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Abstract— High penetration renewable integration studies 
require solar power data with high spatial and temporal 
accuracy to quantify the impact of high frequency solar 
power ramps on the operation of the system. Our previous 
work concentrated on downscaling solar power from one 
hour to one minute by simulation. This method used clearness 
classifications to categorize temporal and spatial variability, 
and iterative methods to simulate intra-hour clearness 
variability. We determined that solar power ramp 
correlations between sites decrease with distance and the 
duration of the ramp, starting at around 0.6 for 30-minute 
ramps between sites that are less than 20 km apart. The sub-
hour irradiance algorithm we developed has a noise floor that 
causes the correlations to approach ~0.005. Below one 
minute, the majority of the correlations of solar power ramps 
between sites less than 20 km apart are zero, and thus a new 
method to simulate intra-minute variability is needed. These 
intra-minute solar power ramps can be simulated using 
several methods, three of which we evaluate: a cubic spline fit 
to the one-minute solar power data; projection of the power 
spectral density toward the higher frequency domain; and 
average high frequency power spectral density from 
measured data. Each of these methods either under- or over-
estimates the variability of intra-minute solar power ramps. 
We show that an optimized weighted linear sum of methods, 
dependent on the classification of temporal variability of the 
segment of one-minute solar power data, yields time series 
and ramp distributions similar to measured high-resolution 
solar irradiance data. 

Keywords – downscaling solar power; solar power 
integration; automatic generator control; power spectral 
density; solar power variability 

I.  INTRODUCTION 
Integration studies of solar power range from capacity 

expansion to operations and production cost to high-
frequency transient stability analysis. The impact analysis 
framework of each integration study defines the geographic 
and temporal scope, as well as the resolution of the input 
data. For instance, production cost operation studies require 
solar power data with temporal resolution less than 5-
minutes in order to accurately calculate operating reserve 
requirements [1] and 5 to 60 minutes to optimize the unit 
commitment and economic dispatch models [2,3]. The 
distance between injection busses in the transmission or 
distribution network often determines the geographic 
resolution required for the solar power data. Aggregation of 
point source solar power data to the injection busses should 
show a reduction of solar power variability with an increase 
in area “covered” by the aggregated data [4]. In addition, 

the solar data set should be coherent across geographic and 
temporal scales, such that nearby sites have a higher degree 
of correlation in the change in solar power output (ramp) 
than sites that are further apart. Likewise, ramps with a 
shorter duration have a lower correlation between two sites 
than longer duration ramps [2,5]. 

The power system balances generation and load on a 
second-to-second basis via several mechanisms including 
automatic generator control (AGC). The majority of 
demand is met by scheduling generation units 24 to 36 
hours in advance to come online. However, system 
operators also schedule “spare” capacity to make up any 
real time differences between the schedule generation and 
the actual demand [6]. The rules and procedures for 
balancing the system by deploying operating capacity, at 
time scales of less than 5-minutes, are based on a long 
history of operating the system. High temporal resolution 
solar data enables researchers to explore new methods of 
balancing the system [7], as the penetration of variable 
generation increases. This paper consists of four sections: 
overview of the four-second algorithm (FSA), analysis of 
four-second variability, modelling of four-second 
variability, and comparing the FSA outputs to measured 
data. 

II. FOUR-SECOND ALGORITHM OUTLINE 
The FSA was designed on two premises. First, the 

correlation between changes in solar power output over a 
time interval of 4-seconds at one site are uncorrelated with 
simultaneous ramps at any other site in the system. In other 
words, the cloud properties that cause high frequency 
changes in solar power are uncorrelated over the region. 
Indeed, below one minute, the majority of the correlations 
of solar power ramps between sites less than 20 km apart 
are zero. Second, the variability of the 4-second solar 
power ramps is related to the 1-minute solar power ramp 
variability. Thus, if the 1-minute solar power values are 
smooth, we expect that the 4-second solar power values 
are also smooth. Fig. 1 outlines the steps in the FSA. The 
first step is converting the solar irradiance data to clearness 
index (measured solar data divided by the clear sky 
expected solar data), which removes the diurnal shape of 
the solar data. The second step segments the data into 60-
minute periods for analysis and computation. There are 
four phases for step 2: classify the variability (discussed in 
Section III), calculate the fast Fourier transform (FFT), 
model high frequency behavior (discussed in Sections IV 
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and V), and calculate the inverse FFT (IFFT). Step 3 
concatenates the segments of modelled 4-s data, removes 
discontinuities, and applies the appropriate spatial filter. 
Step 4 rescales the clearness index data to irradiance data. 
Weekley et al. (2013) provides a thorough discussion of 
the downscaling method described in this paper, see Ref. 
[8]. Other groups have pursued algorithms for downscaling 
solar power data from satellite images [9], and from 
numerical weather prediction models [10]. 

