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Definitions 

CARB Consortium for Advanced Residential Buildings 

CFM50 Cubic feet per minute of airflow needed to create a change in 
building pressure of 50 Pascal 

ESA Exposed surface area of building envelope 

FG Fully guarded blower door value ( CFM50) 

LTO Leakage to outside (CFM50) 

MVLR Multivariable linear regression 

PCC Partial correlation coefficient 

RCWTSA Ratio of common wall to total surface area 

RESATSA Ratio of exposed surface area to total surface area 

RF Random Forest 

RFS Ratio between fully guarded and solo blower door values 

RWATESA  Ratio of window area to total exposed surface area 

SO Solo blower door value (CFM50) 

TSA Total surface area of building envelope 
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Executive Summary 

The most common method for measuring air leakage is to use a single blower door to pressurize 
and/or depressurize the test unit. In detached housing, the test unit is the entire home and the 
single blower door measures air leakage to the outside. In attached housing, this “single unit,” 
“total,” or “solo” test method measures both the air leakage between adjacent units through 
common surfaces as well air infiltration or exfiltration across the exterior, noncommon surfaces 
of the enclosure. Measuring and minimizing this total leakage are recommended to avoid indoor 
air quality issues between units, reduce energy losses to the outside, reduce pressure differentials 
between units, and control stack effect. However, two significant limitations of the total leakage 
measurement in attached housing are: 

• For retrofit work, if total leakage is assumed to be all to the outside, the energy benefits 
of air sealing can be significantly overpredicted.  

• For new construction, the total leakage values may result in failing to meet an energy-
based house tightness program criterion. 

A practical method needs to be developed to quantify the fraction of total leakage for an attached 
dwelling that is to the outside. The consensus of a Building America Expert Meeting held in 
March 2012 confirmed the need for research to develop such a method. 

Using blower door test data available from four multifamily projects, the framework for a simple 
algorithm based upon a solo blower door test result and a few basic dwelling unit characteristics 
has been outlined. While the subject dataset is very limited, preliminary analyses suggest that 
statistically significant predictors are present and can support the development of an algorithm. 
The key next step is to collect additional data for analyses and algorithm development so they 
may be more broadly applied with confidence. 

The scope of this research is to investigate an approach for developing a viable simplified 
algorithm that can be used by contractors to assess energy efficiency program qualifications 
and/or compliance based upon solo test results. This report describes the work that has been done 
thus far and is intended for the building science research community that is familiar with blower 
door test protocols. The algorithm would not replace the more rigorous, and more accurate, 
guarded blower door method that is appropriate for building science research. Also, this research 
effort does not intend to suggest appropriate targets for maximum air leakage values.  
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1 Introduction and Background 

Guarded blower door testing, or fully guarded (FG) testing, is a pressurization method that is 
often recommended for measuring air leakage to the outside. This method utilizes multiple 
blower doors to pressurize or depressurize adjacent spaces to the same level as the unit being 
tested; maintaining a neutral pressure across common walls, ceilings, and floors acts as a “guard” 
against air exchange between units. The measured air leakage in the test unit is air leakage to the 
outside. While preferred for assessing energy impact, this method is often not implemented 
because the equipment and labor requirements can be daunting. In retrofit situations where 
adjacent units may be occupied, simultaneous access can be logistically difficult. These 
challenges have been noted by other Building America researchers as well (Lyons 2013; 
Neuhauser et al. 2012; Ueno et al. 2012; Wytrykowska et al. 2012). 

Whole-building testing is analogous to guarded blower door testing because both methods 
attempt to measure energy-related exterior envelope leakage. In terms of energy efficiency and 
utility bill savings, exterior envelope leakage is the key. But, like guarded blower door testing, 
whole-building blower door tests require substantial resources in equipment, personnel, and time 
(Hynek 2011).  

The simpler and more common method for measuring air leakage in attached dwellings is to use 
a single blower door to pressurize and/or depressurize the test unit. This “single unit,” “total,” or 
“solo” (SO) test method measures the combination of air leakage between adjacent units through 
common surfaces as well as air leakage to the outside. Minimizing total leakage, or 
compartmentalization, is good practice to avoid indoor air quality issues between units, reduce 
energy use, reduce pressure differentials between units, and control stack effect. However, two 
significant limitations of the SO leakage test are: 

• For retrofit work, if total leakage is assumed to be all to the outside, the energy benefits 
of air sealing can be significantly overpredicted.  

• For new construction, the total leakage values may result in failing to meet an energy-
based house tightness program criterion. 

As described in a recently completed study by the Heschong Mahone Group (HMG 2012), the 
high cost and building occupant disruption of blower door testing deters utility program 
participants from pursuing building envelope improvements.  

“Until a protocol is established that provides a clear path with limited costs and risks for 
participation, building owners will continue to be hesitant to participate in whole building 
upgrade (retrofit) programs.”  

In March, a Building America Expert Meeting was held to discuss the various methods, barriers 
to implementation, and current practices for measuring air changes and/or envelope leakage in 
attached dwellings. Attendees included representatives from federal government agencies, 
weatherization industry trainers and practitioners, building science researchers, and national 
laboratories. Presentations on multifamily dwelling air leakage were given by several building 
science researchers to encourage discussion on understanding why and how air leakage is 
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measured, the challenges and costs associated with the measurements, and the need to conduct 
research to improve the process.  

