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ABSTRACT 
Several methods have been proposed in the literature to find a 
state-space model for the wave-radiation forces. In this paper, 
we compared four methods, two in the frequency domain and 
two in the time domain. The frequency-response function and 
the impulse response of the resulting state-space models were 
compared against those derived from the numerical code 
WAMIT.  
A new state-space module was implemented within FAST, an 
offshore wind turbine computer-aided engineering tool, and we 
compared the results against the previously implemented 
numerical convolution method. The results agreed between the 
two methods, with a significant reduction in required 
computational time when using the new state-space module. 
Keywords: Wave radiation, time-convolution, state-space 
model, linear potential-flow theory. 

NOMENCLATURE 
𝐴𝑟 ,𝐵𝑟 ,𝐶𝑟 Matrices of the state-space system 

𝑅2 Mean square error 
𝑥𝑟 Radiation states 

𝐴(𝜔) Frequency-dependent added mass 
𝐵(𝜔) Frequency-dependent radiation damping 
𝐾(𝜔) Frequency-dependent retardation function 
𝐾(𝑡) Impulse-response function 
𝑞 Displacement vector 

1. INTRODUCTION 
Floating offshore wind turbines represent a promising way to 
explore the vast deep-water wind resource available, and a 
potential ability to supply much of the world’s energy needs. To 
analyze the multiphysical environment that the floating wind 
systems are subjected to, coupled aero-hydro-servo-elastic tools 
have been developed and verified in recent years.  
FAST [1], developed by the National Renewable Energy 
Laboratory (NREL), is one of the first coupled tools that was 
developed for modeling floating offshore wind turbines. 
HydroDyn, the hydrodynamic module included in FAST, is 
currently based on linear time-domain potential-flow theory, 
using the Morison equation to account for viscous-drag 
contributions. The module employs the general form of the 
Cummins equation, including the effect of hydrostatics, wave 
excitation, and wave radiation.  
In the Cummins equation, the free-surface memory effects 
caused by radiated waves are implemented with a convolution 
term of the retardation function. This paper focuses on 
replacing the numerical convolution method by a parametric 
model, using a linear state-space formulation. This new 
SS_Radiation module will be available in a future FAST 
release, and it reads externally derived state-space matrices and 
solves the state-space system for each time step. To derive the 
matrices, a preprocessor called SS_Fitting was implemented in 
MatLab [2], and is presented in this paper (Figure 1). 
This new approach will enable both a loose and tight coupling 
of the hydrodynamic forces within the new FAST 
modularization framework. In particular, the tight coupling 
scheme has the capability to provide better numerical accuracy *Corresponding Author: tduarte@hidro1.ist.utl.pt 
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and stability of the model than the loose coupling scheme. In 
addition, it can enable the linearization of the complete aero-
hydro-servo-elastic solution, including the wave-radiation 
forces, which is useful for eigenanalysis and the development 
of new control algorithms for floating wind systems. 
Linearization of the convolution method is only possible if the 
convolution is implemented numerically in discrete time, but 
then the resulting linearized system must include a combination 
of continuous and discrete time states. See [3] for more 
information. 

 
 

FIGURE 1 .  MATLAB PREPROCESSOR AND REQUIRED 
FILES. 

2. LINEAR HYDRODYNAMICS 
The hydrodynamic forces applied to a floating body can be 
described by the application of the second Newton’s Law, for 
each degree of freedom (DOF): 
 

𝑀𝑞̈ = 𝐹ℎ𝑦𝑑𝑟𝐶𝑠𝑡𝑚𝑡𝑖𝑐 + 𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶 + 𝐹𝑊𝑚𝐶𝑒𝑠 (1) 

 
Where 𝑀 is the mass matrix of the floating body, 𝑞 is the 
displacement vector, and 𝐹 is the different hydrodynamic 
forces acting on the body. These forces include the hydrostatic 
restitution forces, 𝐹ℎ𝑦𝑑𝑟𝐶𝑠𝑡𝑚𝑡𝑖𝑐; added mass and damping from 
the radiation problem, including free-surface memory effects, 
𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶; and diffraction forces from incoming waves, 
𝐹𝑊𝑚𝐶𝑒𝑠. 

2.1. Cummins Equation 
Under the assumption of linear theory, ideal fluid, and small 
waves and body motion, Eq. (1) becomes the commonly named 
Cummins equation [4], which can be expressed as: 
 

(𝑚 + 𝐴∞)𝑞̈ + � 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝛿𝜏
𝑡

0
+ 𝐶ℎ𝑦𝑑𝑟𝐶𝑠𝑡𝑚𝑡𝑖𝑐𝑞 = 𝐹𝑤𝑚𝐶𝑒𝑠 (2) 

 
The term �𝐶ℎ𝑦𝑑𝑟𝐶𝑠𝑡𝑚𝑡𝑖𝑐𝑞� represents the hydrostatic force. 
HydroDyn actually uses a slightly augmented version of Eq. 
(2), including the impacts of drag forces caused by viscous 
effects and the mooring line forces. 
The coefficients A∞, K, and Chydrostatic must be computed by a 
hydrodynamic panel code, such as WAMIT [5], to provide the 
frequency-dependent added mass and damping matrices, as 
well as the hydrostatic matrix and frequency-dependent wave-
excitation forces. 

