). To 
make use of the symmetry of the QTF matrix,  the matrix should be split into three regions: 𝑙 = 𝑘, 𝑙 > 𝑘, and 𝑙 < 𝑘. 
Using the symmetry relations in Eq. (5) we obtain: 

 𝐹𝑒𝑥
(+)(2)

𝑖 = 𝑅𝑒�∑ 𝐴𝑘𝐴𝑘𝑋𝑖
+(𝜔𝑘,𝜔𝑘)𝑒𝑗(2𝜔𝑘)𝑡𝑁

𝑘=1 + 2∑ 𝐻𝜇+𝑒𝑗(𝜔𝜇+−1)𝑡2𝑁
𝜇+=2 � ,  𝑖 =  1, 2, … , 6 (11) 

with:  �
𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖

+(𝜔𝑙 ,𝜔𝜇+−𝑙)
�(𝜇+−1)/2�
𝑙=1 ,     𝜇+ = 2,3, . . . ,𝑁 + 1

𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖
+(𝜔𝑙 ,𝜔𝜇+−𝑙)

�(𝜇+−1)/2�
𝑙=𝜇+−𝑁 ,     𝜇+ = 𝑁 + 2, . . . ,2𝑁

 
(12) 

where ⌊𝑥⌋ represents the floor function of 𝑥 defined as: 

⌊𝑥⌋ = 𝑚𝑎𝑥{𝑚 ∈ ℤ|𝑚 ≤ 𝑥} (13) 

where ℤ is the set of integers (positive, negative, and zero). Once again, the first term in Eq. (11) represents the 
inverse Fourier transform over the terms on the main diagonal of Figure 2 (b). The second term of Eq. (11) 
represents the inverse Fourier transform over the diagonal blue lines. The first interval of sums in Eq. (12) represents 
the sum over the round blue dots and the second interval represents the sum over the blue triangles. With this 
simplification, we further reduce the computational effort to ((𝑁2 − 𝑁) 2⁄ ) sums and two inverse Fourier 
transforms with 𝑁 and 2𝑁 − 1 terms, respectively. 

The total second-order load is therefore the contribution of the following terms: 

𝐹𝑒𝑥
(2)
𝑖 = 𝑅𝑒�∑ 𝐴𝑘𝐴𝑘

∗𝑋𝑖
−(𝜔𝑘,𝜔𝑘)𝑁

𝑘=1 + 2∑ 𝐻𝜇−𝑒
𝑗(𝜔𝜇−)𝑡𝑁−1

𝜇−=1 + ∑ 𝐴𝑘𝐴𝑘𝑋𝑖
+(𝜔𝑘,𝜔𝑘)𝑒𝑗(2𝜔𝑘)𝑡𝑁

𝑘=1 +

2∑ 𝐻𝜇+𝑒𝑗(𝜔𝜇+−1)𝑡2𝑁
𝜇+=2 � ,  𝑖 =  1, 2, … , 6 

(14) 

where: 
𝐻𝜇− = ∑ 𝐴𝑙+𝜇−𝐴𝑙∗𝑋𝑖−�𝜔𝑙+𝜇− ,𝜔𝑙�

𝑁−𝜇−
𝑙=1 ,   𝜇− = 1,2, . . . ,𝑁 − 1 

 �
𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖

+(𝜔𝑙 ,𝜔𝜇+−𝑙)
�(𝜇+−1)/2�
𝑙=1 ,     𝜇+ = 2,3, . . . ,𝑁 + 1

𝐻𝜇+ = ∑ 𝐴𝑙𝐴𝜇+−𝑙𝑋𝑖
+(𝜔𝑙 ,𝜔𝜇+−𝑙)

�(𝜇+−1)/2�
𝑙=𝜇+−𝑁 ,     𝜇+ = 𝑁 + 2, . . . ,2𝑁

 
(15) 

 
2. Mean-Drift Load 
The second-order excitation load includes a mean different from zero, called the mean-drift load (constant term 

in Eqs. (6) and (14)). This term arises from the quadratic interactions of the first-order problem, and therefore can be 
computed without requiring the solution of the second-order potential. This can be proven by averaging the solution 
of the second-order excitation loads. The mean excitation load can be given in terms of a WAMIT-derived transfer 
function 𝑋𝑖𝐷𝑟𝑖𝑓𝑡: 

𝐹𝑒𝑥
(𝑑𝑟𝑖𝑓𝑡)

𝑖 = 𝑅𝑒(∑ 𝐴𝑘𝐴𝑘
∗𝑋𝑖

𝐷𝑟𝑖𝑓𝑡(𝜔𝑘)𝑁
𝑘=1 ) ,  𝑖 =  1, 2, … , 6 (16) 