A key objective of this meeting was to provide a forum for researchers and service providers to 
share information on their current practices and challenges and exchange ideas on opportunities 
for improvement. There was definitely a consensus for a simpler, but adequate, approach to 
assessing air leakage, both total and external. 

A practical method needs to be developed to quantify the fraction of total leakage that is to the 
outside, and that is the objective of this research. With this simplification, measurement 
protocols can focus on the more practical single-dwelling unit total leakage test.  
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2 Research Objectives 

The objective of the current research effort is to determine the viability of developing an 
algorithm that estimates the quantity of air leakage to the outside based upon a total leakage 
measurement and limited building and/or dwelling unit characteristic information.  

The primary questions to be addressed by this research are: 

• Conceptually, how would a method for estimating outside air leakage from a total 
leakage measurement work?  

• Do preliminary analyses suggest that a simplified, reliable method can be developed?  

• What additional research is needed to develop the concept into a viable, industry-
accepted method? 
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3 Technical Approach 

The theoretical concept for the simplified method is that a SO (total) leakage test result and a 
limited amount of building and/or apartment characteristic information can define a multiplier 
that provides the fraction of the SO (total) leakage that is to the outside. 

The Expert Meeting in March was held to confirm interest and provide early guidance to the 
methodology development. Several meeting participants agreed to serve on an advisory panel, 
and an initial meeting of the panel was held in conjunction with the summer ASHRAE meeting 
in San Antonio. Suggestions for approaching the analysis were provided.  

To demonstrate the viability of an outdoor-to-total leakage algorithm, analysis was performed on 
a limited set of data. Air leakage and building characteristic data were obtained from internal 
project resources at Steven Winter Associates, Inc. and Community Housing Partners’ New 
River Center for Energy Research and Training. Datasets include building characteristic 
information, dwelling unit information, and blower test results, both SO and guarded.  

FG and SO blower door test results were obtained from four multifamily low-rise projects. Table 
1 shows a summary description of the projects. While the projects are not geographically diverse, 
they do represent different types of attached housing and different ages. 

Table 1. Summary of Building Used 

Project Location Type of 
Building 

Number of 
Buildings 

Number of 
Units 

Year of 
Construction 

1 Winchester, 
Virginia 

Garden-style 
apartments 2 14 1989 

2 Newport News, 
Virginia 

Garden-style 
apartments 5 35 1980 

3 Roanoke, 
Virginia Rowhouses 4 22 1970 

4 Staten Island, 
New York 

Duplex 
rowhouses 4 41 2010 

 

Projects 1 and 2 are both complexes of garden-style apartments in two- and three-story buildings. 
Construction is wood frame on slab. Project 3 is a complex of 100 row houses with two to four 
bedrooms in 10 two-story wood frame-on-slab buildings. Project 4 is a newly constructed 
ENERGY STAR® Home project using steel framing that presented air sealing challenges. 
Extensive blower door testing was done to achieve performance goals. These data were included 
in the analysis to provide a different type of construction. The two-family row houses or 
townhomes have a one-bedroom unit on the ground floor with a two-story, three-bedroom unit 
above. 
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4 Model Development Methodology  

Three models were examined with primary emphasis on a multivariable linear regression 
(MVLR) model. Random Forest (RF) method and a simple ratio method of exposed surface area 
to total surface area (RESATSA) were the other models. The two models were studied with the 
purpose of confirming results from the MVLR model and exploring a simpler way of predicting 
leakage to outside from a SO test result. For all three models, the target response was the ratio of 
FG to SO test value. With this ratio, one can obtain the FG test value given the SO test value and 
vice versa.  

The following section describes each model and their results. The tool used for modeling was R. 
R is a language and environment for statistical computing and graphics (R Development Core 
Team 2008). 

4.1 Multivariate Linear Regression Analysis 
Statistical analyses were performed to create a model that would predict FG blower door or 
leakage to outside (LTO) values, from SO blower door results. An MVLR model was chosen: 

 εββββ +++++= XXXY p...22110  
 
1 

where  
Υ  = RFS = predicted ratio of FG to SO. 

Xp  = variables/predictors describing various building specifications, and p is the 
number of predictors being considered. 

βp  = partial correlation coefficient (PCC). It represents the change in RFS associated 
with a unit increase in the value of Xp (pth variable) when all other variables are 
kept constant. 

βo = intercept. Geometrically, it represents the value of RFS, where the regression 
surface (or plane) crosses the Y axis. Substantively, it is the expected value of RFS 
when all the variable or predictors are equal to 0.  

ε  = the deviation of the value RFS from the mean value of the distribution given Xp. 
This error term may be conceived as representing (1) the effects on RFS of 
variables not explicitly included in the equation, and (2) a residual random 
element in the dependent variable. The basic idea behind creating a linear 
accurate model is to minimize ε for each prediction. 

  
Thirty-two variables were considered as possible candidates for creating the model. However, 
not all 32 variables could be used, since the goal of this research was to create a strong MVLR 
model with the smallest number of predictor variables that are also significant. Figure 1 shows a 
flowchart describing the procedure taken to identify the most significant predictors. The data 
sample used consisted of 112 observations containing 32 building specifications per apartment 
unit and measured RFS.  
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Figure 1. Process for creating model 

Backward 
Elimination 
Procedure 

After all 
variables are 
tested then 

Select valid 
variables/predictors based 
on perceived knowledge. 

