

Biomass Scenario Model Documentation: Data and References

Yolanda Lin, Emily Newes, and Brian Bush National Renewable Energy Laboratory

Steve Peterson and Dana Stright *Lexidyne, LLC*

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-6A20-57831 May 2013

Contract No. DE-AC36-08GO28308

Biomass Scenario Model Documentation: Data and References

Yolanda Lin, Emily Newes, and Brian Bush National Renewable Energy Laboratory

	National Renewable Energy Laboratory
	Steve Peterson and Dana Stright Lexidyne, LLC
	Prepared under Task No. BZ11.3003
	NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401	Technical Report NREL/TP-6A20-57831 May 2013
303-275-3000 • www.nrel.gov	Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/help/ordermethods.aspx</u>

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Acknowledgments

The authors would like to acknowledge the Biomass Scenario Model developers and analysts. Robert Wallace (Booz Allen Hamilton) and John Sheehan (The University of Minnesota) were instrumental in initial model development. Zia Haq, Kristen Johnson, and Alicia Lindauer of the U.S. Department of Energy have supported analyses to shed light on the biofuels system. In addition, other BSM2 team members have provided helpful insights, discussions, and reviews: Mark Paich and Corey Peck of Lexidyne, LLC and Laura Vimmerstedt, Daniel Inman, David Hsu, Ryan Elmore, Andrew Argo, and Amy Schwab of the National Renewable Energy Laboratory.

List of Acronyms

А	Appalachian
AEO	Annual Energy Outlook
BC	biochemical
BCAP	Biomass Crop Assistance Program
BSM	Biomass Scenario Model
BSM2	Biomass Scenario Model, Version 2
СВ	corn belt
CHST	collection, harvest, storage, transportation
СМ	Feedstock Conversion Module
СРТ	cost per ton
CRP	Conservation Reserve Program
D&C	design and construction
DCS	design, construction, startup
DDG	distillers dry grains
DLM	Distribution Logistics Module
Dom	domestic
DS	delta states
DSM	Dispensing Stations Module
EISA	Energy Independence and Security Act
EtOH	ethanol
FCI	fixed capital investment
FFV	fuel-flex vehicle
FLM	Feedstock Logistics Module
FS	feedstock
FSM	Feedstock Supply Module
FUM	Fuel Use Module
GP	grower payment
GPPA	grower payment per acre
НС	herbaceous cellulose
НССРА	harvest collection cost per acre
НССРТ	harvest collection cost per ton
IBSAL	Integrated Biomass Supply Analysis and Logistics
	Model
IM	Imports Module
K	logit coefficient
L	natural logarithm
LS	lake states
LT	long term
M	mountain
NE	New England
Nom	nominal
NP	northern plains
NPV	net present value
ORNL	Oak Ridge National Laboratory
P	pacific
1	Puerre

PCEC	perennial cellulosic energy crops
PCPA	production cost per acre
PIM	Pricing and Inventory Module
POD	point of distribution
РОР	point of production
POU	point of use
PY	process yield
RAT	ratio of attractiveness
RP	repurposing
SE	southeast
SP	southern plains
TC	thermochemical
TPA	tons per acre
USDA	United States Department of Agriculture
VBL	variable
VM	Vehicles Module
W	woody
WC	woody cellulose
YPA	yield per acre

Executive Summary

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain. We find that data based on POLYSYS datasets and U.S. Department of Agriculture baseline projections are the most utilized sources in the feedstock sector, whereas the conversion module relies heavily on data found in National Renewable Energy Laboratory technical reports dealing with the technoeconomic characteristics of different technologies. The distribution, dispensing, and fuel use modules utilize data on gasoline stations from the National Association of Convenience Stores.

Table of Contents

1	Intro	duction	1
2	BSM	2 Modules	4
	2.1	Feedstock Supply Module	5
	2.2	Feedstock Logistics Module	7
	2.3	Feedstock Conversion Module	8
	2.4	Dispensing Station Module Inputs	
	2.5	Pricing and Inventory Module	
	2.6	Distribution Logistics Module	
	2.7	Dispensing Stations Module	13
	2.8	Fuel Use Module	14
	2.9	Imports Module	15
	2.10	Vehicles Module	16
	2.11	Outputs	17
3	Cone	clusion	19
Ref	ferend	Ces	20
Ap	pendi	x A	23
Ap	pendi	x B	25