2.2. Radiation Force  
The radiation force arises from the change in momentum of the 
fluid caused by the motion of the structure. Using the linear 
wave approximation, the radiation force in an ideal fluid can be 
represented by the following equation: 
 

𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶 = −𝐴∞𝑞̈ − � 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝛿𝛿
𝑡

0
 (3) 

 
The term −𝐴∞𝑞̈ represents the contribution to the force in phase 
with the acceleration of the device, in which 𝐴∞ is the constant 
positive infinite-frequency added mass matrix.  
The term −∫ 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝛿𝛿𝑡

0   represents the fluid memory 
effects and incorporates the energy of the radiated waves 
generated by the motion of the body. This term is represented 
by the time convolution of the body velocities and the radiation 
impulse-response function, 𝐾(𝑡), also called the retardation or 
memory matrix. This is not an easy term to compute 
numerically, as it requires information from previous time steps 
(in theory, from the start of the body motion). Most of the codes 
using this formulation truncate the integral in Eq. (3):  
 

𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶 = −𝐴∞𝑞̈ − � 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝛿𝛿
𝑡

𝑡−𝑡𝑚𝑒𝑚𝑜𝑟𝑦

 (4) 

 
As a result, only a few seconds (s) of ‘memory’ (tmemory) are 
stored, usually 60 s. The accuracy of this method depends on 
the amount of time storedwhich increases the computational 
timeand the impulse-response function of the platform 
modeled (see Section 5 for more information). 

2.3. Relationship Between Time and Frequency 
Domain 

In the frequency domain, the convolution integral of the 
radiation force becomes the multiplication of the Fourier 
transform of the retardation matrix 𝐾(𝑡) by the body velocity 
 𝑞̇. The retardation function 𝐾(𝜔) may be broken down into the 
following real and imaginary parts: 
 

𝐾(𝜔) = 𝐵(𝜔) + 𝑗𝑗[𝐴(𝜔) − 𝐴∞] (5) 
 
The coefficients 𝐴(𝜔) and 𝐴∞ represent the frequency-
dependent added mass and the infinite-frequency added mass, 
respectively. The term 𝐵(𝜔) represents the frequency-
dependent damping matrix and 𝑗 = √−1. As shown earlier, all 
of these coefficients may be obtained from a hydrodynamic 
panel code.  
The relation between these matrices and the impulse-response 
function was derived by Ogilvie [6] by using a direct 
application of the Fourier transform under a sinusoidal regime: 
 

𝐴(𝜔) = 𝐴∞ −
1
𝜔� 𝐾(𝑡) sin(𝜔𝜔)𝑑𝑑

∞

0
 (6) 
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𝐵(𝜔) = � 𝐾(𝑡) cos(𝜔𝜔)𝑑𝑑
∞

0
 

 

(7) 

 
Where it follows that 𝐴∞ = lim𝜔→∞ 𝐴(𝜔). Given the frequency-
dependent damping matrix, it is possible to compute the 
impulse-response function using: 
 

𝐾(𝑡) = 2 𝜋� � 𝐵(𝜔) cos(𝜔𝜔)𝑑𝑑
∞

0
 (8) 

 
The impulse-response function can be obtained by either using 
(8) or the inverse Fourier transform of Eq. (5). 

3. PARAMETRIC MODELS 
To compute the free-surface memory effects more efficiently, it 
is possible to fit a parametric model to approximate the 
convolution term in the Cummins equation. This can be 
accomplished (assuming the system is causal and time 
invariant) by using a state-space model described as: 
 

𝜇 = � 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝛿𝜏
𝑡

0
≅ �𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑞̇

𝜇 = 𝐶𝑟𝑥𝑟
 (9) 

 
This process involves the identification of the state-space 
system with matrices 𝐴𝑟, 𝐵𝑟, and 𝐶𝑟, for each entry of the 
matrix 𝐾. The SS_Fitting toolbox developed and presented in 
this work derives these matrices, based on the WAMIT outputs. 
The toolbox is available at the NREL and Wave Energy Centre 
(WavEC) websites.1 
 

 
FIGURE 2 .  SCHEME OF THE RADIATION-FORCE 

CALCULATION USING FREQUENCY- OR TIME-DOMAIN 
IDENTIFICATION METHODS. 

The retardation function in the frequency domain is simple to 
compute. Using Eq. (5) and the frequency response, it is 
possible to find the equivalent linear state-space model. This 
method is known as the Frequency-Domain Identification. 
However, using the inverse Fourier Transform method, or Eq. 
                                                           

1 www.wavec.org and http://wind.nrel.gov/  

8, it is possible to find the impulse-response function of the 
retardation function. In addition, it is possible to find the state-
space model with the equivalent impulse response by using the 
Time-Domain Identification. These methods are summarized in 
Figure 2. 
Because of these different approaches, several methods were 
proposed in the past literature to perform the system 
identification. For example, see [7], [8], [9], [10], [11], [12], 
[13], [14], [15], [16], and [17]. 
Using examples from the studies mentioned, we implemented 
four different methods within the SS_Fitting toolbox. As a 
result, the user can then choose which method to use and define  
in the input file (for more information, see [2]). The different 
methods are described in the following sections. 
One of the advantages of the state-space model is the 
Markovian propriety, which guarantees that any future state of 
the system depends only on the present value of the system 
states. In other words, no past information needs to be stored, 
as in the case of the convolution method, because all of the 
memory effect is contained in the state vector 𝑥𝑟. 

3.1. Constraints on Parametric Models 
A parametric model (transfer function) can be fitted with the 
appropriate order for each entry of the retardation matrix: 
 

𝐾�𝑖𝑖(𝑠,𝜃) =
𝑃(𝑠,𝜃)
𝑄(𝑠,𝜃) =

𝑝𝑚𝑠𝑚 + 𝑝𝑚−1𝑠𝑚−1 + ⋯+ 𝑝0
𝑠𝐶 + 𝑞𝐶−1𝑠𝐶−1 + ⋯+ 𝑞0

 (10) 

 
Where θ=[pm,…, p0, qn−1, … , q0] is a vector containing the 
different parameters of the numerator P(s, θ) and denominator 
Q(s, θ), K�ij is an entry of the retardation matrix of modes 
ij, (i, j = 1, … ,6) and s = jω. The parametric models fitted to 
the retardation function should fulfill certain proprieties that are 
known a priori. These proprieties were derived using the 
hydrodynamic proprieties of the radiation potential in [18] and 
are summarized in Table 1. 