Create final model with 
most significant 

predictors 
 

Create a list of all possible 
building specification 
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YES 

Remove variable 
from full model 

NO 

Compare R2 values of full 
model to reduced model 

using F-Test 
 

 

Create full model with 
remaining predictors and 

reduced model with one less 
predictor (different one each 

time) 
 

Is the reduced 
model more 
significant? 
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The model was created using an iterative process of identifying and eliminating less significant 
variables. A full model was created from all valid variables, and a reduced model was created 
using one less predictor. The F-test was then used to investigate the significance of the variable 
removed by comparing the R2 value of the full model to that of the reduced model. R2 is a 
measurement of how much variation in the data is explained by a model. An appropriate null 
hypothesis for the F-test is: 

 H0(β1=0) 2  

against the alternative that the predictors β2...p ≠ 0. Thus, the reduced model in this case is: 

 RFS = β2X2+ …+ βqXq 3  

The F value is calculated as: 

 ( ) ( )
( ) ( ) ,1/1

/
2

22

−−−

−−
=

pnR
qpRR

F
p

qp

 1,.. −−−= pnqpfd  4  

 

where 
Rp = the sample multiple correlation coefficient that is obtained when the full model with all 
p variables, is fitted to the data. 

Rq  = the sample multiple correlation coefficient when the reduced model is fitted with q 
specific variables. 

n  = number of observations 

p  = number of variables in full model 

q  = number of variable in reduced model 

The calculated or observed F value from Equation 4 is compared to tabulated F values with 
degrees of freedom of p-q and n-p-1 at a 95% confidence level. If the calculated F is greater than 
the tabulated F, the null hypothesis, Equation 2, is rejected. This means the coefficient β1 ≠ 0 and 
is therefore significant to the model. If not, the model is recreated without the variable in 
question, β1.  

The process is then repeated for all variables in the model. This method of iterating through 
equations and dropping least significant predictors is also called the backward elimination 
procedure. Obtaining a limited number of predictor variables helps isolate the most important 
variables and provide a simple and reusable model for builders, raters, engineers, and architects 
performing blower door tests. A final model was then created using the most significant 
predictors from the statistical analysis.  

In order to make the statistical analysis valid, the following necessary assumptions were made: 
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• Predictors are independent and normally distributed with mean zero and constant 
variance. 

• Explanatory variables are nonstochastic: the values of the predictors were measured or 
obtained in advance. 

• Predictors were measured without errors. 

4.2 Predictor Variables Considered 
A list of all variables considered can be found in Appendix A. In order to get a holistic sample of 
variables both quantitative and qualitative predictors were selected. Figure 2 shows an 
illustration of some of the variables considered for the model.  

 

Figure 2. Illustration of typical building specification 

 

Quantitative predictors describe building specifications that can be quantified such as footprint 
area, total wall area, and exposed wall area. Qualitative predictors describe categorical building 
specifications like duct location, type of wall insulation, and unit location. For every categorical 
variable used, a set of dummy variables was created to describe each level in the variable by 
using a dummy coding scheme (UCLA: Statistical Consulting Group). This coding scheme 
assigns a value of 1 or 0 to the dummy variable by comparing each level of the categorical 
variable to a fixed reference level. The numerical values of the dummy variables are not intended 
to represent quantitative ordering, but only serve to identify the levels in a categorical variable 
(Chatterjee and Bertram 1938). Table 2 shows an example of dummy variables and 
corresponding values created for Ductwork Location. 
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Table 2. Coding Scheme for Categorical Variables 

Dummy 
Variables 
Number 

Dummy Variables for Duct 
Location 

Dummy_Var_1 
Versus 

Dummy_Var_2 

Dummy_Var_1 
Versus 

Dummy_Var_3 

1 Ductwork Location-None 0 0 

2 Ductwork Location-Conditioned 
Space 1 0 

3 Ductwork Location-Unconditioned 
Space 0 1 

 
The fixed level in the dummy variable for Ductwork Location is “None” (Dummy_Var_1). This 
is case where a unit has no ducts. The reference point is seen as the point where all dummy 
variables are set to zero. As such, dummy variable Ductwork Location-None is represented when 
the two other Ductwork Location levels are set to zero. There were no units with ducts located in 
both conditioned and unconditioned space within the data analyzed. If there were such units, 
another level in the dummy variable would have been created for Ductwork Location-
Conditioned Space and Ductwork Location Unconditioned Space.  
 
4.3 Major Predictive Variables 
The Consortium for Advanced Residential Buildings (CARB) considered 32 variables, Appendix 
A, that are likely to affect infiltration values and tried to populate them for each unit given the 
preliminary information received. Due to several variables having missing values and/or one 
value, the full list was trimmed to the 13 variables shown in Table 3. Examples of variables with 
one value include window types were all double hung and building framing types were all 
platforms, thus two variables would not be beneficial to the model.  