List of Figures

Figure 1. Architecture of the BSM2	. 2
Figure 2. Number of distinct input variables and total input data points by reference type in the BSM2	3
Figure 3. Distinct input variables versus total input data points among reference types and modules	5
Figure 4. Number of distinct input variables and total input data points by reference type in the FSM (let	ft)
and breakdown of referenced data by source, number of distinct variables and total data	
points (right)	. 6
Figure 5. FSM: Interaction with other modules	. 7
Figure 6. FLM: Interaction with other modules	. 7
Figure 7. Number of distinct input variables and total input data points by reference type in the FLM (le	ft)
and breakdown of referenced data by source, number of distinct variables and total data	
points (right)	. 8
Figure 8. Number of distinct input variables and total input data points by reference type in the CM (left	I)
and breakdown of referenced data by source, number of distinct variables and total data	
points (right)	. 9
Figure 9. CM: Interaction with other modules	. 9
Figure 10. DSM Inputs Module: Interaction with other modules	10
Figure 11. Number of distinct input variables and total input data points by reference type in the DSM	
Inputs Module (left) and breakdown of referenced data by source, number of distinct	
variables and total data points (right)	11
Figure 12. PIM: Interaction with other modules	12
Figure 13. Number of distinct input variables and total input data points by reference type in the PIM	12
Figure 14. Number of distinct input variables and total input data points by reference type in the DLM.	13
Figure 15. DLM: Interaction with other modules	13
Figure 16. Number of distinct input variables and total input data points by reference type in the DSM.	14
Figure 17. DSM: Interaction with other modules	14
Figure 18. Number of distinct input variables and total input data points by reference type in the FUM	15
Figure 19. FUM: Interaction with other modules	15
Figure 20. Number of distinct input variables and total input data points by reference type in the IM (lef	t)
and breakdown of referenced data by source, number of distinct variables and total data	
points (right)	16
Figure 21. IM: Interaction with other modules	16
Figure 22. Number of distinct input variables and total input data points by reference type in the VM (le	ft)
and breakdown of referenced data by source, number of distinct variables and total data	
points (right)	17
Figure 23. VM: Interaction with other modules	17
Figure 24. Number of distinct input variables and total input data points by reference type in the Outputs	S
Module	18

List of Tables

Table 1. Variable Types	1
Table 2. Distinct Input Variables Versus Total Input Data Points, by Module	4

1 Introduction

This report is a summary of all the data inputs to the Biomass Scenario Model, Version 2 (BSM2). The BSM2 is a state-of-the-art system dynamics model of the domestic biofuels supply chain that explicitly focuses on policy issues, feasibility, and potential side effects. It is built in STELLA (isee systems 2010) and accounts for resource availability, physical constraints, technological constraints, economic constraints, behavior, and policy—while tracking the deployment of biofuels through a dynamic simulation (not optimization). BSM2 focuses on cellulosic ethanol, while the most recent version (Version 3) additionally treats the major infrastructure-compatible fuels such as biomass-based gasoline, diesel, and jet fuel. For more information about the modeling methodology and logic contained in the BSM2, see Newes et al. (2011).

The Biomass Scenario Model (BSM) has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. There are over 12,000 total input values in the BSM2, contained in 506 distinct variables. Of the 506, any variable may be arrayed by one or two dimensions (e.g., contain subscripts) and/or be represented as a graph, with the ability to describe how values on the y-axis will respond depending on how the x-axis is defined. The six variable types are identified in Table 1.

Variable Type	Subscript 1	Subscript 2	X-axis	Description
Class 1: Single				The variable has a single scalar
data point				value.
Class 2: Graphical function			Х	The variable is a single graphical function demonstrating how the y-axis changes depending on the x-axis values.
Class 3: Array data series	Х			The variable is one-dimensional array.
Class 4: Matrix data series	Х	Х		The variable is a two-dimensional array.
Class 5: Arrayed graphical function	Х		Х	The variable is a one-dimensional array where each element has its own graphical function.
Class 6: Double subscripted graphical function	Х	Х	Х	The variable is a two-dimensional array where each combination of elements has its own graphical function.

Table 1. Variable Types

The BSM2 is divided into 11 modules, each with a different focus. They are all interconnected in a system of systems, where the major modules (feedstock supply, feedstock conversion, and downstream) can be run separately or in concert with one another. Figure 1 shows a schematic of the different modules in the model and how they interact. The Pricing and Inventory Module

(PIM) receives the most inputs from outside modules whereas the Dispensing Station Module (DSM) Inputs Module and the Vehicle Module (VM) only provide inputs to other modules.