III. HIGH-FREQUENCY SOLAR DATA 
To estimate the values of 4-second time interval solar 

power from 1-minute values of solar power, we used two 
datasets of ground measured solar global horizontal 
irradiance (GHI) with a temporal resolution of 1-second. 
The Oahu dataset consists of 17 irradiance sensors covering 
an area of 0.25 km2, which represents approximately a 10 
MW photovoltaic power plant [11]. The Golden dataset 
consists of 4 irradiance sensors in close proximity 1. A 
single day of simultaneous global horizontal irradiance 
from all sensors in the Oahu dataset is shown in Fig. 2a, the 
average of the sensors is shown in Fig. 2b. 

 
Figure 1. Outline of the four-second algorithm. 

As stated earlier, we expect the ramps in the 4-second 
data to be related to the ramps in the 1-minute data. In order 
to classify the temporal variability, we calculate the clear 
sky GHI (GHIclear) for each location/time step and then 
calculate the clearness index: GHImeas/ GHIclear. Each 60-

                                                           
1  The sensors located at the National Renewable Energy 
Laboratory are part of the Measurement and Instrumentation Data 
Center (MIDC): http://www.nrel.gov/midc/ 

minute segment per dataset is assigned to one of six classes 
of clearness index temporal variability (classes are shown 
in Fig. 3). These classes of temporal variability are 
described primarily by the standard deviation of the 
clearness index ramps, from smoothly varying cloud cover 
(Class I) to cumulus cloud cover (Class V). Further 
discussion of the clearness index classification can be found 
in Ref. [2]. We use the temporal classification of the 1-
minute data as an input to the algorithm because the high 
frequency characteristics of the time series are separable by 
temporal class. For instance, Fig. 4 shows the time series 
and power spectral density of a segment from the Oahu 
dataset, classified as Class V. 

 
Figure 2. Global horizontal irradiance time series for individual sites 
(upper) in the Oahu dataset and the average of all 17 sites (lower). 

 
Figure 3. Examples of the five classes of temporal variability are shown 
in plots (a) through (e). Classes I-III (a-c) are based on the width of the 
distribution of ramps. Classes IV-V (d,e) are characterized by a rapid 
change between two or more different cloud cover densities (e.g., clear 
sky with small, dense clouds moving at a high altitude). Panel (f) shows 
how the temporal classes are defined in terms of the mean (μci) and 
standard deviation (σci) of the clearness index for 60 consecutive minutes. 
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Figure 4.  Time series and power spectral density of one hour (Class V) of 

clearness index with 4-second resolution. 

The power spectral density demonstrates the magnitude 
of each frequency in the time series [12]. Fig. 5 
demonstrates the average power spectral density (PSD) of 
the 1-second data for each temporal variability class, 
calculated by analyzing all of the high frequency measured 
data in the Oahu dataset over a year. The classes with the 
least variability have the lowest amplitude of power 
spectral density across all frequencies. The average PSD is 
one of four downscaling methods that are linearly summed 
with class-specific optimal weighting to estimate the high-
frequency behavior of the solar PSD (described in Section 
V). 

 
Figure 5. Average spectral amplitude for Oahu dataset, shown as a 

function of temporal variability class. 

IV. MODELLING FOUR-SECOND VARIABILITY 
The average PSDs underestimate the variability 

observed in measured 4-second data. We test this by 
comparing the ramps of the modelled data resulting from 
the IFFT to the ramps of the measured 4-second. The 
average plots of the solar PSD appear to be linear in log-log 
space, which is suggestive of a power law. Regions of 
differing slope suggest that the physical processes that 
cause variability are not continuous across all times scales. 

For instance, the physics of cloud formation, movement, 
and dissipation drive variability on time scales between 1-
minute and 20-minutes. However, variability below 1-
minute might be driven by the internal movement of clouds. 

Fig. 6 shows two additional methods for estimating the 
PSD in the high frequency region. Starting with the PSD of 
the 1-minute data (the input to the four-second algorithm), 
we use a linear fit to either all of the frequencies in the 1-
minute PSD (black line) or the frequencies between 
0.004167 and 0.00833 (2 to 4 minutes, pink line) which is 
the higher half of the 1-minute PSD frequencies. The fit 
over all frequencies is representative of the general trend 
during the hour, while the fit over the higher frequency 
region, which tends to have a shallower slope, suggests that 
the variability of the data on time scales near 2-minutes is 
larger than the higher frequency data. 