Table 3. Initial MVLR Model Results 

Variable Number Variable 
1 Ductwork location 
2 Unit floor level 
3 Unit location 
4 Total exposed area 
5 Window area 
6 Exposed floor area 
7 Exposed wall area 
8 Footprint area 
9 Total surface area 
10 Ceiling area 
11 Total shared surface area 
12 Volume 
13 Common wall area 

 
Most of the variables shown in Table 3 are highly correlated with each other or collinear. For 
example, if footprint area is increased, the volume of the apartment unit also increases. This issue 
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could cause redundant variables within a model. Thus, to reduce collinearity, new variables were 
created by creating ratios between variables. For example, the ratio of common wall to total 
surface area (RCWTSA) was created with the idea of capturing the relationship between 
common wall, standardized by total surface area, and RFS. Another ratio created was the ratio of 
window areas to total exposed surface area (RWATESA). Several ratios could be created, such 
as total exposed area to total surface area (RTESATSA), total surface area to volume (RTSAV), 
and exposed floor area to footprint area (REFAFPA). These ratios create more interactions 
between variables in addition to the additive interaction facilitated in MVLR models. Different 
interactions between variables often improve the strength and accuracy of the model. By using 
the above-mentioned ratios, variables 4 to 13 from Table 3 were safely dropped. For the sake of 
having a concise description of the process of selecting the most significant variables, only two 
ratios along with the remaining valid categorical variables were selected. Future analyses will 
include more ratio variables and other interactions by multiplying, squaring, adding, or 
subtracting variables. 

The remaining variables after elimination are: 

1. RCWTSA, X1 

1. RWATESA , X2 

2. Unit Location 

o End, X3 

o Interior, X4 

3. Duct Location 

o Duct Location – Conditioned Space, X5 

o Duct Location – Unconditioned Space, X6 

o Duct Location – None, X7 

4. Unit Level 

o Bottom Floor, X8 

o Top Floor, X9 

o Middle Floor, X10 

 

The first two predictors, RCWTSA (X1) and RWATESA (X2), are quantitative variables, whereas 
Unit Location, Duct Location and Unit Level are qualitative/categorical variables. Ductwork 
Location indicates whether the unit’s ductwork is in conditioned or unconditioned space or not 
present at all. Unit Location indicates whether a unit is an end or interior unit. Unit Level 
indicates whether a unit is on the top, bottom, or middle floor of an apartment building. Due to 
the small sample size, two-story units were described as top units in order to reduce the number 
of variable predictors used for such a small data sample. Future modeling with more data will 
certainly include another level in the dummy variable describing multistory units. As mentioned 
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above, categorical variables are usually represented with dummy variables to denote each level 
in the variable. As such, Unit Location uses two dummy variables (X3 and X4) and Ductwork 
Location (X5, X6 and X7) and Unit Level (X8, X9 and X10) use three dummy variables each, 
resulting in a total of ten predictors. 

Thus, the MVLR equation becomes: 

 101022110 ... ββββ XXXRFS ++++=  5  

Knowing the predicted value of RFS from Equation 5, FG or LTO at CFM50 can be predicted 
using Equation 6, which multiplies predicted RFS by the measured SO blower door value: 

 SORFG FS ×=  6  

4.4 Multivariable Linear Model Results 
A summary of the MVLR model results is shown in Table 4. The Pr(>|t|) column is used to 
assess the significance of each variable. Pr(>|t|) is the probability that the PCC of a variable is 
equal to zero, according to the t test. The t-test, is used in this analysis to determine the 
significance of a variable’s coefficient. For dummy variables, the Pr(>|t|) value is the probability 
that the difference between the dummy variable and its reference point is zero. 

As a general rule, a 5% or less probability is the acceptable benchmark to reject the null 
hypothesis that a predictor variable’s PPC is zero; that is, the variable is insignificant. From 
Table 4, the probability that the difference between Ductwork Location-Conditioned Space and 
None is zero, as such there is no significant difference between the two Ductwork Location 
dummy variables. Since Ductwork Location is a variable that often affects infiltration values, 
CARB decided to leave it in the model; with a larger data sample the significance of dummy 
variable Ductwork Location will likely be realized. The intercept is the least significant 
nondummy predictor and it is not surprising that it has the lowest PCC and confidence level. 
Insignificant variables will be dropped at this point, however, since this reports seeks to 
demonstrate more about the statistical process than the production of a finalized model, the 
intercept will not be discarded.  

Table 4. MVLR Model Results 

Predictors/Variables Estimate Pr(>|t|) Confidence 
Level 

 Intercept 0.179 0.373 < 90.0% 
X1 RCWTSA 0.712 0.008 95.0% 
X2 RWATESA –0.904 0.009 99.0% 
X3 Unit Location-End 0.139 0.003 95.0% 

X5 
Ductwork Location-
Conditioned Space 0.026 0.704 < 90.0% 

X6 
Ductwork Location-
Unconditioned Space 0.156 6.63e-08 99.9% 

X8 Unit Floor Level: Bottom 0.304 1.20e-06 99.9% 
X9 Unit Floor Level: Top 0.230 3.51e-06 99.9% 
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After evaluating the significance of each variable’s coefficient, the backward elimination 
procedure was performed to assess the significance of each variable, to the model. As discussed 
in Section 4.1, the F-test was done to determine the significance of the reduced model with 
respect to the full model at a 95% confidence level. The F-test is a measure of how relevant a 
variable is to the model (Chatterjee and Bertram 1938). The F-value calculated for each reduced 
model was less than the corresponding tabulated F-values. As such, each null hypothesis was 
rejected, implying that all variables in the full model are significant to the model. It must be 
noted that the significance of these predictors could change with a different sample data.  

