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 

Abstract—One of the critical challenges of wind power 
integration is the variable and uncertain nature of the resource. 
This paper investigates the variability and uncertainty in wind 
forecasting for multiple power systems in six countries. An 
extensive comparison of wind forecasting is performed among the 
six power systems by analyzing the following scenarios: (i) wind 
forecast errors throughout a year; (ii) forecast errors at a specific 
time of day throughout a year; (iii) forecast errors at peak and 
off-peak hours of a day; (iv) forecast errors in different seasons; (v) 
extreme forecasts with large overforecast or underforecast errors; 
and (vi) forecast errors when wind power generation is at 
different percentages of the total wind capacity. The kernel 
density estimation method is adopted to characterize the 
distribution of forecast errors. The results show that the level of 
uncertainty and the forecast error distribution vary among 
different power systems and scenarios. In addition, for most 
power systems, (i) there is a tendency to underforecast in winter; 
and (ii) the forecasts in winter generally have more uncertainty 
than the forecasts in summer. 
 

Keywords-wind forecasting; reliability; power systems; 
uncertainty; variability 

I. INTRODUCTION 

The worldwide nameplate capacity of wind power has 
reached 282,482 MW as of the end of 2012 [1]. Wind energy in 
many countries has already achieved a relatively high level of 
penetration, such as 30% in Denmark, 16% in Spain, and 7.3% 
in Germany [1]. The variable and uncertain characteristics of 
wind power mean that short-term forecasting of wind power 
plays an important role in grid operations at these penetration 
rates. In addition, uncertainties in the wind forecast 
significantly impact the integration costs of wind energy; 
forecast inaccuracies can result in substantial economic losses 
and reliability issues. 

A. Overview of Wind Forecasting 

Wind forecast models can be broadly divided into two 
categories [2]: (i) forecasting based on the analysis of historical 
time series of wind; and (ii) forecasting based on numerical 

 
 

weather prediction models. The first type of forecast model 
generally provides reasonable results in the estimation of 
long-term horizons, such as mean monthly, quarterly, and 
annual wind speed. Measure-correlate-predict is one of the 
most popular methods used for long-term wind power 
forecasting [3, 4].  In addition, statistical and machine learning 
techniques that utilize historical data have been shown to work 
well for forecast horizons less than one hour [5, 6]. For 
short-term horizons more than one hour (daily or hourly 
forecasts), the impact of atmospheric dynamics becomes more 
important, and numerical weather prediction models become 
more suitable. Short-term wind power forecasting (between 1 
hour and 72 hours) is uniquely helpful in power system 
planning for the unit commitment and economic dispatch 
process. 

For wind integration studies and stochastic unit 
commitment models, it is important to characterize wind power 
forecast errors, especially for large and infrequent forecast 
errors. A variety of topics on forecast errors have been studied 
in the literature, including distributions of wind power forecast 
errors [7-10], uncertainties in wind forecasting [10-12], the 
economic value of improved wind forecasting [13], and wind 
power ramp forecasting [14, 15].    

B. Research Motivation and Objectives 

Different wind forecasting strategies are adopted in many 
power systems. Actions taken by power system operators to 
compensate for wind forecast errors are affected by many 
factors, e.g., the location of the power system, wind capacities, 
and time of year. Understanding forecasting errors and 
uncertainties in different power systems and scenarios is 
helpful for (i) developing improved wind forecasting 
technologies for a specified power system and (ii) better 
allocating resources to compensate for wind forecast errors. To 
this end, this paper investigates the uncertainty in wind 
forecasting at different times of year. In addition, an extensive 
comparison of wind forecasting is performed using large-scale 
wind power prediction data from six countries: the United 
States, Finland, Spain, Denmark, Norway, and Germany. In 
this study, day-ahead wind power forecasts were supplied for 
the six countries or balancing areas within a country. 
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II. METHODOLOGIES  