Figure 1. Architecture of the BSM2

The BSM2 contains various types of input data, from modeler assumptions to referenced data values.¹ Figure 2 shows the breakdown of data sources in the model by number of distinct variables (not counting separately each input value of an array or graphical function) and number of total input data points, which includes all values contained in arrays and graphical functions. One distinct variable may have hundreds of data points if it is an arrayed graphical function; therefore, the share of data sources by total input data points can be very different from share by distinct variables. Whereas the calibrated values make up the majority of the total number of data points, distinct variables obtain the majority of their data from outside sources. In addition, a variable can be comprised of multiple data sources. For example, techno-economic data come from different sources for the various ethanol conversion processes—thermochemical, biochemical, and starch. After referenced data, the next-largest shares of variable sources are user-input scenario values (24%) and calibration based on historical data (22%).²

¹ See Appendix A for definitions of all data types.

² Additional information pertaining to the steps used in model calibration can be found in Appendix A.

Figure 2. Number of distinct input variables and total input data points by reference type in the BSM2

2 BSM2 Modules

Of the 506 distinct variables, the majority reside in the Feedstock Supply Module (FSM), Feedstock Conversion Module (CM), and the DSM Inputs Module (see Table 2). In the following sections, the data sources for each of the 11 BSM2 modules will be discussed, including the major outside sources upon which each section of the model relies and how the modules are interconnected. A detailed list of every data input variable contained in the BSM2, with corresponding values, references, and graphical functions, can be found in Appendix B.

Modules	Distinct Input Variables	Total Input Data Points
Feedstock Supply	185	4,739
Feedstock Conversion	125	2,646
DSM Inputs	95	955
Feedstock Logistics	52	285
Ethanol Pricing & Inventory	11	248
Ethanol Dispensing Stations	10	1,917
Ethanol Imports	9	38
Important Model Outputs	9	72
Vehicles	4	1,000
Fuel Use	3	330
Ethanol Distribution Logistics	2	111

Table 2.	Distinct Input	Variables	Versus	Total Input	Data	Points,	by Module

For the modules with the greatest number of distinct variables, the majority of the data come from outside sources, displayed in Figure 3 as "referenced data." For modules that have very few data inputs, the data types of "scenario values" and "BSM calibration" play a large role. Modeler assumptions and expert opinion comprise the least number of distinct variables for the majority of the modules.

Figure 3. Distinct input variables versus total input data points among reference types and modules

2.1 Feedstock Supply Module

The FSM accounts for 6 feedstock types (commodity crops, herbaceous energy crops, woody energy crops, agricultural residues, forest residues, and urban residues), 10 geographic regions, and different land uses including active crop land (planted with commodity crops or perennial energy crops), pasture land, and Conservation Reserve Program (CRP) land. It models farmer decision logic and land allocation dynamics and also covers new agriculture practices, markets, and prices. For a more detailed explanation of the feedbacks and mechanisms in this module, see Newes et al. (2011).

The FSM is the most data-heavy of all the modules. Almost half of the FSM inputs are based on outside sources, as illustrated in Figure 4. The FSM relies heavily upon datasets provided by Robert Perlack of Oak Ridge National Laboratory (ORNL),³ most of which are based on the POLYSYS model (The University of Tennessee). These data include feedstock yields, grower payments, costs, acreage by land use, crop prices, and other feedstock-related metrics. USDA projections (Interagency Agricultural Projections Committee 2011), the Biomass Logistics Model (Idaho National Laboratory), and Biomass Crop Assistance Program (Commodity Credit Corporation 2010) regulations are also major sources for the module. Because many of the projections do not provide numbers for the full timespan for which the BSM2 is generally run and/or do not provide points for every year, linear interpolation and/or extrapolation are performed to obtain the missing data.

³ Robert Perlack retired from Oak Ridge National Laboratory in 2012. See Appendix A for more details on this dataset.

	Number of Distinct Input Variables	Referenced Data	Distinct Variables	Total Data Points
		Data Obtained through Personal Communication with Robert Perlack of Oak Ridge National Laboratory	36	1,160
44 34		USDA Agricultural Projections to 2020	8	699
36		Biomass Logistics Model	7	19
		USDA Agricultural Projections to 2018	7	87
a a a a a a a a a a a a a a a a a a a		 Biomass Crop Assistance Program; Proposed Rule 	5	5
	Number of Total Input Data Points	Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis	5	13
		Annual Energy Outlook 2011	2	48
1,409 244		Energy Independence and Security Act of 2007	2	46
728		U.S. Census 2010 Population Map	2	14
		EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond	1	1
4		Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards; Final Rule	1	1
Data Ty BSM Ca	pe libration	U.S. Billion-Ton Update: Biomass Supply for Bioenergy and Bioproducts	1	210
Constan	nt Value nced Data n. Value	University of Missouri: G4020 Tables for Weights and Measurements: Crops	1	5
Stock Ir	nitialization	USDA Land Values and Cash Rents: 2010 Summary	1	10

Figure 4. Number of distinct input variables and total input data points by reference type in the FSM (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

In addition to the input data variables that are included within the FSM, the module also receives inputs from the Feedstock Logistics Module (FLM), the CM, and the DSM Inputs Module. The FSM also contributes some of its outputs to the FLM, CM, and Outputs Module (shown in Figure 5).