3. Newman’s Approximation 
Because of the computational expense in a frequency-domain panel code of determining the full QTF matrices 

and the double sum present in Eq. (4), many of the commercial time-domain codes use Newman’s approximation 
[6]. This approach is useful in simplifying the calculation of the slowly varying drift forces, especially for platforms 
with large natural periods, like the case of moored floating systems. Newman’s approximation estimates the off-
diagonal terms of the difference-frequency QTF from the diagonal terms. This means that the second-order 
difference-frequency behavior can be estimated using only the mean-drift QTF derived from the first-order solution.  

Using the Newman’s approximation, the second-order slow-drift loads are estimated using the following 
equation6: 

𝐹𝑒𝑥
(−)(2)

𝑖 =

�𝑅𝑒�∑ 𝐴𝑘�2𝑋𝑖−(𝜔𝑘,𝜔𝑘)𝑒𝑗𝜔𝑘𝑡𝑁
𝑘=1 ��

2
�
𝑋𝑖
−(𝜔𝑘,𝜔𝑘)>0

− �𝑅𝑒�∑ 𝐴𝑘�−2𝑋𝑖−(𝜔𝑘,𝜔𝑘)𝑒𝑗𝜔𝑘𝑡𝑁
𝑘=1 ��

2
�
𝑋𝑖
−(𝜔𝑘,𝜔𝑘)<0

 , 

 𝑖 =  1, 2, … , 6 

(17) 
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Standing et al7 provided a more accurate alternative to this equation, which should be considered in future work. 
The accuracy of Newman’s approximation is better if there is a small variation in the off-diagonal terms when 
compared with the mean diagonal. On theoretical grounds, the function 𝑋𝑖− should be continuous in both 𝜔𝑘 and 𝜔𝑙 , 
so the near-diagonal term 𝑋𝑖−(𝜔𝑘,𝜔𝑙) should be well-approximated by the mean of 𝑋𝑖−(𝜔𝑘 ,𝜔𝑘) and 𝑋𝑖−(𝜔𝑙 ,𝜔𝑙). 
Also, the important difference terms are those with low frequency, which arise from the near-diagonal terms in 𝑋𝑖−. 
The far-from-diagonal values produce much higher frequencies that have little effect on a platform of sufficiently 
large inertia. It is also particularly suitable for narrow-banded spectrums, where it can be assumed that the only 
terms of importance are when 𝜔𝑘 and 𝜔𝑙 are close to each other, therefore the off-diagonal terms can be neglected 
because of the low magnitude of 𝐴𝑘𝐴𝑙 for large difference-frequencies. 

On the other hand, it should be noted that the Newman approximation can be poor in shallow water, so the full 
QTF method is preferable in such cases. Additionally, if the vessel is subject to a significant spread of different 
wave directions, wave pairs with very different directions use far-from-diagonal QTF values but still give low 
frequency drift-load contributions if their periods are close to each other. So, the full QTF method is also preferable 
in cases with a spread of wave directions. There is no equivalent approximation for the sum-frequency loads. 

B. Verification of the Implementation 
The equations above were implemented in MatLab before being fully incorporated into FAST. The same 

irregular wave cases were run in both OrcaFlex8 and the developed code. The results were derived using the same 
QTF matrices for a reference TLP in both codes. The comparison is discussed in the following sections. All of the 
results refer to a sea state represented by a JONSWAP wave spectrum with a 6-m significant wave height and 10-s 
peak-spectral wave period. The comparisons shown in this section are aimed only at verifying the implementation 
and assessment of the equations’ computational efficiency. 

1. Mean-Drift Load 
The mean-drift load is constant in time and only depends on the diagonal terms of the difference-frequency QTF 

matrix. The results of the mean-drift load obtained with the methods presented in Section II. A were compared with 
the OrcaFlex results. The error between the codes is smaller than 0.2%, which might be caused by the different 
frequency-domain discretizations. 

 
 

Figure 3. Second-order drift surge force calculated with the Newman’s approximation and the full QTF.  
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Figure 4. Sum-frequency surge force. 

2. Difference-Frequency QTF 
The difference-frequency loads were implemented using the single inverse Fourier transform method, described 

by Eqs. (7) and (8) and made use of a computationally efficient FFT. The JONSWAP wave spectrum was 
discretized with 40,960 equally spaced frequency steps, while OrcaFlex used 100 discrete frequency steps, spaced 
with an equal energy discretization. An example of the time-series obtained can be seen in Figure 3.  