To comprehensively understand the variability and 
uncertainty in wind forecasting, the following scenarios were 
analyzed in this study: (i) hourly day-ahead wind power 
forecast errors throughout a year; (ii) forecast errors at a 
specific time of day (hour 14:00 in this paper) throughout a 
year; (iii) forecast errors at peak (7:00 – 22:00) and off-peak 
hours of a day; (iv) forecast errors during different seasons 
(e.g., summer or winter); (v) extreme events with large 
overforecast or underforecast errors (more than 25% wind 
forecast error normalized by total wind capacity); and (vi) 
forecast errors when the wind power generation was at different 
percentages of the total wind capacity: less than 25% of the 
total wind capacity, between 25%  and 75% of the capacity, and 
more than 75% of the capacity.  

For each scenario, the distribution of forecast errors and the 
uncertainty in the day-ahead forecasts were estimated. The 95th 
percentile of 1-hour-ahead wind forecast errors, an important 
factor for the decision of flexibility reserve requirements, was 
also compared among different countries. 

A. Distribution of Wind Power Forecast Errors 

Multiple distribution types have been analyzed in the 
literature to quantify the distribution of wind power forecast 
errors, including the hyperbolic distribution [8, 9], kernel 
density estimation (KDE) [10], the normal distribution [16, 17], 
and Weibull [18] and beta distributions [7]. KDE was adopted 
in this paper to model the distribution of wind power forecast 
errors for different scenarios.  

KDE is a nonparametric approach to estimate the 
probability density function of a random variable. It has been 
widely used in the wind energy community for wind speed 
distribution characterization [19, 20] and wind power 
forecasting [10, 21]. For an independent and identically 
distributed sample, nxxx ,,, 21  , drawn from some 

distribution with an unknown density f , the KDE is defined 

as [19] 
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In the equation, )/()/1()( hKhK   has a kernel function K 

(often taken to be a symmetric probability density) and a 
bandwidth h (the smoothing parameter). 

B. Uncertainty in Wind Forecasting  

In this paper, the uncertainty in wind forecasting was 
evaluated by the Rényi entropy and standard deviation of 
forecast errors. An information entropy approach was proposed 
in the literature [11, 12] for assessing wind forecasting methods. 
Entropy in information theory is a measure of the uncertainty in 
a random variable; and a smaller information entropy (or 
standard deviation) value indicates less uncertainty in the 
forecasting.  In this paper, Rényi entropy was adopted to 
quantify the uncertainty in wind forecasting, which is defined as 
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where α is a parameter that allows for the creation a spectrum of  

Rényi entropies; and ip  is the probability density of the thi  

discrete section of the distribution. Larger values of α favor 
high probability events, whereas smaller values of α weight all 
of the instances more evenly [11]. The Rényi entropy can 
utilize all of the information present in the forecast error 
distributions to evaluate the uncertainty, whereas the standard 
deviation shows only how much variation or dispersion exists 
from the average or expected value. 

C. Heat Maps of Wind Power Forecast Errors  

One of the most prevalent concerns associated with 
integrating a large amount of wind power into the grid is the 
ability to handle large forecast errors in wind power output. To 
analyze the ramping characteristics in different power systems, 
a heat map of wind forecast errors was developed to present the 
mean forecast error per month and hour of day, which allows 
the operator to simultaneously see the timing and magnitude of 
forecast errors. 

III. VARIABILITY AND UNCERTAINTY ANALYSIS FROM 

OPERATIONAL SYSTEMS 

In this work, we followed the convention that the error ( we ) 

is equal to the forecast ( wfP ) minus the actual (
waP ) wind 

power value.  

wawfw PPe   (3) 

The wind power forecast errors from the six countries were 
observed at both the day-ahead and 1-hour-ahead timescale. 
The day-ahead forecasts were estimated using different 
methodologies for the six countries. The 1-hour-ahead 
forecasts for the six countries were synthesized using a 
1-hour-ahead persistence approach. It is important to note the 
1-hour-ahead persistence approach was adopted for analyzing 
power system flexibility but might not be used in some of the 
analyzed power systems. To compare the forecasts in different 
countries, the day-ahead and 1-hour-ahead wind power forecast 
errors were normalized by the total wind capacity in the 
analyzed power system. The following subsections show the 
comparisons in the uncertainties in the forecasting, 
distributions of forecast errors, and heat maps based on 
day-ahead forecasts; the 95th percentiles of forecast errors were 
compared based on 1-hour-ahead forecasts. 