The model was finally recreated and shown in Equation 7: 

 9865321 23.030.016.003.014.090.071.018.0 XXXXXXXRFS +++−+−+=  7 

As mentioned above, dummy variables were created using a coding scheme, which chooses a 
level in the categorical variable as a reference point. The reference point is seen as the point 
when all dummy variables are set to zero. As such, dummy variable Unit Location-Interior (X4) 
is represented when Unit Location-End (X3) is zero, Ductwork Location-None (X7) is 
represented when the two other Ductwork Location levels (X5 and X6) ) are set to zero, and Unit 
Floor Level is middle (X10), when Top (X9) and Bottom (X8) are set to zero. Consequently, 
depending on the values of the categorical variables for each input observation, the MVLR 
model will change as shown in Table 5.  

Table 5. MVLR Model Equations 

Unit 
Location Duct Location Unit Floor 

Level 
MVLR Model  

(Unit and Duct Location), RFS 
Interior (X4) None (X7) Middle (X10) 0.18 + 0.71X1 – 0.90X2 

End (X3) None (X7) Middle (X10) 0.18 + 0.71X1 – 0.90X2 + 0.14X3  

Interior (X4) 
Ductwork Location-

Conditioned Space (X5) 
Middle (X10) 0.18 + 0.71X1 – 0. 90X2 – 0.03X5 

End (X3) 
Ductwork Location-

Conditioned Space (X5) 
Middle (X10) 

0.18 + 0.71X1 – 0. 90X2 + 0.14X3 – 
0.03X5 

Interior (X4) 
Ductwork Location-

Unconditioned Space (X6) 
Middle (X10) 0.18 + 0.71X1 – 0.90X2 + 0.16X6 

End (X3) 
Ductwork Location-

Unconditioned Space (X6) 
Middle (X10) 

0.18 + 0.71X1 – 0.90X2 + 0.14X3 + 
0.16X6 

Figure 3 shows the final model predicted values against measured values. The red diagonal line 
represents an accurate predictive model. The closer the data points are to the red line the more 
accurate the model, thus the MVLR model is fairly accurate. 
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Figure 3. Plot of MVLR model fitted against measured RFS 

 

Statistical tests and confidence intervals used above are based on the assumption of normal 
errors. Figure 4 shows four plots that validate the assumptions made. The top left plot shows 
residuals against the fitted values with data points randomly distributed around the dotted 
horizontal line at 0 and lie between ± 0.3 on the vertical axes. This shows that there is no 
discernible pattern to the distribution of residuals, supporting the assumption of normality in the 
data. The scale-location plot in the lower left shows the square root of the standardized residuals 
(square root of relative error) as a function of the fitted values. Again, for normally distributed 
data, there should be no obvious trend and that is also confirmed in this plot. The normal Q-Q is 
an informal graphical test of the hypothesis that a data sequence is normally distributed. If the 
plotted data points fall exactly on dotted diagonal line, the normal distribution assumption holds 
(Khattree and Naik 1999). In this case, data points align fairly close to the diagonal line with a 
few outliers at the ends, thus the assumption of normality still stands. Finally, the plot in the 
lower right shows each data point’s leverage, which is a measure of its importance in 
determining the regression result. Superimposed on the plot are contour lines for Cook’s 
distance, another measure of the importance of each observation to the regression (Van Steen et 
al. 2001). Smaller distances mean that removing the observation has little effect on the regression 
results. Distances larger than 1, (not shown because of limited axis range) are suspicious and 
suggest the presence of possible outliers or a poor model. This MVLR model shows only three 
obvious outliers (94th, 95th, and 101st observations) out of 112 observations, as such the 
importance each observation is evenly spread.



 

14 
 

 
Figure 4. Plots validating linear model
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Figure 5. Plot of Rstudent residuals against predictors 

 

Figure 5 displays the Rstudent residuals against each predictor variable. Rstudent residuals, also 
known as studentized residuals, is a standard way of measuring each predictor variable’s 
contribution to the residuals of a model (Cook and Weisberg 1982). These graphs above are used 
to determine nonlinearity between a variable and predicted values, RFS, as well as outliers in data 
points. For quantitative variables RCWTSA ( X1) on the top left, RWATESA ( X2) on the top 
right, and fitted values on the bottom right, their data points are evenly distributed across the zero 
line and show no systematic pattern. As such, it is concluded that there is a linear relation 
between selected predicted variables and the response, RFS. For categorical variables not much 
can be said about linearity, however, one can notice distinct outliers. These outliers could be the 
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result of discrepancies in the model predictions. Removing these points will slightly improve the 
model; however, due to limitations in sample size, this research focuses more on the analytical 
methodology of arriving at an accurate and reusable model than on creating a finalized model. 
Next CARB investigated the possibility of having a predicting model with other modeling types. 

4.4.1 Random Forest Approach 
Random Forest is a statistical modeling tool that implements Breiman’s random forest algorithm 
for classification and regression.  
 

It produces a regression tree which is built recursively from the data sample into 
more and more homogeneous groups, until a terminal node is reached. Each split 
is based on the values of one variable and is selected according to a splitting 
criterion. Once a tree has been built, the response for any observation can be 
predicted by following the path from the root node down to the appropriate 
terminal node of the tree. Based on the observed values for the splitting variables, 
the predicted response value is simply the average response in that terminal node 
(Grömping 2009). 

 
As with other highly computational procedures, RF does not have a simple representation such 
as a formula (e.g., linear regression model) for the relationship between the predictor variables 
and the predicted values (Cutler et al. 2007). This makes interpretation and field application 
difficult. Appendix B shows an example of a regression tree that describes the RF model for this 
research. Random Forest was used in this research only to validate the results from the MVLR 
model. For more details about this modeling tool see Liaw and Weiner (2002). 
 