The agreement for the Newman’s approximation method (blue lines) is very good. For the full-QTF method (red 
and purple lines), some high-frequency content was found in the OrcaFlex signal not present in the implemented 
code. This occurred because the frequency range considered was limited to 0 to 1.5 rad/s to save computational time. 
A sensitivity analysis showed that increasing this range would significantly reduce the differences shown.  

3. Sum-Frequency QTF 
The sum-frequency loads were implemented using the approach described by Eqs. (11) and (12) and made use of 

computationally efficient FFTs. To verify the sum-frequency loads, the same approach that was used in the 
difference-frequency case was applied. The OrcaFlex outputs were compared to the implemented code using the 
same wave elevation in both codes. An example of the obtained time-series is presented in Figure 4. Overall, the 
OrcaFlex outputs agreed well with the implemented code. 
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Figure 5 presents the computational time for the implemented methods. The results were obtained for 4096 s of 

the previously described spectrum and were used for computing the loads in the 6 DOF. While the MatLab results 
used 40,960 equally spaced frequency steps to describe the spectrum, OrcaFlex used a discretized spectrum with the 
equal energy method (only 100 frequencies). The OrcaFlex model that was created neglected all features except the 
second-order loads to minimize the additional calculations not performed in the MatLab code and obtain a realistic 
comparison. These results show the efficiency of the computational method that was implemented, which was 
enhanced by using the inverse FFT routines. OrcaFlex performs the sum for each discrete frequency, which 
significantly reduces the number of discrete frequencies used but still requires higher computational times. 

III. Case Study 
This section presents a reference FOWT and the load cases studied in this paper. For the case study, the 

modeling tool FAST was coupled with the MatLab implementation. As the second-order loads in the time domain 
depend only on the incoming waves, and not on the motion of the platform, they can be precalculated before running 
the FAST simulation. The second-order load time-series are precalculated by MatLab, read into FAST, summed 
with the first-order hydrodynamic loads calculated within FAST, and coupled with the additional aero-servo-elastic 
features of FAST. The same wave spectrum and time-domain realization was used by both programs. 

A. Reference Platform 
The OC3-Hywind spar-type FOWT was chosen for this detailed analysis. The wind-wave-tank tests presented by 

Robertson et al2 pointed out that this platform might be affected by both difference- and sum-frequency forces. The 
proprieties of this platform are defined in1 and summarized in Figure 6. The difference- and sum-frequency QTFs 
were derived using WAMIT 6.1S9. 
  

 
Figure 5. CPU time for the different frequency methods implemented 
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Main Properties of OC3 Hywind 

 

Rated Power 5 MW 

Configuration Upwind, Three Blades, Variable 
Speed 

Rotor Diameter 126 m 

Hub Height 90 m 

Cut-in, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 

Platform Draft 120 m 

Platform Diameter Above Taper 6.5 m 

Platform Diameter Below Taper 9.4 m 

Depth to Top of Taper 4 m 

Depth to Bottom of Taper 12 m 

Center of Mass (0,0,-78) 

 
Figure 6. Main properties of the reference OC3-Hywind FOWT. 

B. Load Cases 
A partial set of design load cases (DLCs) from those defined in the International Electrotechnical Commission 

(IEC) 61400-3 offshore wind turbine design standard were used in this work. In order to assess the influence of the 
second-order loads on the overall system, normal production load cases were selected. Load cases 1.1 and 1.2 were 
used to assess the ultimate and fatigue loads under normal production. The load case with extreme wave loads (1.6) 
provides conditions that intensify the second-order effects, resulting in higher extreme loads. (Note that the 50-yr 
extreme sea state was used for all wind speeds in place of a conditional severe sea state as defined by the IEC for 
this load case). Finally, load case 2.1 was used to study the platform loads with the turbine parked (the 
corresponding simulations did not include the transient fault condition). These load cases are summarized in Table 
1.  

 
Table 2 summarizes the met-ocean conditions used for a reference site in the North Sea. For more details on the 

met-ocean data, please consult Jonkman10. Each load case was run for wind speed bins of 2 m/s. For each wind 
speed bin, six 10-min simulations of 10 min each were run with different wave seeds and turbulent wind speed 
fields. The wave height was selected for each wind speed according to the table. For each wind speed, two 
simulations were run with each peak-spectral wave period value presented in the table, totaling the six simulations 
per wind speed bin. 
 