A. United States 

Day-ahead forecasts for the United States were taken from 
the Electric Reliability Council of Texas (ERCOT) 
interconnection for the year 2010, with a total wind capacity of 
approximately 9,000 MW. The wind power plants are well 
dispersed in the state of Texas. 

The results showed that the level of uncertainty and the 
forecast error distribution vary among different scenarios. For 
the distributions estimated using KDE shown in Fig. 1(a), it 
was observed that the distribution of forecast errors at peak 
hours (7:00 – 22:00) followed a similar trend with the 
distribution estimated using the entire year data. It was 
observed from the comparison between distributions at peak 
and off-peak hours that there were relatively more overforecast 
events at off-peak hours and relatively more underforecast 
events at peak hours. This indicates that the required amount of 
“down” reserves to accommodate wind forecast errors may be 
relatively less than the amount of “up” reserves at off-peak 
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hours, and vice versa at peak hours. By comparing distributions 
among low- medium-, and high-power levels, most 
overforecast events were observed in the low-power scenario, 
followed by medium- and high-power scenarios. This also 
indicated that more “down” reserves are required for the 
high-power scenario, which is more likely to happen at peak 
hours. For extreme events, distributions of overforecast and 
underforecast events were estimated separately. 

Figure 1(b) shows wind forecast errors versus power output 
with 95% confidence interval bands. Confidence intervals, 
represented by red and blue lines, can be used to determine “up” 
and “down” reserve requirements to compensate for a certain 
percentage of occurrences. The range of wind power 
(horizontal axis in Fig. 1(b)) was divided into 10 groups; for 
each group, the average power was calculated as well as the 

confidence intervals that cover 95% of forecast errors. The 
confidence interval bands were then interpolated from the 
group averages. It was observed that more reserves are required 
when wind power generation is approximately 3,500 MW 
4,500 MW. 

The mean hourly day-ahead wind power forecast error per 
month of the ERCOT power system is shown in Fig. 1(c). We 
observed that it tends to underforecast in winter, and tends to 
overforecast at nights in summer. Power system operators 
could mitigate the effects of wind integration on power system 
reliability by adopting appropriate statistical corrections of 
wind forecasting errors based on the pattern of forecasting 
accuracies. It is important to note that the color key in the heat 
map of different countries is represented by different scales, 
with each provided at the bottom of the figure. 

 
(a) Distributions of day-ahead forecast errors. (b) 95th percentiles of 1-hour-ahead forecast errors. (c) Heat map of day-ahead forecast errors. 

Figure 1. Analysis of wind forecast errors of the power system in the United States. 

B. Finland 

The wind capacity analyzed for Finland was the smallest in 
the study, with 130.6 MW of rated power spreading throughout 
23 sites in Finland. The forecasting horizon was 12 hours to 36 
hours, which can be used for day-ahead trading purposes. 

Figure 2 shows the results of wind forecast error analysis for 
the year 2012. As with the U.S. ERCOT power system, the 
distribution of forecast errors at peak hours followed the 
distribution using the entire year’s data. Most forecast errors for 
the high-power scenario were negative, and this tendency can 

help power system operators determine appropriated 
corrections beforehand with high levels of wind power 
generation. The distribution of forecast errors in July was also 
similar with the distribution using the entire year’s data. 

The 95th percentiles of 1-hour-ahead forecast errors in Fig. 
2(b) indicated large reserve requirements with medium levels 
of wind power integration. From the heat map of forecast errors 
in Fig. 2(c), most underforecast errors were observed from  
January to March, and most overforecast events occurred in 
May, and from September to December. 