Figure 5. FSM: Interaction with other modules

2.2 Feedstock Logistics Module

The FLM covers transferring feedstock from the field to the conversion facility. It offers the logistics in multiple stages (including conventional and advanced uniform systems), provides cost breakdowns, accounts for transportation distance, and factors in land eligibility constraints. The main type of data source contributing to the FLM is external referenced data, followed by scenarios. As is shown in Figure 7, the FLM relies upon values from the Biomass Logistics Model (Idaho National Laboratory), originally developed by Oak Ridge National Laboratory, for the majority of its inputs dealing with crop transportation (costs, truck capacity, efficiency, loss). Additional sources of information include the Forest Residues Transportation Costing Model (Rummer 2005) for informing the cost of transporting forest residues, communication with Robert Perlack for harvesting and collection costs, and an NREL design report (Dutta et al. 2011) for conversion facility processing capacity characteristics.

The FLM receives values from variables contained in the FSM and CM and provides outputs into the FSM, as is shown in Figure 6.

Figure 6. FLM: Interaction with other modules

Figure 7. Number of distinct input variables and total input data points by reference type in the FLM (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

2.3 Feedstock Conversion Module

The CM currently has five conversion platforms, including starch, thermochemical, biochemical, starch plus, and hybrid. It covers four development stages (pilot, demo, pioneer, commercial) of pre-defined scales; six attributes (process yield, probability of success, input capacity, capital cost, risk, and debt fraction); cascading learning curves; and project economics. It also models industry growth and investment dynamics. The CM is the second-most input-intensive module after the FSM.

Outside data play a major role for the inputs to the CM, as is shown in Figure 8. Important references for this module include the NREL technical reports for biochemical, thermochemical, and starch pathways for ethanol conversion (Dutta et al. 2011; Humbird et al. 2011; McAloon et al. 2000). Data from these reports are utilized to inform capital and variable costs, feedstock throughput capacity, facility capacity, product yield, and other related items. Additionally, an internal list of potential biofuels conversion facilities⁴ summarizes all the known plants in the pipeline and is used to determine the number of exogenous plant start-ups in the model. These

⁴ See Appendix A for more information on the internal list of conversion facilities.

data are also utilized for an optimistic scenario, where all plants that have been announced but have not made much progress are assumed to still begin operations on the most recently publicized date.

. . .

.

-	Input Variables	BSM Calibration BSM Modeler Assumption Constant Value Expert Opinion	Referenced Da Scenario Value Stock Initializa	ata a tion
19 3 21		Referenced Data	Distinct Variables	Total Data Points
3 50 24		Internal List of Potential Biofuels Conversion Facilities	29	777
13		Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol	15	17
	Number of Total Input Data Points	Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol	12	12
		Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks	7	10
1,319 3 80 12		Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks	3	3
837 112 283		Expert Opinion	3	12
-		Internal Risk Analysis for GPRA and SEDS	3	18

Figure 8. Number of distinct input variables and total input data points by reference type in the CM (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

The CM is the link between feedstock production and the "downstream" (distribution, dispensing, and fuel use). Therefore, it is interconnected with many modules (see Figure 9). It takes values from the FSM and PIM and feeds values into the FLM, FSM, Outputs, and PIM.

Figure 9. CM: Interaction with other modules

2.4 Dispensing Station Module Inputs

The DSM Inputs Module holds most of the outside references, calibration values, and scenario values for the downstream modules—distribution, dispensing, and fuel use, as is shown in Figure 10. It feeds predominantly into Dispensing Stations Module (DSM) and Distribution Logistics Module (DLM) and does not have any actual logic within its own module. Housing all outside sources for the downstream modules in a separate module is a reasonable method for keeping track of all of the relevant inputs.