 

Figure 6. RF model results 
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A plot of predicted against measured RFS is shown in Figure 6, and once again a comparison of 
the data points with the red line gives a visual of the accuracy of the model. Since the data points 
are evenly spread and close to the diagonal red line, it is concluded that the RF model is also 
fairly accurate. 

4.4.2 Area Weighted Approach 
The area weighted approach has been suggested as a very simple method that may be good 
enough. The available sample data were tested against the validity of this approach. The method 
basically describes RFS as being equal to the ratio of exposed surface area, ESA, to total surface 
area, TSA, of the apartment envelope: 

 
SO
FG

TSA
ESARFS ==  8  

ESA is the area of building including walls, windows, doors, and roofs in contact with ambient 
conditions. The reason behind exploring this model was to investigate a much simpler approach 
of predicting the RFS. 

Predicted FG can then be calculated as: 

 SO
TSA
ESAFG ×=  9  

 SORESATSAFG ×=   10  

where 
RESATSA = Ratio of exposed surface area to total surface area 
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Figure 7. RESATSA model results 

 

Figure 7 shows the RESATSA model results by plotting predicted against measured RFS. The 
graph shows a wider spread in data points that are also relatively far from the red diagonal line. 
Thus, the predictive ability of this RESATSA model is limited. A detailed comparison of the 
three models’ results and their relative accuracy is described below. 
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5 Comparing Models 

Each model, with the exception of RF, has a simple linear equation that can be used to calculate 
predicted FG by multiplying SO by the predicted RFS. There are several ways to measure quality 
of a model. In this research two parameters are used (Table 6). 

Table 6. Summary of Regression Accuracy 

Model Residual Standard 
Error 

Adjusted 
R2 

RF  0.011 0.580 

MVLR 0.109 0.553 

RESATSA 0.249 0.065 

 

Residual standard error explains the discrepancy between the measured and predicted RFS, taking 
into consideration the degrees of freedom, which is the difference between the numbers of 
observations in the data sample and the number of predictor variables, including the intercept. 
The lower the residual standard error is, the stronger the model. RF shows the lowest residual 
standard error, 0.011, meaning one should expect the smallest error between predicted and 
measured RFS when using RF model. This is followed by MVLR model and then RESATSA 
model. 

Adjusted R2 is obtained from R2 value however, adjusted R2 accounts for the degrees of freedom 
in the model. The value of R2 ranges from 0 to 1 and the closer the value to 1 the more accurate 
the model is. A larger adjusted R2 value implies that a greater proportion of the variance in the 
data can be explained by the model. MVLR shows an adjusted R2 value, 0.553. Adjusted R2 of 
0.55, for a model created from measured values that have a wide range of uncertainly, is 
statically justifiable but certainly a higher R2 will be most preferred. Random Forest model had 
the highest R2 value, 0.58, but due to its high complexity, the model’s practicality in the field 
may not be feasible. With the lowest R2 value, REASTSA model comes out to be the worst, 
explaining only 6.5% of the variance in measured response.  

The final MVLR model includes variables RCWTSA ( X1), RWATESA (X2), Unit Location-End 
(X3), Unit Location-Interior(X4), Ductwork Location-Conditioned Space (X5), Ductwork 
Location-Unconditioned Space (X6), Unit Floor Level-Top (X8) and Unit Floor Level-Bottom 
(X9). Although the model’s variables and coefficients could change depending on size and 
variation in the sample dataset, the selected variables and coefficients, in this case are arguably 
credible.  

The predictability of this MVLR model is limited to the data sample and cannot be applied in all 
situations. Sample data in this research lack variety in terms of climate zone (only mixed-humid 
locations), foundation type (only slab-on-grade), and wall insulation (only dense pack and loose 
fiber glass), to mention a few. As such the model is expected to do poorly with data from other 
climate zones with different foundation and wall insulation types. More data with more 
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variations would help obtain a stronger and more reliable model. There is also the possibility that 
the significance of predictor variables would change.  

Moreover, a good variable selection procedure will result in several sets rather than a so called 
single “best” set of predictor variables (Chatterjee and Bertram 1938). With a larger, well-varied 
data sample, various sets of adequate equations would be obtained. The best choice of equation 
will boil down to which equation has the predictor variables easily obtained. 

In this research, CARB basically demonstrated the possibility of having a correlation between 
building geometric characteristics, location of duct, and the relationship of the dwelling to 
adjacent dwellings and RFS. This was achieved by creating three models with all 112 
observations and analyzing the correlation between select significant variables and the response, 
RFS. To varying extents, all three models prove a predictable relationship between building 
specifications and RFS. Considering the ease of usability in the field, the most practical model 
was the MVLR model. The result of this research was certainly limited by the relatively small 
and less varied sample data size. CARB’s goal is to create a model that has a strong predictive 
power in different climate zones, construction types, and building specifications, as such this 
model is still in development stages. The objective of this research was to demonstrate the 
MVLR model’s viability and development process.  
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6 Preliminary Test Case 

A preliminary test of the MVLR model was run on blower door results for four attached 
rowhouses from the King County Housing Authority in Washington (Figure 8).  