3.1.1. Low-Frequency Asymptotic Value 
The low-frequency asymptotic value is given by: 
 

lim
𝜔→0

𝐾(𝜔) = 0 (11) 

 
This statement is based on the principal that no structure can 
radiate waves at zero frequency. If the retardation function is 
approximated by Eq. (10), then the function has to have a zero 
at 𝑠 = 0. This means that the parameter 𝑝0 has to be zero. 

3.1.2.  High-Frequency Asymptotic Value 
The high-frequency limit of the retardation function has to be 
zero: 
 

lim
𝜔→∞

𝐾(𝜔) = 0 (12) 

 

Numeric Code WAMIT 

𝐴(∞) A(𝜔) B(𝜔) 

K(𝜔) K(𝑡) IFFT 

Cosine 
Transf. 

Frequency-Domain 
System Identification 

Time-Domain System 
Identification 

State-Space 
Model 

Radiation Force 

Velocity 
 

http://www.wavec.org/
http://wind.nrel.gov/
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This limit can be proved by using Eq. (5). The damping limit 
has to be zero, because the excitation force for high frequency 
(short waves) also tends to zero, due to pressure cancellation on 
the body surface. The difference 𝐴(𝜔) − 𝐴∞ will also drop to 
zero when 𝜔 → ∞. 
To guarantee this propriety, the transfer function 𝐾(𝑗𝑗) has to 
be strictly proper. That is, the degree of the denominator must 
be larger than the degree of the numerator (deg {𝑄(𝑠)} >
deg {𝑃(𝑠)}). This will guarantee that the denominator grows 
faster with 𝜔 than the numerator, and therefore the function 
will drop to zero when the frequency tends to infinite. 

3.1.3.  Initial Time Value 
The impulse-response function of the retardation function must 
have an initial value other than zero. This can be proved by Eq. 
(13): 
 

lim
𝑡→0

𝐾𝑖𝑖(𝑡) = lim
𝑠→∞

𝑠𝐾𝑖𝑖(𝑠,𝜃) = lim
𝑠→∞

𝑠
𝑃(𝑠,𝜃)
𝑄(𝑠,𝜃) =

𝑝𝑚𝑠𝑚+1

𝑠𝐶  (13) 

 
It is clear that, for the limit to be finite and different from zero, 
the relative order of the denominator and numerator must be 
one (𝑛 = 𝑚 + 1).  
Combined with the requirements of the first property described, 
it is easy to see that the minimum order function is second 
order, with the following format: 
 

𝐾�𝑖𝑖𝑚𝑖𝐶(𝑠) = 𝑝1𝑠
𝑠2+𝑞1𝑠+𝑞0

’ (14) 

3.1.4.  Final Time Value 
The response of a stable system to an impulse should tend to 
zero when time tends to infinite. This propriety establishes the 
bounded-input bounded-output stability (BIBO) of the radiation 
system and is given by the limit: 
 

lim
𝑡→∞

𝐾𝑖𝑖(𝑡) = lim
𝑡→∞

2 𝜋� � 𝐵(𝜔) cos(𝜔𝜔)𝑑𝑑
∞

0
= 0 (15) 

 
Therefore, the poles of the transfer function 𝐾𝑖𝑖(𝑠), given by 
the zeros of the denominator 𝑄(𝑠), must have a negative real 
part. 

3.1.5.  Passivity 
Passivity describes the propriety of systems that can store and 
dissipate energy, but not create it. When considering a floating 
body without external forces or incident waves, the Cummins 
equation can be written as: 
 

𝑀𝑞̈ + 𝐶𝑖𝑖
ℎ𝑦𝑑𝑟𝐶𝑠𝑡𝑚𝑡𝑖𝑐𝑞 = 𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶 (16) 

 
The energy change of this system becomes: 
 

𝐸(𝐼) − 𝐸(0) = � 𝐹𝑟𝑚𝑑𝑖𝑚𝑡𝑖𝐶𝐶𝑞̇ 𝑑𝑡
𝑇

0
 (17) 

 
Therefore, the convolution term of the radiation force has to be 
passive. See [18] and the related references for a more detailed 
derivation. For linear and time-invariant systems, passivity can 
be ensured if the retardation matrix is positive defined in the 
frequency domain: 
 

ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� = ℜ𝑒 �
𝑃𝑖𝑖(𝑠,𝜃)
𝑄𝑖𝑖(𝑠,𝜃)� > 0 (18) 

 
TABLE 1 .  PROPRIETIES OF RETARDATION FUNCTIONS 

Propriety Implications Transfer Function 
1. lim𝜔→0 𝐾(𝑗𝑗) = 0 There are zeros at 

s=0 
𝑝0 = 0 

2. lim𝜔→∞ 𝐾(𝑗𝑗) = 0 Strictly proper deg {𝑄(𝑠, 𝜃)} > deg {𝑃(𝑠,𝜃)} 

3. lim𝑡→0 𝐾(𝑡) ≠ 0 Relative degree 1 deg{𝑄(𝑠,𝜃)} − deg{𝑃(𝑠, 𝜃)} = 1 

4. lim𝑡→∞ 𝐾(𝑡) = 0 BIBO stability ℜ𝑒{𝑄(𝑠,𝜃) = 0} < 0 

5. The mapping 𝑞̇ → 𝜇 is 
passive 

𝐾(𝑗𝑗) is positive 
real ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� = ℜ𝑒 �

𝑃𝑖𝑖(𝑠,𝜃)
𝑄𝑖𝑖(𝑠, 𝜃)�

> 0 

3.2. Model Quality 
Assessing the quality of the model can be done in several ways. 
As described earlier, the frequency-domain model is evaluated 
using the frequency response, while the time-domain models 
are evaluated by their impulse response. To evaluate these 
responses, the R2 value is computed using: 
 

𝑅2 = 1 −
∑ �𝐾𝑖𝑗−𝐾�𝑖𝑗�

2
𝑙

∑ �𝐾𝑖𝑗−𝐾�𝑖𝑗�
2

𝑙
 ,            0 ≤ 𝑅2 ≤ 1 (19) 

 
Where 𝐾𝑖𝑖 represents the reference retardation function, 𝐾�𝑖𝑖 
represents the parametric model, and 𝐾�𝑖𝑖  represents the mean 
value of the reference retardation function. The summations are 
performed across all frequencies (for frequency response) or 
time (for impulse response). This is a measure of the amount of 
variability of the function that is captured by the model. The 
closer to one, the better is the quality of the fit.  

3.3. Frequency Domain Identification 
By providing the frequency response of the retardation function 
(computed with Eq. (5)), a transfer function can be fitted (as 
provided in Eq. (10)). However, the determination of the 
approximated models 𝐾�𝑖𝑖(𝑠) poses an optimization problem 
following the least squares method, where the following 
equation is used to determine the transfer function parameters 
in the vector 𝜃: 
 

𝜃 = agr min
𝜃

��𝐾𝑖𝑖(𝑠) − 𝐾�𝑖𝑖(𝑠,𝜃)�
2

𝑠

 (20) 

 
This optimization problem can be solved by following the two 
methodologies presented in the following sections. 
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3.3.1.  FREQ Method 
This method is proposed by [19]. The least squares method is 
solved using the MatLab function invfreqs [20]. This function 
linearizes the optimization problem (20), using weight factors 
for the most important range of frequencies: 
 

𝜃 = agr min
𝜃

�𝑤𝑙 �𝐾𝑖𝑖(𝑠) − 𝐾�𝑖𝑖(𝑠,𝜃)�
2

𝑙

 (21) 

 
Where 𝑤𝑙 is the user-defined weighting vector with entries 
between zero and one for each frequency. The linearization 
method used by the MatLab function invfreqs is based on the 
Levy method [21]. 
The order of the transfer function is determined using an 
automatic routine. The problem is initialized using a second-
order function, with the form: 
 

𝐾�𝑖𝑖𝑚𝑖𝐶(𝑠) = 𝑝1𝑠+𝑝0
𝑠2+𝑞1𝑠+𝑞0

’ (22) 

 
This equation is applied to guarantee the second propriety of 
Table 1. For each solution of the least squares method, the 
quality of the fit is evaluated using the parameter 𝑅2, which is 
calculated using Eq. (19). 
If the parameter 𝑅2 is smaller than a given user-defined quality, 
the order of both the denominator and numerator of the transfer 
function is increased by one. Once the transfer function is 
found, it is easy to determine the equivalent state-space model 
using the MatLab function tf2ss. Refer to [19] and [22] for 
more detail.  
Figure 3 presents an example of the application of this method 
to the pitch-surge cross term of the retardation matrix. As 
shown, the model 𝐾�51(𝑠) does not fulfill the low-frequency 
limit. This model was derived for the spar buoy defined in 
Section 4.1, with a minimum R2 of 0.97, which requires a third-
order function. 

3.3.2. FDI Method 
The SS_Fitting toolbox developed with this work incorporates 
the frequency-domain identification toolbox (MSS FDI 
Toolbox) developed by [17]. The FDI toolbox is free and can be 
downloaded at www.marinecontrol.org.  
This method is based on an approach that is similar to the one 
described in the previous section. However, three different 
methods are available to solve the optimization problem of Eq. 
(21), including: 
• A linearized least squares minimization method 
• A method that uses an iterative linear least squares problem 
• A method that solves the nonlinear least squares problem, 

using a Gauss-Newton algorithm. 
All of the methods use the MatLab function invfreqs. Based on 
the recommendations in [17], the iteratively linear least squares 
problem was chosen for this work because it provides the best 
computational time/accuracy relation. The FDI toolbox uses the 

following algorithm to take into account the proprieties of the 
retardation functions described earlier [23]. 
As noted earlier, the user defines the appropriate range of 
frequencies and the corresponding weight factors. The 
minimum order approximation is set to two. The parametric 
function is derived using: 
 

𝜃 = arg min
𝜃
��

𝐾𝑖𝑖(𝑠)
𝑠 −

𝑃′𝑖𝑖(𝑠,𝜃)
𝑄𝑖𝑖(𝑠,𝜃) �

2

𝑙

 (23) 

 
Where 𝑃′𝑖𝑖(𝑠,𝜃) = 𝑃𝑖𝑖(𝑠,𝜃)/𝑠. The iterative method rewrites the 
previous equation in the linear form: 
 
𝜃𝑝 = agr min

𝜃
�𝑤𝑙𝑠𝑙,𝑝 �𝑄𝑖𝑖(𝑠,𝜃)𝐾𝑖𝑖(𝑠)𝑠−1 − 𝑃𝑖𝑖(𝑠,𝜃)�

2

𝑙

 (24) 

 
where the coefficients are used from the previous iteration: 
 

𝑠𝑙,𝑝 = 1
�𝑄𝑖𝑖�𝑠,𝜃𝑝−1��

2�  (25) 