Figure 10. DSM Inputs Module: Interaction with other modules

DSM Inputs has a few key references, as shown in Figure 11.⁵ The first is an internal NREL ethanol transportation memo, in which transportation costs for ethanol with and without infrastructure are examined.⁶ Another important data source is the National Association of Convenience Stores, which provides information on gasoline station sales and volumes (National Association of Convenience Stores 2011). In addition, an NREL report details ownership of gas stations in the United States (Johnson and Melendez 2007).

⁵ In general, available data for the distribution, dispensing, and end use of ethanol are extremely limited. We have collected data from a variety of sources that are not peer-reviewed published papers.

⁶ See Appendix A for more information.

	Number of Distinct Input Variables	Referenced Data	Distinct Variables	Total Data Points
-		E85 Retail Business Case: When and Why to Sell E85	4	28
26 4 1		Ethanol Transportation Memo	4	<mark>4</mark> 0
24 35 5		EPA E15 Factsheet	2	14
		NACS Gas Price Kit 2011	2	5
		5798-10a: Standard Specification for Fuel Ethanol (Ed75-Ed-85) for Automotive Spark-Ignition Engines	1	10
-	Number of Total Input Data Points	Aggregation of Tankage Data from State Agencies	1	10
		API: Gasoline Taxes July 2011	1	10
233 10 1 216 385		Enhancing Nitrogen Use Efficiency in Sorghum in Kansas	1	1
		Forest Residues Transportation Costing Model	1	1
		NACS 2007 Annual Report	1	40
5		Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol	1	1
Data Typ BSM Cal)e ibration	Status and Issues for Ethanol (E85) in the United States	1	40
BSM Mo Constan Referen	deler Assumption t Value ced Data	Summary Real Estate Appraisal Report Gas Station/Convenience Store	1	4
Scenario Value Stock Initialization		The Demand for E85 Ethanol	1	1
		U.S. Census: Gasoline Stations in the US	1	1
		USDA Land Values and Cash Rents: 2010 Summary	1	10

Figure 11. Number of distinct input variables and total input data points by reference type in the DSM Inputs Module (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

2.5 Pricing and Inventory Module

Ethanol price is set and inventory is calculated in the PIM. More information on how E85 price is formulated can be found in Newes et al. (forthcoming). Inventory is determined by supply of ethanol and consumption of E10⁷ and E85 along with ethanol imports. Any outside references utilized by the PIM are contained in the DSM Inputs Module. The PIM is the most interconnected module in the BSM2. It receives information from 6 of the 10 other BSM2 modules. It sends relevant outputs to five of the modules (see Figure 12).

Figure 12. PIM: Interaction with other modules

The PIM contains mainly calibration-related inputs (see Figure 13). The majority of these variables are tuning parameters that temper the model's reaction to environmental changes. For example, one deals with how quickly ethanol production ramps up in response to a change in ethanol price while another determines how quickly a difference between supply and demand will affect ethanol price.

Figure 13. Number of distinct input variables and total input data points by reference type in the PIM

2.6 Distribution Logistics Module

The DLM contains logic regarding implicit ethanol distribution modes, regional depot and storage, transportation costs, and inter-regional transport. For more information on the DLM, see Vimmerstedt et al. (2012). Because most of the downstream (distribution, dispensing, and fuel use) modules' input values are contained in the DSM Inputs Module, there are no references associated directly with this module (see Figure 14). The BSM2 calibration variable deals with

⁷ Although recent regulations for E15 have been passed, there are not many available E15 pumps at the writing of this report. Nonetheless, the BSM2 can be run taking E15 into account.

the relationship between the terminals without ethanol storage capacity and the rate at which terminals are acquiring ethanol storage capability. The lone scenario variable allows the user to enable 100% of the storage facilities to accept ethanol.

Figure 14. Number of distinct input variables and total input data points by reference type in the DLM

As is shown in Figure 15, the DLM receives inputs from DSM Inputs, the PIM, and the Vehicles Module (VM). Some of its key outputs go to the PIM, the DSM, and Outputs.

Figure 15. DLM: Interaction with other modules

2.7 Dispensing Stations Module

The DSM provides fueling-station economics and houses fuel-choice dynamics. It also looks at the distribution-coverage effects across the different regions. For more information on the DSM, see Vimmerstedt et al. (2012). As was previously stated in Section 2.4, most of the inputs for the DSM are contained in the DSM Inputs Module; therefore, the DSM consists entirely of calibration, constants, and scenario values. There are no outside sources associated directly with this module (see Figure 16).

Figure 16. Number of distinct input variables and total input data points by reference type in the DSM

As shown in Figure 17, the DSM receives information from the FUM, DSM inputs, DLM, PIM, and VM. Selected outputs from the DSM go to the FUM and Outputs Module.