Table 1. Design Load Cases. 
Turbine 
Condition 

DLC Wind 
Condition 

Wave 
Condition 

Wind Wave 
Directionality 

Sea 
Current 

Type of 
Analysis 

Power 
Production 

1.1 NTM 
Vin<Vhub<Vout 

NSS  
Hs=E[Hs| Vhub] 

Aligned Neglected Ultimate 

1.2 NTM 
Vin<Vhub<Vout 

NSS  
Hs=E[Hs| Vhub] 

Aligned Neglected Fatigue 

1.6 NTM 
Vin<Vhub<Vout 

SSS 
Hs= Hs50 

Aligned Neglected Ultimate 

Parked 
Condition 

2.1 NTM 
Vin<Vhub<Vout 

NSS 
Hs=E[Hs| Vhub] 

Aligned Neglected Ultimate 

NTM: Normal Turbulence Model 
NSS: Normal Sea State 
SSS: Severe Sea State 

Vin: Cut-In Wind Speed 
Vhub: Hub-Height Wind Speed 
Vout: Cut-Out Wind Speed 

Hs: Significant Wave Height 
Tp: Peak-Spectral Wave Period 
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Table 2. Met-Ocean Conditions. 

Wind Speed (m/s) Significant Wave Height (m) Peak-Spectral Wave Period(s) 
4 1.586 (NSS) 8,97 12,67 16,43 
6 1.758 (NSS) 7,98 12,67 17,37 
8 1.837 (NSS) 7,98 12,67 17,37 

10 2.194 (NSS) 9,15 13,38 17,60 
12 2.402 (NSS) 9,15 13,38 17,60 
14 2.988 (NSS) 8,68 11,97 15,25 
16 3.373 (NSS) 10,09 13,38 16,66 
18 3.673 (NSS) 10,09 13,38 16,66 
20 4.441 (NSS) 11,26 14,08 16,90 
22 4.720 (NSS) 11,03 13,38 15,72 
24 5.521 (NSS) 12,67 15,49 18,30 

Any 15.04 (SSS) 19.22 

IV. Results 
This section presents the results from the analysis of the OC3-Hywind FOWT. Spectral analysis results of the 

different load cases are presented in the next subsection, followed by the ultimate loads and fatigue results. Each 
load case was run without second-order loads, and with Newman’s approximation, difference-frequency full QTF, 
sum-frequency full QTF, and both difference- and sum-frequency QTFs together (the complete second-order 
solution). Platform surge and pitch motion, fairlead tension of one of the upwind mooring lines, and tower-base 
bending moments are also analyzed in the following sections. 

A. Spectral Analysis 
1. No Wind Loads 
Figure 7 shows the power spectral results with and without second-order loads for conditions without wind. 

These results correspond to the IEC load case 2.1 after the fault-induced shutdown. For this analysis, a JONSWAP 
spectrum with 3-m significant wave height and an 8-s peak-spectral wave period was chosen. The influence of the 
second-order loads is clearly visible for frequencies below the wave range, as predicted by Lucas3. In most of the 
figures, the results with the difference-frequency QTF (red line) are below the results of the complete second-order 
solution (purple line). The first-order results (dark blue line) are below the sum-frequency results, especially below 
the wave region, where the sum-frequency loads are negligible. 

The surge power spectral density shows a significant increase in surge motion below the first-order wave range, 
especially around the pitch and surge natural frequencies (0.035 Hz and 0.01 Hz, respectively). There is a significant 
increase of the pitch motion caused by the difference-frequency load, which is largely neglected when using 
Newman’s approximation. The fairlead mooring tension shows a similar behavior, with an increase around the pitch 
natural frequency (0.3 Hz). It should be noted that by using the quasi-static mooring module of FAST, we are 
neglecting the mooring line dynamics that would contribute to an increased response for the sum-frequency range. 
Finally, the tower-base moment shows an increase around the pitch natural frequency caused by the difference-
frequency loads. No significant effect related to the sum-frequency loads was observed. This result is most likely 
because the large platform inertia is acting as a filter to these higher frequency loads. 
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Figure 7. Power spectral results obtained without wind loads. Top left: surge motion; top right: pitch motion; 

lower left: fairlead tension; lower right: tower-base moment. 
 
2. Normal Sea State with Wind Loads 

 The operating turbine generates a significant thrust force acting on the tower top, forcing the turbine to drift from 
its equilibrium position. This force is usually significantly higher than the mean-drift surge force caused by second-
order wave loads. Figure 8 presents the power spectral density of the platform motion and loads under the operating 
load case (1.1 / 1.2). The surge motion is now dominated by the wind thrust force, and no significant differences can 
be found for the case including second-order loads. However, the influence of the difference-frequency loads around 
the platform-pitch natural frequency is still visible in the pitch motion. Once again, Newman’s approximation 
underestimates the second-order excitation for this region, when compared to the full QTF approach.  