 
After a few iterations, the method converges (𝜃𝑝−1~𝜃𝑝) and the 
problem in Eq. (23) is obtained. If the return transfer function is 
not stable, the real part of the unstable roots of 𝑄𝑖𝑖(𝑠) is 
changed to a positive value, thereby ensuring the stability of the 
system. The final transfer function is reconstructed using: 
 

𝐾�𝑖𝑖 =
𝑠𝑃𝑖𝑖′(𝑠,𝜃)
𝑄𝑖𝑖(𝑠,𝜃)  

(26) 

 
The added mass and damping are estimated based on the 
identified parametric approximation by:  
 

𝐴̃(𝜔) = 𝐼𝐼�𝐾�𝑖𝑖 (𝜔)� + 𝐴(∞) 
𝐵�(𝜔) = ℜ𝑒�𝐾�𝑖𝑖 (𝜔)� 

(27) 

 
and compared with the 𝐴(𝜔) and B(𝜔) provided by the 
hydrodynamic code. The quality of the fit is assessed using the 
parameter 𝑅2, via Eq. (19) for the added mass and damping 
coefficients. If the fitting is not satisfactory, the order of the 
approximation is increased by one and the process starts over 
with Eq. (23). Finally, the toolbox checks if the solution is 
passive �ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� > 0�. 
As the transfer function is fitted to the primitive of the 
retardation function, which is accomplished by dividing by 𝑠 in 
the frequency domain, we ensure that the first propriety of 
Table 1 is fulfilled, as the value of 𝑝0 in Eq. (26) is going to be 
zero. The second and third proprieties are fulfilled, thereby 
confirming that the relative order of the functions is always 
one. This method ensures that most of the proprieties in Table 1 
are met, and that this a priori knowledge is incorporated in the 
fitted functions. As a result, analysts can achieve a more 
accurate transfer function with a lower order. Using the transfer 

http://www.marinecontrol.org/
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functions, it is once again easy to obtain the state-space model 
(via tf2ss.m). 
Figure 3 presents the approximation obtained with this method. 
As shown, the low-frequency limit is fulfilled and the required 
quality is achieved using only a second-order function. 

 
FIGURE 3 .  EXAMPLE OF THE PITCH-SURGE ENTRY OF 

THE RETARDATION MATRIX, USING THE FREQ AND FDI 
METHODS. 

3.4. Time-Domain Identification 
The identification of the state-space models can be based on the 
impulse-response function of the retardation matrix, as shown 
in Figure 2. The conversion to the time domain adds an 
additional error avoided in the frequency domain methods. 
However, this error can be minimized, depending on the 
method to convert 𝐾𝑖𝑖(𝜔) into the time domain. The time-
domain retardation function can be computed by using:  
 

𝐾𝑖𝑖(𝑡) = 𝐼𝐼𝐼𝐼 �𝐾𝑖𝑖(𝜔)� (28) 

 
However, this method is limited by the Nyquist frequency limit. 
Because of the limited range of frequency usually used in the 
numerical codes, the discretization of 𝐾𝑖𝑖(𝑡) will be evenly 
spaced and computed from zero to high values of 𝑡. This may 
lead to a poor description of the functions for low values of 𝑡, 
where the impulse response 𝐾𝑖𝑖(𝑡) changes significantly. 
An alternative method to compute the impulse-response 
function of the retardation matrix is to use the cosine 
transformation described in Eq. (8). This transformation was 
implemented using a trapezoidal integration method, as 
described in [13]: 
 

𝐾𝑖𝑖(𝑡) =
∆𝜔
𝜋 � 2𝐵𝑖𝑖(𝑘∆𝜔) cos(𝑘∆𝜔𝜔)

𝑘𝑚𝑎𝑥−1

𝑘=1

… 

… +
∆𝜔
𝜋 �𝐵𝑖𝑖(0) + 𝐵𝑖𝑖(𝑘𝑚𝑚𝑚) cos(𝑘𝑚𝑚𝑚∆𝜔𝜔)� 

(29) 

 
Where 𝑘𝑚𝑚𝑚 is the number of entries of the frequency vector 
computed by the numerical code. The step size used is 

determined by the length of the frequency vector, which is 
equally spaced using 256 points (e.g., for 𝑘𝑚𝑚𝑚∆𝜔 = 5𝑟𝑟𝑟/𝑠,  
∆𝜔 ≅ 0.02 𝑟𝑟𝑟/𝑠). The upper limit is taken to be 𝑇 = 100𝑠, 
and the time step used is ∆𝑡 = 0.1𝑠.  
This last method was used to compute the impulse-response 
function necessary to implement the following time-domain 
methods. 

3.4.1.  Least Squares Method 
The least squares method was used to determine the realization 
of the retardation function, and was implemented in [19].  
This method is based on the MatLab function prony, which 
uses the z-transform to find the corresponding rational system 
function. The function returns the coefficients of numerator 
𝑏[𝑘] and denominator 𝑎[𝑙] of the discrete rational system: 
 

𝐻(𝑧) =
∑ 𝑏[𝑘]𝑧−𝑘𝑞
𝑘=0

1 + ∑ 𝑎[𝑙]𝑧−𝑙𝑝
𝑙=0

 (30) 

 
From the transfer functions, it is once again easy to obtain the 
state-space model (via tf2ss.m).  
The discrete transfer function needs to be converted to the 
continuous time domain, using the MatLab function d2c, with 
the Tustin method. However, for complex, high-order 
retardation functions, this method does not ensure the stability 
of the resulting state-space model.  
The order of the transfer function is determined by assessing 
the quality of the fit using the 𝑅2 value, as described in Section 
3.2.  
Figure 4 shows the impulse-response function obtained with 
Eq. (29) �K(t)� and the estimated model �K�(t)�. The required 
R2 for this case was 0.97, and this method derived a fourth-
order model. 