Figure 17. DSM: Interaction with other modules

2.8 Fuel Use Module

The FUM contains fuel choice logic. Consumers are categorized as three types of users: regular high-blend users, occasion high-blend users, and non-high-blend users. The major constraints to this module are the number of stations offering high-blend fuel, the price differential between high-blend fuel and gasoline, and the number of flex-fuel vehicles in the vehicle fleet. As a base-case scenario, the model uses projections from the 2011 Annual Energy Outlook (Energy Information Administration 2011a) for gasoline prices (listed as a scenario variable in the DSM Inputs Module). As shown in Figure 18, the FUM contains only calibration variables: the percent of flex-fuel vehicle owners who will choose E85 on a regular basis, the rate at which E85 consumption increases with the number of stations offering E85, and the rate at which occasional E85 users become regular users.

Figure 18. Number of distinct input variables and total input data points by reference type in the FUM

The FUM receives information from DSM Inputs, the VM, DSM, and PIM. It sends outputs to the DSM, PIM, and the Outputs Module (see Figure 19).

Figure 19. FUM: Interaction with other modules

2.9 Imports Module

The Imports Module (IM) looks at costs, taxes, and regulations associated with importing ethanol. Most of the variables are scenario values that give different options for import scenarios (see Figure 20). The one external source used is the Energy Information Administration's compilation of ethanol imports (Energy Information Administration 2011b).

Figure 20. Number of distinct input variables and total input data points by reference type in the IM (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

The IM receives information from the PIM, while providing data to the PIM after a series of internal calculations (see Figure 21).

Figure 21. IM: Interaction with other modules

2.10 Vehicles Module

The VM is a separate model, not embedded within the BSM, that generates different portfolios of vehicle shares by type within the fleet, with the attention focused on the number of available flex-fuel vehicles and overall demand for liquid fuel. Four output variables that address the potential consumption of gasoline versus E85 are then fed into the BSM2 (see Figure 22). The

baseline scenario for the BSM2 uses the Annual Energy Outlook's projections for vehicle fleet composition (Energy Information Administration 2011a).

Figure 22. Number of distinct input variables and total input data points by reference type in the VM (left) and breakdown of referenced data by source, number of distinct variables, and total data points (right)

Note: The sum of the distinct variables column on the right may not equal the number of distinct variables for referenced data because in an arrayed variable, elements may have different sources.

Because the VM is simply outputs from a separate model, it only feeds data into modules of the BSM2, more specifically the DLM, DSM, PIM, FUM, and Outputs Module (see Figure 23).

Figure 23. VM: Interaction with other modules

2.11 Outputs

The outputs module is generally a place where many of the important outputs from all of the other modules are gathered in order to have one location where all of them are easily accessible. Many of the variables are aggregated and cumulated here in order to create different ways to

look at the output metrics. For this reason, almost all of the input variables are simply stock initializations, as illustrated in Figure 24.

Figure 24. Number of distinct input variables and total input data points by reference type in the Outputs Module

Conclusion

The BSM2 is a complex model that contains over 1,500 distinct variables, including over 500 variables with data inputs, that aid in representing the biomass-to-biofuels supply chain and exploring system responses to a variety of scenarios. This report describes the structured modules of the BSM2, the nature of their data sources, and how they interact. The model is calibrated with established industry data and validated against expert opinions, when available. Most of the exogenous data sources that constitute the main inputs to the model are recognized as baseline values by the industry. These values are updated in the model when new data are released. By detailing the input data in this report, the foundation for initialization and calibration of the BSM2 can be easily located by analysts and others interested in the data fundamentals of the model. With this organized input information, we plan to build a more structured data provenance of the BSM2—using the established database that houses all current and historical variables, formulas, and references for the model—that will facilitate users' locations of all important data streams in the model.

References

Aden, A. (2007). "Water Usage for Current and Future Ethanol Production." *Southwest Hydrology* (6:5); pp. 22–23.

American Petroleum Institute. (2011). "Gasoline Taxes." http://www.api.org/oil-and-natural-gasoverview/industry-economics/~/media/Files/Statistics/Gasoline-Tax-Map.ashx. Accessed August 23, 2011.

Anderson, S. T. (2006). The Demand for E85 Ethanol. Ann Arbor, MI: University of Michigan.

ASTM International. (2010). *ASTM D5798 - 11 Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark-Ignition Engines*. http://www.astm.org/Standards/D5798.htm. Accessed May 22, 2013.