 
(a) Distributions of day-ahead forecast errors. (b) 95th percentiles of 1-hour-ahead forecast errors. (c) Heat map of day-ahead forecast errors. 

Figure 2. Analysis of wind forecast errors of the power system in Finland. 
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C. Spain 

The Spanish system data included 14,000 MW of total wind 
capacity for the year 2011. The wind power plants are well 
dispersed in the country. Figure 3 shows the results of wind 
forecast error analysis in Spain. 

Distributions of large underforecast and overforecast errors 
were not adequately characterized because of fewer points for 
the two scenarios. As shown in Fig. 3(a), most forecast errors 
for the high-power scenario were negative (as with the analysis 

results in Finland), and this tendency can help power system 
operators determine appropriated corrections beforehand. 

As shown in the figure of 95th percentiles of 1-hour-ahead 
forecast errors, the maximum “down” reserve requirement was 
needed when the wind power reached the total wind capacity. It 
was observed from the heat map that, as with the U.S. ERCOT 
power system, it tended to be underforecast in December and 
January, and overforecast during nights and early morning from 
May to September. 

 
(a) Distributions of day-ahead forecast errors. (b) 95th percentiles of 1-hour-ahead forecast errors. (c) Heat map of day-ahead forecast errors. 

Figure 3. Analysis of wind forecast errors of the power system in Spain. 

D. Denmark 

The Danish system data included 3,265 MW of total wind 
capacity for the year 2012. The wind power plants are well 
dispersed in the country, including all onshore wind power 
plants in Demark.  The forecasting horizon was 12 hours to 36 
hours.  

In Fig. 4(a), a multimodal distribution of forecast errors was 
observed in the scenario of a large overforecast. By comparing 
the distributions of forecast errors in January and June, we 
observed that the overall distribution in January was on the left 
side of the distribution in June. This observation indicated 
relatively more underforecast events in January and more 

overforecast events in June for the Danish power system. As 
shown in Fig. 4(b), more underforecast events were observed in 
the medium-power scenario than that in the high-power 
scenario, which differs with power systems in other countries. 

The heat map of forecast errors presents most overforecast 
events at nights and early morning between May and 
September. Most forecasting errors between November and 
March were negative, except during the time period between 
7:00 and 13:00 in December. Overall, the overforecast time 
period in the heat map was more continuous than that in other 
countries, and this observation also applied to underforecast 
time periods. 

 
(a) Distributions of day-ahead forecast errors. (b) Distributions at different power levels. (c) Heat map of day-ahead forecast errors. 

Figure 4. Analysis of wind forecast errors of the power system in Denmark. 
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E. Norway 

The Norwegian system data included 284 MW of total wind 
capacity spreading throughout four sites for the year 2011. The 
forecasting horizon is 12 hours to 36 hours.  

Figure 5 shows the results of wind forecast error analysis. A 
multimodal distribution of forecast errors was also observed in 
the case of large overforecast as with the Danish power system, 
which is not shown in Fig. 5. Similar to most power systems, 
most underforecast events were observed in the high-power 

scenario, followed by medium- and low-power scenarios. 
Figure 5(b) shows wind forecast errors versus power output 
with 95% confidence interval bands for the Norwegian power 
system. Maximum “up” reserves are required with 100 MW to 
150 MW wind power generation, whereas maximum “down” 
reserves are required with a slightly larger wind power 
generation, approximately 140 MW to 190 MW. It was 
observed from the heat map in Fig. 5(c) that there were 
significantly more underforecast events than overforecast 
events throughout the year. 

 
(a) Distributions of day-ahead forecast errors. (b) 95th percentiles of 1-hour-ahead forecast errors. (c) Heat map of day-ahead forecast errors. 

Figure 5. Analysis of wind forecast errors of the power system in Norway. 