3.4.2. Realization Theory 
Once the impulse-response function is obtained by (29), an 
identification scheme based on the Hankel Singular Value 
Decomposition (SVD) is applied. This method was proposed by 
[24] and is available in the MatLab function imp2ss. For a 
detailed description of the SVD method, consult [24]. 

 
FIGURE 4 .  EXAMPLE OF THE PITCH-SURGE ENTRY OF 

THE IMPULSE RESPONSE MATRIX, USING THE TIME 
LEAST SQUARES METHOD. 
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The function outputs the matrixes of the equivalent state-space 
system, 𝐴𝑟���, 𝐵𝑟��� , 𝐶𝑟���, and 𝐷𝑟���, which need to be scaled according 
to the time step used in 𝐾 (𝑡): 
 

𝐴𝑟 = 𝐴𝑟��� , 𝐵𝑟 = 𝐵𝑟��� , 𝐶𝑟 = 𝐶𝑟���∆𝑡  𝐷𝑟 = 𝐷𝑟���. 0 = 0  (31) 

 
The matrix 𝐷𝑟 is forced to be zero to keep the causality of the 
system. Despite the reduction option that is built into the 
imp2ss function, this does not prove to be a satisfactory way to 
control the accuracy and order of the fitted model. The function 
produces very accurate models (𝑅2 > 0.99), but uses a very 
high order (𝑖 > 200). However, the computations of the Hankel 
singular values revealed that only a small number of states have 
a significant value (e.g., Figure 5).  

 
FIGURE 5 .  HANKEL SINGULAR VALUES OF THE IMPULSE-
RESPONSE FUNCTION SURGE-SURGE FOR THE OFFSHORE 

CODE COMPARISON COLLABORATION (OC3)-HYWIND 
SPAR BUOY. 

Figure 5 clearly shows that the first two singular values have an 
absolute value that is much higher than all of the others. In fact, 
this function can be approximated with a second-order system 
with 𝑅2 > 0.98. 
To obtain a low-order model, we reduced the number of states 
by using the MatLab function balmr. This function can apply 
two methods: 1) the manual method, where the user chooses the 
number of states to keep, based on the Hankel Singular Values 
plot, and 2) the automated method, which is implemented using 
the goodness of the fit 𝑅2 calculated with Eq. (19) for the 
impulse-response function. This step reduces the number of 
states to a second-order function, and then increases the order 
of the system until the user-defined goodness is achieved. 

4. MODEL COMPARISON 

4.1. Reference Case 
To compare the quality of the fit of the models obtained from 
the four different methods, we considered two platform designs. 
The first was the spar buoy used in the Offshore Code 
Comparison Collaboration (OC3) studies, named OC3-Hywind 
[25], in which the design is based on the Hywind prototype and 
consists of a ballast-stabilized buoy with 120 m of draft. Its 
cylindrical shape minimizes the wave radiation, thereby 
providing very simple radiation impulse-response functions. 

The Offshore Code Comparison Collaboration Continuation 
(OC4) semisubmersible platform was the other design used in 
this study [26]. It consists of a triangular-shaped 
semisubmersible platform with three main offset columns and 
the turbine placed on a fourth central column. The more 
complex shape of the design provides higher-order impulse-
response functions, as shown in Figure 7. 

 
FIGURE 6 .  EXAMPLE OF THE PITCH-SURGE ENTRY OF 

THE IMPULSE RESPONSE, USING THE REALIZATION 
THEORY METHOD. 

 
FIGURE 7 .  IMPULSE-RESPONSE FUNCTION K1 5 ,  FOR THE 

OC3 SPAR AND OC4 SEMISUBMERSIBLE PLATFORMS. 
To compare the results of the state-space model with the 
currently implemented numerical convolution method in FAST, 
1-hr long simulations were run using stochastic waves with 6-m 
significant height and a peak period of 10 s. We also performed 
a sensitivity analysis of the system response using different 
wave periods (a period range between 2 and 17 s, according to 
Table 2). The sensitivity analysis results are presented in 
Section 5. 

TABLE 2.  REFERENCE SEA STATES 
Sea 

State 1 2 3 4 5 6 7 8 

𝐻𝑠 [𝑚] 0.09 0.67 1.40 2.44 3.66 5.49 9.14 15.24 
𝑇𝑝 [𝑠] 2.0 4.8 6.5 8.1 9.7 11.3 13.6 17.0 

4.2. Model Quality 
For the simple case of the spar buoy, different methods were 
run using a minimum required 𝑅2 value of 0.97. Figures 8 and 
9 show the quality of the fit for the different methods compared 
to the number of states that were needed to represent them. This 
comparison was done based on the reference retardation 
function obtained from the WAMIT outputs, using Eq. (5) for 
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the frequency response and Eq. (8) for the time response. In 
figures 8 and 9, each dot represents the quality and order of the 
transfer function corresponding to each significant entry of the 
retardation matrix. The total number is the sum of the number 
of states used to describe each entry of K. 
The FDI method provided the lowest number of states than the 
other methods. However, the 𝑅2 was slightly lower than the 
rest, sometimes even lower than 0.97, as the FDI method used 
the added mass and damping coefficients as the reference, and 
not the retardation function directly.  

 
FIGURE 8 .  QUALITY OF THE FREQUENCY RESPONSE OF 
THE DIFFERENT METHODS, FOR THE OC3-HYWIND SPAR 

BUOY AND A REQUIRED 𝑅2 VALUE OF 0.97.  