 

Figure 8. Floor plan of King County Housing Authority apartment units 

 

33 34 

35 36 
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The data consisted of SO test results for each unit, pre- and post-retrofit, and a whole-building 
leakage test using multiple blower door systems. While we did not have SO and FG tests for 
each unit, we thought these data could still be used for demonstration purposes. Ideally, the sum 
of FG tests on each unit would be equivalent to the whole-building leakage test result.  

For this demonstration, we used the SO test data (left side of Table 7) to predict FG for each unit 
(right side) using the preliminary model, Equation 7, and then summed the predicted FGs and 
compared the results to the measured whole-building leakage values.  

Table 7. MVLR Model Predictions Versus Sample Data 

Unit No. 

Measured SO  
(CFM 50) Predicted RFS 

Predicted FG  
(CFM 50) 

Pre-
Retrofit 

Post-
Retrofit 

Pre-
Retrofit 

Post-
Retrofit 

A 930 580 0.71 ± 0.07 660 ± 70  410 ± 40  
B 900 720 0.78 ± 0.05 700 ± 40  560 ± 40  
C 930 620 0.92 ± 0.09 850 ± 100  570 ± 60  
D 900 590 0.85 ± 0.06 760 ± 50  500 ± 30  

Measured LTO 
Whole Bldg.  
(All 4 Units) 

3,340 1,930 
Predicted FG 
Whole Bldg. 
(All 4 Units) 

2,980 ± 260 2,040 ± 170 

 

Measured post-FG for the whole building, 1,930 CFM, falls within the range of predicted FG 
2,040 ± 170 CFM, whereas for pre-infiltration, 3,340 CFM is just above the upper limit of the 
predicted range of 2,980 ± 260.  

The result above is debatably a decent approximation, bearing in mind the limited dataset used to 
develop this model. Note the differences indicated between the pre- and post-retrofit SO and 
whole-building test results are not intuitive. It is not relevant to this exercise, but does suggest 
that there is uncertainty in blower door testing and its interpretation. The point of this exercise 
was to demonstrate the prediction methodology proposed.  
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7 Discussion 

The analyses to date are encouraging, but given the very limited dataset studied, it is too early to 
draw conclusions. To apply the model to most any type of low-rise attached housing, the dataset 
from which the model is developed needs to include variety in age, construction materials, and 
configuration. 

Our next step will be to identify and gather significantly more data from organizations that have 
conducted both SO and FG or whole-building testing on projects. This somewhat redundant 
testing is not commonly done, but we believe that research, weatherization training, and utility 
program design and evaluation firms may be sources. We also know of instances where SO tests 
were initially performed, but when compliance targets were not achieved, a whole-building test 
was performed.  

Through continued research we will attempt to answer the following questions: 

• Does the rigor of the predictive model hold up through analysis of more buildings, 
different types of construction, different climate regions, etc.? As the dataset becomes 
more varied, does it become more difficult to predict with acceptable accuracy the 
leakage to outside for a particular dwelling? 

• Do the predictive variables change? Are more predictive variables needed to achieve 
acceptable accuracy? Is the model still simple enough to be useful?  

• Are different models necessary for predicting pre- and post-retrofit conditions? It’s quite 
possible that retrofit activity will address with some consistency certain sources of 
leakage. This possible bias might warrant a separate model or could be within the noise 
of a single model. If enough data can be collected for both pre- and post-retrofit testing, 
this will be examined. 

• How good is good enough? A question that was discussed without resolution during the 
Expert Meeting is, How accurate does the estimate of outside air leakage need to be? The 
value is used for many purposes, including determining the cost effectiveness of air 
sealing and the adequacy of fresh air for ventilation. Perhaps the algorithm would be 
most appropriate as a screening tool. Outcomes would be yes, no, or maybe. The 
“maybe” outcomes would require more rigorous testing. CARB will seek input on this 
question from project advisors and efficiency program managers.  



 

24 
 

8 Conclusion 

The research performed to date was successful with the following key findings: 

• Conceptually, how would the new method work? The framework for a simple algorithm 
based upon a SO blower door test result and a few basic dwelling unit characteristics has 
been outlined (Section 4.4, Table 5). 

• Do preliminary analyses suggest that a simplified, reliable method can be developed? 
Yes, while the subject dataset is very limited, preliminary analyses suggest that 
statistically significant predictors are present and can support the development of an 
algorithm. 

• What additional research is needed to develop the concept into a viable, industry-
accepted method? The next step is to collect additional data for analysis and algorithm 
development so they may be more broadly applied with confidence. 



 

25 
 

References 

Chatterjee, S.; Bertram, P. (1938). Regression Analysis by Example. 2nd Edition. New York: John 
Wiley & Sons, Inc. 

Cook, R. D.; Weisberg, S. (1982). Residuals and Influence in Regression. New York: Chapman 
and Hall. 

Cutler, D.R.; Edwards, Jr., T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. 
(2007). “Random Forests for Classification in Ecology.” Ecology, 88(11):2783–2792. 

Grömping, U. (2009). “Variable Importance Assessment in Regression: Linear Regression 
Versus Random Forest.” The American Statistician 63(4):308–319. 

HMG. (2012). Study of Multi-Family Air Leakage Testing Strategies, Final Report, HMG Project 
Number 1014. Heschong Mahone Group, Inc., August 10, 2012. 

Hynek, D. (2011). “Blower Door Testing in Multifamily Buildings,” Home Energy Magazine 
September/October 2011. www.homeenergy.org/show/article/id/1711. 

Khattree, R.; Naik, D.N. (1999). Applied Multivariate Statistics With SAS Software. SAS 
Press/John Wiley & Sons. 