The loads acting on the mooring line follow the surge-motion results. No significant differences were found 
between the cases, as the wind loads were driving the surge motion and consequently the mooring line tension. For 
the tower-base bending moment, some additional loads were found around the pitch natural frequency of the spar 
buoy. 

3. Extreme Wave Load Case 
Load case 1.6 is dominated by an extreme sea state of 15.69-m significant wave height and 19.22-s peak-spectral 

wave period (see Figure 9). Despite the wind load acting on the rotor, the influence of the second-order loads is now 
visible for the platform surge motion, especially around the pitch natural frequency. This effect is also visible on the 
pitch motion, where once again Newman’s approximation tends to underestimate this effect. This difference also 
occurs for the mooring line tension and tower-base moments. Because of the larger periods, the sum-frequency loads 
now have a visible influence on the tower-base moment (although still very small), around the first tower-bending 
natural frequency. 
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Figure 8. Power spectral results obtained for IEC load case 1.1 and 1.2. Top left: surge motion; top right: 

pitch motion; lower left: fairlead tension; lower right: tower-base moment. 
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Figure 9. Power spectral results obtained for IEC load case 1.6. Top left: surge motion; top right: pitch 

motion; lower left: fairlead tension; lower right: tower-base moment. 

B. Ultimate Loads 
Figure 10 presents the ultimate loads found for the different load cases studied. No partial load factors were 

included in the results. The difference-frequency loads caused the biggest increase in maximum surge displacement 
(under the extreme wave conditions). However, no significant changes were observed in the maximum fairlead 
tension. As for the surge motion, IEC load case 1.6 caused the highest differences in the extreme platform-pitch 
motion. The same result occured for the ultimate tower-base bending moment, in which the case including the sum-
frequency loads showed the highest moment. 
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Figure 10. Ultimate loads for the different load cases studied. Top left: surge motion; top right: pitch motion;  

lower left: fairlead tension; lower right: tower-base moment. 

C. Fatigue Analysis 
Fatigue analysis was performed for load case 1.2. using MLife11. The lifetime damage results were normalized 

by the case without second-order loads. A value higher than one indicates an increase in the lifetime damage, as 
presented in Figure 11. Very small changes were found between the fatigue life predictions with and without 
second-order loads. The biggest changes occured for the tower-base bending moment with the full difference-
frequency QTF. However, these changes still represent less than a 1% increase in fatigue life. One possible reason 
for the lack of difference is the length of the simulation. According to the IEC, each load case for fixed-bottom 
offshore wind turbines should be run for 10 minutes with different random seeds. However, this simulation length 
seems to be too short to capture the effects of the slow-drift motion of FOWTs, especially in platforms with very 
large surge/sway natural frequencies. An investigation of the sensitivity to the simulation length should be 
performed in a follow-up study. 
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Figure 11. Fatigue life damage normalized by the case without second-order effects. 

V. Conclusions and Future Work 
A computationally efficient method to determine the second-order wave loads on FOWT in the time-domain was 

presented in this paper. The method was implemented in MatLab and verified against the commercial code 
OrcaFlex. The results indicated very good agreement with significant time savings.  

A preliminary analysis of the influence of these second-order wave loads on the OC3-Hywind floating spar-type 
wind turbine was also performed. The spectral analysis revealed a significant increase of the surge and pitch motion 
of the floating platform below the first-order wave-frequency region. Significant differences were found between 
Newman’s approximation and the full QTF method, especially close to the pitch natural frequency, but no 
significant contribution was found from the sum-frequency loads. The effects of second-order wave loads were 
significantly reduced for the load cases with the active turbine because of the dominance of wind loads. The ultimate 
load analysis revealed minor influences of the difference-frequency loads, which occurred particularly for the 
extreme wave load case. The fatigue analysis did not show any significant effect from the second-order wave loads. 

The MatLab routine will soon be converted to Fortran and implemented directly within FAST, which will enable 
further analysis of FOWTs with second-order hydrodynamic loads. The spreading of the sea state across different 
wave directions (not discussed in this paper) is also being considered in this implementation. The simulation length 
used in this analysis should be revisited in a future study, as evidence has shown that 10-min simulations are not 
long enough to fully resolve the effects of the slow-drift second-order loads. Also, the importance of second-order 
wave loads on other floating platforms will be assessed; second-order loads are likely to be more important in 
semisubmersibles and TLPs. 
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