 
FIGURE 9 .  QUALITY OF THE IMPULSE RESPONSE OF THE 
DIFFERENT METHODS FOR THE OC3-HYWIND SPAR BUOY 

AND A REQUIRED 𝑅2 VALUE OF 0.97.  
The realization method (Time–RT) also provided a low number 
of states with a good model quality. Despite being a time-
domain method, it also appeared to fit the frequency response 
with a good model quality. 
In addition, the frequency method (FREQ) provided a good fit; 
both in the frequency and impulse response. However, it 
required a significantly higher number of states to achieve the 
same quality.  
Finally, the time-domain least squares method (Time-LS) 
required the highest number of states, and it did not guarantee a 
good fit of the frequency response. 
Figure 10 shows the response of the surge-pitch term of the 
retardation matrix. As presented earlier, the system’s frequency 
and impulse responses were accurately fitted by all of the 
methods (first and second graphs in Figure 10). However, these 

figures show that, despite the absolute value of frequency 
response being well-approximated, the low-frequency limit of 
the added mass and damping (third and fourth graphs in Figure 
10) presents significant differences. The FDI method provides 
an accurate solution for this low-frequency limit, as it 
incorporates this constraint a priori. The time-domain least 
squares method also fits this limit, but uses a much higher 
number of states. The implication of these differences is 
presented in more detail in Section 5.1. 

 
FIGURE 10 .  MODEL COMPARISON FOR THE OC3-HYWIND 

SPAR BUOY, USING THE SURGE-PITCH TERM OF THE 
RETARDATION MATRIX, FROM TOP TO BOTTOM: 

FREQUENCY RESPONSE, IMPULSE RESPONSE, ADDED 
MASS, AND DAMPING COEFFICIENT. 

4.3. Number of States Versus R^2 
To guarantee a low simulation time and application to controls 
design, the number of states must be as low as possible. The 
different methods used provide very different model orders for 
the same requested R2 value. Figure 11 shows the number of 
states of the models obtained with the different methods, both 
for the OC3 spar and the OC4 semisubmersible, for different 
values of 𝑅2. 
As shown, it is possible to fit a high-quality model with a low 
number of states for the spar buoy case, because of its simple 
geometry. In the opposite case, the OC4 semisubmersible 
required much higher-order models. When comparing the 
different methods, it is clear that the FDI and Time-RT methods 
provided the lowest-order models. The Time-LS method 
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required a high number of states, and was unable to provide a 
stable system for the case of the OC4 semisubmersible for 𝑅2 
higher than 0.85. The FREQ method was able to provide a 
stable system, but with a very high number of states, especially 
for the OC4 semisubmersible. 

5. TIME-DOMAIN MODEL 
This section compares the forces calculated using the state-
space module (SS_Radiation), with the forces obtained by the 
numerical convolution method implemented in FAST’s 
HydroDyn module. The SS_Radiation module was integrated 
within the HydroDyn code written in the new FAST 
modularization framework. However, the new HydroDyn 
module was not integrated within FAST at the time of these 
tests. Therefore, FAST was run separately for the desired load 
case, and outputting the radiation forces and moments and the 
platform velocities. The platform velocities were used as an 
input in the HydroDyn and state-space modules, using the 
models derived from the different methods presented earlier. 
The new SS_Radiation module was compared to the 
convolution method existing within HydroDyn. 

 
FIGURE 11 .  MODEL ORDER FOR DIFFERENT 𝑅2 VALUES. 
This uncoupled approach of testing the SS_Radiation module 
represents the best-case scenario, as the error in the radiation 
forces did not build up along the simulation because of drift in 
the platform velocities. However, as the radiation force is 
significantly smaller than other hydrodynamic forces in play 
(for the platforms studied), the changes in the platform motions 
caused by the accumulated error should not affect the results 
significantly. 

5.1. Accuracy of State-Space Models 
Figure 12 presents the time evolution of the radiation forces in 
surge and pitch for the different state-space models compared to 
the results from HydroDyn (using a memory time of 60 s). The 
models were derived using 𝑅2 = 0.97 and provided results that 
were similar to the convolution method. 
The bigger differences occurred for the least energetic degrees 
of freedomnamely sway and roll (because the incoming 
waves were orientated with the surge axis (not shown)). The 
time-domain least squares method provided the worst 

agreement with the forces predicted by the convolution method, 
probably due to low stability margins. 
Figure 13 shows the agreement between the convolution 
method and the state-space method (𝑅𝐶𝐶𝐶𝐶2 ), for different fitting 
methods and requested 𝑅2 values. For the case of the spar buoy 
(solid lines), most of the methods agreed with the convolution 
method, except for the time-domain least squares method. 
Despite providing a good fit with the impulse response, the 
resulting state-space models had low stability margins, thereby 
agreeing poorly with the convolution method.  

 
FIGURE 12 .  RADIATION FORCES FOR THE OC3-HYWIND 

SPAR BUOY, USING THE NUMERICAL CONVOLUTION AND 
DIFFERENT STATE-SPACE MODELS EMPLOYING 𝑅2 =  0.97.  

 
FIGURE 13 .  QUALITY OF THE FIT OF THE STATE-SPACE 
MODELS AGAINST THE CONVOLUTION METHOD (𝑅𝐶𝐶𝐶𝐶2 ) 
VERSUS THE REQUESTED 𝑅2 VALUE FOR THE DIFFERENT 
MODELS. 
For the OC4 semisubmersible platform case (dashed lines), the 
methods provided a slightly worse agreement than in the spar 
case. Instead, the frequency-domain methods provided a better 
prediction of the radiation forces than the realization theory 
method. However, the FREQ method required a significantly 
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larger number of states, as shown in Figure 3. The FDI method 
provided a low number of states while agreeing with the 
convolution method. As discussed in Section 4.2, this result 
was achieved by including the constraints presented in Section 
3.1 a priori. 
Figure 14 presents a sensitivity analysis of the agreement 
between the surge force obtained with the convolution and 
state-space methods for the different sea states presented in 
Table 2.  