Liaw, A.; Wiener, M. (2002). “Classification and Regression by randomForest.” R news 2(3):18–
22. Accessed November 26, 2012: www.webchem.science.ru.nl:8080/PRiNS/rF.pdf. 

Lyons, J. (2013). Short-Term Test Results: Multifamily Home Deep Energy Efficiency Retrofit. 
Golden, CO: NREL/SR-5500-56460. www.nrel.gov/docs/fy13osti/56460.pdf. 

Neuhauser, K.; Bergey, D.; Osser, R. (2012). Leveraging Limited Scope for Maximum Benefit in 
Occupied Renovation of Uninsulated Cold Climate Multifamily Housing. 
http://apps1.eere.energy.gov/ 
buildings/publications/pdfs/building_america/renovation_uninsul_multifamily.pdf 

R Development Core Team. (2008). R: A Language and Environment for Statistical Computing, 
Vienna, Austria: R Foundation for Statistical Computing. Available at www.R-project.org, ISBN 
3-900051-07-0. 

UCLA: Statistical Consulting Group. Coding for Categorical Variables in Regression Models, 
www.ats.ucla.edu/stat/r/modules/dummy_vars.htm. Accessed November 24, 2012. 

Ueno, K.; Lstiburek, J.; Bergey, D. (2012). Multifamily Ventilation Retrofit Strategies. Golden, 
CO: National Renewable Energy Laboratory. NREL/SR-5500-56253. 
www.nrel.gov/docs/fy13osti/56253.pdf. 

Van Steen, K.; Molenberghs, G.; Verbeke, G.; Thijs, H.  (2001). “A Local Influence Approach to 
Sensitivity Analysis of Incomplete Longitudinal Ordinal Data.” Statistical Modeling 1(2):125–
142. 

Wytrykowska, H.; Ueno, K.; Van Straaten, R. (2012). Byggmeister Test Home: Cold Climate 
Multifamily Masonry Building Condition Assessment and Retrofit Analysis. 
http://apps1.eere.energy.gov/ 
buildings/publications/pdfs/building_america/byggmeister_test_home.pdf%20.

http://www.researchgate.net/researcher/38230935_G_Molenberghs/
http://www.researchgate.net/researcher/38905676_G_Verbeke/
http://www.researchgate.net/researcher/34184141_H_Thijs/


 

26 
 

Appendix A: Predictor Variables Considered 

Variable Description Format 
 

Building and Unit Information 
ApartmentComplex Name of apartment complex Text 
BuildingNumber Building Number Text 

BuildingType Building Type usu. a digit or letter 
(optional) Text 

UnitConfiguration  How are the unit set up in the apt 
complex Text 

AgeOfBuilding Age of building of the apartment 
complex Number 

Numberoffloors Number of floors in the apartment 
complex Number 

Numberofunits Number of units in the apartment 
complex Number 

 
Quantitative Specifications 

FootPrintArea Foot Print Area of Unit Number 
CeilingArea Ceiling Area of Unit Number 

ExposedFloorArea Exposed flow area of Unit, ex 
cantilever Number 

ExposedCeilingArea Exposed ceiling area usu. for a top 
floor Number 

ExposedWallArea Exposed wall area i.e. wall in contact 
with outside Number 

TotalExposedArea Same as wall area but includes 
ceiling for top unit Number 

InteriorUnitHeight Height of Unit  Number 
Volume Volume of Unit Number 
CommonWallArea Area of shared wall Number 

TotalSharedSurfaceArea Total area of share surface include 
ceiling if there is a unit on top Number 

WindowArea Total window area Number 
NumberofPanes Number of panes in the windows Number 
TotalWallArea Total wall area Number 
DoorArea Total door area Number 
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Qualitative Specifications 

Unit Story Level Top, Bottom or Middle Top, Bottom or Middle 
Unit Location End, Interior End, Interior 

FoundationType Type of foundation 
Full Basement 
Crawl space 

Slab-on-Grade 

ContructionMaterial Material used for the framing of 
the building 

Wood 
Steel Frame 

Masonry 
 

BuildingFramingType Building framing type Balloon 
Platform 

WallInsulation Type of all insulation used 

Blanket: batts and rolls 
Foam board 

Insulating concrete forms 
(ICFs) 

Loose-fill cellulose 
Loose-fill fiber glass 

Reflective/Bubble 
Rigid fibrous 
Sprayed foam 

Structural insulated panels 
(SIPs) 

Dense Pack 
 

RoofInsulation Type of roof insulation used Same as WallInsulation 

WindowType Type of window is used 

Single Hung 
Double Hung 

Casement 
Bay/Bow 
Awning 
Slider 

WindowFrame Window framing material 

Metal 
Vinyl 

Fiberglass 
Wood 

Siding Wall siding material 

Stucco  
Vinyl  

Aluminum  
Wood  
Stone 
Brick 
Mixed 

CommonWallConstruction Common wall construction 
material 

Shaft Wall (2hr) 
Double Wall (2hr) 
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Double Layer Drywall (1hr) 
Concrete/Brick (2hr) 

Heating Space heating system 
Atmospheric 

Sealed Combustion 
Resistance 

Cooling Space cooling distribution system Ducted 
Non-ducted 

DuctworkLocation Location of duct work Conditioned Space 
Unconditioned Space 
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Appendix B: Random Forest Output 
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