Biofuels Digest. (2011). "Advanced Biofuels Tracking Database v1.7." http://www.biofuelsdigest.com/bdigest/2011/01/14/10-advanced-biofuelsprojects-now-plannedin-advanced-biofuels/. Accessed January 14, 2011.

Commodity Credit Corporation. (2010). *Biomass Crop Assistance Program; proposed rule*. 7 CFR Part 1450. Washington, DC: U.S. Department of Agriculture.

Doctor Douglas. (2003). "Average Radial Distance of Points within a Circle." *The Math Forum* @ *Drexel*. http://mathforum.org/library/drmath/view/62529.html. Accessed July 1, 2011.

Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groenendijk, P. et al. (2011). *Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol*. TP-5100-51400. Golden, CO: National Renewable Energy Laboratory.

Energy Information Administration (EIA). (2011a). *Annual Energy Outlook 2011: With Projections to 2035*. DOE/EIA-0383(2011). Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585: United States Department of Energy. http://www.eia.gov/forecasts/aeo/pdf/0383%282011%29.pdf. Accessed May 23, 2013.

EIA. (2011b). "Fuel Ethanol Imports by Area of Entry." http://www.eia.gov/dnav/pet/pet_move_imp_a_epooxe_im0_mbbl_m.htm. Accessed September 14, 2011.

Fehrs, J. (1999). Secondary Mill Residues and Urban Wood Waste Quantities in the United States. Washington, DC: Northeast Regional Biomass Program.

Global Biofuels Center. (2012). *Global: Were Expectations Too High for Next-Generation Biofuels Development?* Houston, TX: Hart Energy.

Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P. et al. (2011). *Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover*. TP-5100-47764. Golden, CO: National Renewable Energy Laboratory. Idaho National Laboratory. Biomass Logistics Model v.6.32.

Interagency Agricultural Projections Committee. (2009). *Agricultural Projections to 2018*. Washington, DC: U.S. Department of Agriculture.

Interagency Agricultural Projections Committee. (2011). USDA Agricultural Projections to 2020. OCE-2011-1. Washington, DC: U.S. Department of Agriculture.

isee systems. (2010). "STELLA: systems thinking for education and research software." http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx. Accessed October 26, 2010.

Johnson, C.; Melendez, M. (2007). *E85 Retail Business Case: When and Why to Sell E85*. NREL/TP-540-41590. Golden, CO: National Renewable Energy Laboratory.

McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R. (2000). *Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks*. NREL/TP-580-28893.National Renewable Energy Laboratory.

McNulty, M.; Ahrens, A. (2009). *Energy Price-Production Cost Coupling Analysis*. Work performed by Pacey Economics Group, Boulder, CO. Golden, CO: National Renewable Energy Laboratory.

Melendez, Margo; Moriarty, Kristi; Dafoe, Wendy; Noblet, Stacy. (2009). *Status and Issues for Ethanol (E85) in the United States*. U.S. Department of Energy: Energy Efficiency & Renewable Energy.

Mengel, David; Tucker, Drew; Weber, Holly. (2005). *Enhancing Nitrogen Use Efficiency in Sorghum in Kansas*. Kansas State University.

Murphy, William. (1993). "G4020 Tables for Weights and Measurements: Crops." *University of Missouri Extension*. http://extension.missouri.edu/publications/DisplayPub.aspx?P=G4020. Accessed August 9, 2011.

National Agricultural Statistics Service. (2010). *Land Values and Cash Rents 2010 Summary*. Washington, DC: U.S. Department of Agriculture.

National Association of Convenience Stores (NACS). (2008). *NACS State of the Industry Annual Report: Convenience & Petroleum Retailing Totals, Trends and Analysis of 2007 Industry Data.* NACS: The Association for Convenience and Petroleum Retailing.

NACS. (2011). "2011 NACS Gas Price Kit." *NACS Online*. http://www.nacsonline.com/NACS/Resources/campaigns/GasPrices_2011/Pages/HowRetailersG etSellGas.aspx. Accessed August 17, 2011.

Newes, E; Bush, B.; Peck, C; Peterson, S. (forthcoming). *Exploration of policy, shocks, and dynamic interactions within the cellulosic ethanol supply chain*. Golden, CO: National Renewable Energy Laboratory.

Newes, E.; Inman, D.; Bush, B. (2011). "Understanding the Developing Cellulosic Biofuels Industry Through Dynamic Modeling." *Economic Effects of Biofuel Production*, InTech Open Access Publisher. http://www.intechopen.com/books/economic-effects-of-biofuelproduction/understanding-the-developing-cellulosic-biofuels-industry-through-dynamicmodeling.