We compare the distribution of 4-second ramps using 
the linear fits in Fig. 6, as well as a cubic spline fit to the 1-
minute data. The linear fit over a subset of frequencies 
generally overestimated the magnitude of the 4-s ramps. 
Both the linear fit over all frequencies and the cubic spline 
fit underestimated the 4-s ramps. However, some classes of 
variability seemed to be better suited to each of the four 
methods presented. For instance, Class 0 and I are best 
described by either the linear fit over all frequencies or the 
average PSD from measured data, while Class V data 
between 30s and 2 minutes is best described by a linear fit 
over higher frequencies. This suggests that a linear 
combination of methods, with a different set of coefficients 
to weight the contribution of each method, for each class of 
variability, may yield the most accurate results. 

 
Figure 6. Power spectral density for measured 1-second data, 
corresponding 1-minute data, and three methods of estimating high-
frequency amplitude: linear fit to a subset of frequencies (2-4 minutes), 
average fit over all Class V data, linear fit to all frequencies in the 1-
minute data. Vertical lines are labeled in the corresponding time domain. 
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V. RESULTS 
The weights of the four downscaling methods listed in 

Table 1 were optimized using a constrained least-squares 
linear fit. The objective function of the optimization was to 
minimize the difference between the ramp distributions of 
the weighted sum of the four methods and the measured 
data. Table 1 shows the coefficients for calculating a 
weighted linear sum of the downscaling methods. Spline is 
the dominant method for the low variability classes (0, I, 
II, III), which is consistent with our observation that low 
variability in the 1-minute data is correlated with low 
variability in the 4-second data. Class V data, which is 
representative of cumulus cloud movement, is fit primarily 
by the linear fit to the subset of higher frequencies in the 1-
minute PSD. One possible physical explanation for this is 
that cumulus cloud edges have non-uniform cloud optical 
depth and move, relative to a point on the surface, on the 
order of 1 to 20 seconds. 

Fig. 8 shows the ramp distributions of measured and 
modelled 4-second clearness index, for a single site in 
Colorado. Both datasets have been filtered to represent a 
2.4 MW PV plant, covering an area of 0.063 km2. Each 
hour of daytime data was classified by the measured 1-
minute variability; hours with the same classification were 
binned together. Table 2 shows both the mean square error 
for the time series comparison, as well as the 4-s ramp 
distribution comparison. Clearness index ranges from 0 to 
1 for the time series and from 0 to 0.5 for the ramp 
distribution. Classes 0, I, and II perform extremely well, as 
expected since the variability of the 1-minute and 4-second 
GHI is very small. Classes III, IV, and V perform less well 
in term of mean squared error for the time series. This is 
also expected given that the modelled data is not meant to 
predict “when” the 4-second variability occurs in the hour, 
but is meant to model the frequency and magnitude of the 
4-second variability. That is apparent in the low mean 
squared error of the ramp distributions for all classes. 
 

Table 1. Coefficients for a weighted linear combination of downscaling 
methods (in time domain), by class of temporal variability. 

Downscaling 
Method 

Class of Temporal Variability 
0 I II III IV V 

Spline 0.47 0.71 0.44 0.47 0.31 0.32 
Linear fit over 
all frequencies  0.27 0.01 0.28 0.35 0.36 0.22 

Linear fit over a 
subset of higher 
frequencies  

0.11 0 0.11 0.1 0.16 0.45 

Spectral 
amplitude 
estimated from 
historical 
average FFT 

0.15 0.15 0.16 0.08 0.17 0.01 

 

Table 2. Mean square error of modelled 4-second clearness index data 
compared to measured data. 

Measure Class of Temporal Variability 
0 I II III IV V 

time 
series 

9.2E-
05 

6.3E-
06 

5.2E-
04 

1.8E-
03 

1.9E-
03 

1.6E-
02 

4-s 
ramp 
dist. 

6.6E-
07 

8.8E-
11 

3.6E-
06 

9.1E-
06 

1.0E-
05 

4.9E-
06 

CONCLUSION 
Solar power studies have moved from questions like 

“can the grid operate with high penetrations of variable 
energy?” to “what are the economics to operating the grid 
with high penetrations of variable energy?” Four-second 
solar power data enables researchers to investigate new 
methods of balancing the system under high penetrations 
of solar power. We present a method of downscaling 1-
minute solar data to 4-seconds by optimizing the linear 
combination of four methods for extending the PSD from f 
= 1/120 to 1/2 Hz (from 2-minutes to 2-seconds): spline, 
historic average, full linear fit to PSD, and linear fit to 
subset of higher frequencies in the PSD. The optimized 
weights vary by classification of the 1-minute temporal 
variability. We demonstrate the quality of the fit by 
observing the mean squared error of the modelled data in 
both the time series and the distribution of 4-second ramps. 
The modelled data performs very well in comparing the 
distributions of ramps, which makes this dataset ideal for 
use in integration studies concerned with the rapid change 
in solar power output effecting system balancing 
requirements. 
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Figure 7.  Comparison of 4-s ramp distributions (by variability class) for 

modelled and measured data. 