 
FIGURE 14 .  AGREEMENT BETWEEN THE CONVOLUTION 
METHOD AND THE STATE-SPACE MODELS FOR THE 
SURGE-SURGE FORCE (USING 𝑅2 =  0.97)  FOR DIFFERENT 
SEA STATES. 
As shown in Figure 14, all of the methods provided a poor 
response for high-frequency sea states, (𝑇𝑇 < 4 𝑠). This 
response occurs because the models were derived with a weight 
vector 𝑤𝑙 (see Eq. (21)) of 1, between 0 and 2.5 rad/s (and 
zero for the other frequencies), as this range comprises the most 
common wave-frequency range. It can also be seen that, for the 
low-frequency limit (𝑇𝑇 > 10 𝑠), the accuracy of the methods 
is reduced. This is in accordance with the findings described in 
Section 4.2. The FDI method is the only method that guarantees 
good accuracy for the low-frequency, high-energetic waves, as 
it forces this constraint into the derived model. 
As shown earlier, the state-space models provided an accurate 
method to predict the radiation forces, using 𝑅2 values larger 
than 0.97. However, when considering the other hydrodynamic 
forces, namely hydrostatic, diffraction, and viscous forces, the 
comparison of the total hydrodynamic forces results in 𝑅2 very 
close to 1, even for models derived with 𝑅2 values of 0.8. This 
shows the order of magnitude of the radiation forces when 
compared with other hydrodynamic forces. Because of this 
effect, the authors of [23] suggest using a smaller-order model 
to reduce the chances of a significant loss of accuracy in the 
overall result. Although this approach may not be important for 
a single wind turbine, it might be useful for reducing the model 
order and gaining computational speed of multiple floating 
wind turbines. 

5.2. Computational Time of the SS_Radiation Module 
Figure 15 shows the time ratio, defined as: 
  

𝑇𝑟𝑚𝑡𝑖𝐶 = 𝑇𝑠𝑖𝑚
𝑇𝐶𝑃𝑈� , (32) 

 
of the SS_Radiation module. As shown, the ratio decreases (as 
expected) with the order of the model (number of states), and it 
seems to be independent of the model used. Despite the 
significant increase in computational time, the time ratio 
remains above 1000 in all cases (as the model order increases).  

 
FIGURE 15 .  SIMULATION TIME RATIO OF THE STATE-

SPACE MODULE, USING DIFFERENT NUMBERS OF STATES. 

5.3. Convolution Versus State-Space 
During this part of the study, the new version of the HydroDyn 
code was used with the convolution and state-space methods to 
compute the wave-radiation loads. As discussed earlier, the 
platform velocities obtained from FAST were fed to the 
modules.  
Using this new module, a sensitivity analysis was performed to 
check the accuracy and computational time of the convolution 
method, thereby changing the memory time (as shown in Eq. 
(4)). The results are presented in Figure 16. The memory time 
varied from 1 to 210 s, and the highest value was taken as a 
reference to assess the quality of the fit. 
For comparison purposes, the results obtained from the state-
space module using the FDI method are presented in the figure, 
using the number of states as a reference. 
The shape and impulse-response functions, discussed in Section 
4.1, had a significant influence on the accuracy of the methods. 
The convolution method required 10 s of memory for the spar 
and 20 s for the semisubmersible to achieve good accuracy. A 
value closer to one was achieved for a memory time of 60 s. As 
shown in Figure 7, the impulse response is close to zero after 
50 s. The results obtained for the state-space methods are in 
accordance with the ones discussed earlier. 
Figure 17 compares the computational time and accuracy of 
both the convolution and state-space methods. The convolution 
method achieves high accuracy when compared to the state-
space method, at the cost of a higher computational time. Using 
a memory time of 60 s, the time ratio of the convolution 
method is around 200 for both platforms. For the state-space 
method, there is a large variance of the computational time, 
especially in the spar case, but in general, much higher time 
ratios (>800) can be achieved. This improvement represents a 
time reduction of 75% in the computation of the wave-radiation 
forces.  
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When using a complex wind turbine model with all of the 
available degrees of freedom and control system enabled, and 
under turbulent wind and stochastic wave conditions, the wave 
radiation forces in FAST still account for 40% of the 
computational time when using 60 s of memory. Therefore, a 
reduction of up to 30% of FAST computational time can be 
expected when using the state-space method. 

 
FIGURE 16 .  ACCURACY OF THE CONVOLUTION AND 

STATE-SPACE METHODS. 
 

 
FIGURE 17 .  COMPUTATIONAL TIME VERSUS ACCURACY 

OF THE CONVOLUTION AND STATE-SPACE METHODS FOR 
DIFFERENT PLATFORMS. 

6. CONCLUSIONS 
In this paper, we presented four methods to fit a state-space 
model of the wave-radiation forces. These methods were 
developed and included in the new MatLab toolbox SS_Fitting 
and their required model order and accuracy were compared to 
the WAMIT outputs. The frequency-domain method based on 
the MatLab frequency-domain identification (FDI) toolbox and 
the time-domain method based on the realization method 
proved to offer the best quality fit with the smallest number of 
states. 
The MatLab toolbox was designed to provide the state-space 
matrices needed by the new radiation module in FAST, 
SS_Radiation. However, the accuracy of this method decreases 
for platforms that have complex shapes. As a result, a 𝑅2 value 
of at least 0.97 should be required when fitting the state-space 
models. Compared to the convolution method, the new module 
is 75% faster, which can be translated into a 30% reduction of 
the total FAST computational time. However, the accuracy and 
computational time should be re-evaluated when a coupled 
version of the new HydroDyn and FAST becomes available. 
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