F. Germany 

The German system data included 26,000 MW of total wind 
capacity for the year 2010. The wind power plants are well 
dispersed in the country. The forecast of Germany is a sum of 
forecasts for four transmission system operators. The forecast 
of each control zone is a combination of approximately 3 to 6 
different wind power forecast systems based on different 
numerical weather prediction models. The forecasts are used 
for the trading activities on the day-ahead market and are 
consequently generated between 08:00 and 11:00 every 
morning.  

Figure 6 shows the results of wind forecast error analysis. 
The distribution of forecast errors in the German power system 

was narrower than that in other countries, which shows a better 
wind forecasting skill in the German power system. Therefore, 
extreme events in the German power system are defined as 
more than 10% wind forecast error by total wind capacity. As 
shown in Figs. 6(a) and 6(b), (i) the distribution of forecast 
errors for the high-power scenario presented a multimodal 
characteristic and (ii) the overall distribution in July was on the 
left side of the distribution in January, which presents an 
opposite trend with power systems in other countries. The heat 
map in Fig. 6(c) shows that there were relatively more 
overforecast events than underforecast events throughout the 
year. 

 
(a) Distributions of day-ahead forecast errors. (b) Distributions at different seasons. (c) Heat map of day-ahead forecast errors. 

Figure 6. Analysis of wind forecast errors of the power system in Germany. 
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G. Comparison of Uncertainty in Wind Forecasting 

The uncertainty in wind forecasting is evaluated by the 
Rényi entropy and standard deviation of forecast errors. Figure 
6 shows the values of Rényi entropy and standard deviation for 
different scenarios. For the calculation of Rényi entropy, the 
number of bins for probability estimation and the value of α are 
set to be 100 and 2, respectively. In Fig. 6, black and red points 
represent the Rényi entropy and standard deviation, 
respectively; the left axis is Rényi entropy and right is standard 
deviation. According to the Rényi entropy metric, the wind 
forecasting in the Danish power system maintains a relatively 
lower level of uncertainty for most scenarios. Based on the 
standard deviation values of wind power forecast errors, there is 
the least uncertainty in the forecasting for the German power 
system, followed by the Danish power systems. The forecast 
error variability is relatively lower for Denmark, Germany, and 
Spain, which all have a significant amount of well-dispersed 
wind power. It was also observed that, for most power systems, 
the forecasts in winter generally had more uncertainty than the 
forecasts in summer. 

The Rényi entropy of power systems in the United States, 
Finland, Spain, Denmark, Norway, and Germany, respectively, 
varied 10.5%, 84.2%, 69.6%, 175.7%, 28.6%, and 37.7% 
among the eleven scenarios. The variation in the standard 
deviation values among the eleven scenarios was more 
significant than that in the Rényi entropy. 

 
Figure 6. Uncertainty in wind forecasting of different scenarios. 

IV. CONCLUSION 

This paper compared the variability and uncertainty in wind 
forecasting for multiple power systems from six countries. For 
each power system, eleven scenarios were analyzed to estimate 
distributions of forecast errors. Multimodal characteristics were 
observed in the extreme overforecast scenarios in the Danish 
and Norwegian systems, and in the high-power scenario in the 
German system. The distribution of forecast errors in the 
German power system was relatively narrower than that in other 
countries. For most power systems, there were more 
underforecast events observed in the high-power scenario than 
in the low- and medium-power scenarios. 

The 95th percentiles of 1-hour-ahead forecast errors showed 
that maximum “up” and “down” reserves were required when 
actual wind power generation was at medium to high 
percentages of the total wind capacity. For most systems, the 
forecasts in winter presented an underforecast tendency and 
more uncertainty. There was generally less uncertainty in 
forecasting when wind power plants were dispersed throughout 
a wide geographic area.  

Future work will (i) investigate multiple years of wind 
forecasting data to obtain a general trend of forecast errors, and 
(ii) compare the different methodologies in the forecasting 
systems in different countries and seek to identify the possible 
sources of bias and errors in the forecasts. 
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