Office of Transportation and Air Quality. (2010). EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond. Accessed July 6, 2011.

Perlack, R.D.; Stokes, B.J. (2011). U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Oak Ridge, TN: Oak Ridge National Laboratory.

Robert A. Stanger & Co., Inc. (2007). *Summary Real Estate Appraisal Report Gas Station / Convenience Store (with Retail Center) Appco Convenience Center 7000 Block Duffield-Pattonsville Road Duffield, Virginia 24244*. Jersey City, NJ: Cornell Capital Partners.

Rummer, B. (2005). Forest Residues Transportation Costing Model. U.S. Forest Service.

The University of Tennessee. "Agricultural Policy Analysis Center Research Tools - POLYSYS." *Agricultural Policy Analysis Center - The University of Tennessee.* http://www.agpolicy.org/polysys.html. Accessed February 18, 2011.

U.S. Census Bureau (USCB). (2011a). "Industry Statistics Sampler: NAICS 4471 - Gasoline stations." http://www.census.gov/econ/industry/current/c4471.htm. Accessed December 17, 2012.

USCB. (2011b). "2010 Census Interactive Population Map." http://2010.census.gov/2010census/popmap/. Accessed September 14, 2011.

U.S. Congress. (2007). *Energy Independence and Security Act of 2007*. http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf. Accessed May 23, 2013.

U.S. Department of Energy. (2012). "Integrated Biorefineries." http://www1.eere.energy.gov/biomass/integrated_biorefineries.html. Accessed October 23, 2012.

U.S. Environmental Protection Agency (EPA). (2010). Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards; Final Rule. Accessed July 6, 2011.

EPA. (2011). "E15 (a blend of gasoline and ethanol)." *Fuels and Fuel Additives*. http://www.epa.gov/otaq/regs/fuels/additive/e15/index.htm. Accessed September 9, 2011.

Vimmerstedt, L.; Bush, B.; Peterson, S. (2012). "Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics." *PLoS ONE* (7:5). doi: 10.1371/journal.pone.0035082.

Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W. (2005). *Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks*. TP-510-37092. Golden, CO: National Renewable Energy Laboratory.

Appendix A

Definitions of input data types:

Scenario Value

A scenario variable is used to simulate a hypothetical situation that is not based on any referenced data. It is generally a user input that can be utilized to run the model under different situations. Scenario variables can be multipliers that are applied to existing values or distinct variables specific to a certain situation.

BSM Calibration

A number of functions, such as logit functions, require appropriate coefficients that cannot be determined through pure assumption or data. In these cases, a calibration method is used to determine the allowable value. Typical steps for calibrating the model include the following:

- Outside data, upon which the model will be calibrated, are entered into the model as a graphical function [i.e., USDA feedstock projections (Interagency Agricultural Projections Committee 2011)].
- The BSM2 is run to see how closely the two trajectories match in the short term.
- Relevant parameters within the BSM2 are then adjusted to obtain a more closely aligned data path.

Constant Value

Constant variables are comprised of scalar values. Many times these variables are simply conversion factors, such as how many days are in a year.

BSM Modeler Assumption

A variable labeled with modeler assumption means that, given the available information, the modeler made a best estimate. This data type differs from calibration in that, in theory, a referenced value for this variable could exist if appropriate research were performed.

Expert Opinion

While published data on these values do not exist, the modelers spoke with experts in the field for their best estimates to arrive at the assigned values.

Stock Initialization

In STELLA (isee systems 2010), stocks must be initialized. Most of these values are set to zero to indicate a lack of accumulation before the model run begins.

Referenced Data

Data from specific sources that are not assumptions made by modelers or outside experts are considered to be referenced data. Most of these publications and models can be found on the internet. The following list details sources that are not available to the public.

• Internal Conversion Facility List

A member of the BSM team compiled a spreadsheet of all the biorefineries currently in the pipeline for various technologies and scales. The spreadsheet is based on data from the U.S. Department of Energy (U.S. Department of Energy 2012), Biofuels Digest (Biofuels Digest 2011), and Hart Energy (Global Biofuels Center 2012), which were carefully crosschecked against available information from additional sources such as press releases and news articles. From that information, plants were divided into a "likely" and "not likely" categories, indicating which plants are not likely to start up on schedule, either due to delays or cancellation. These data were aggregated to determine the number of exogenous plants starting up in the CM.

• Communication with Robert Perlack of Oak Ridge National Laboratory

The datasets obtained from Robert Perlack contain critical information about costs, prices, acreage, and yields for energy crops (woody and cellulosic), conventional crops, and agricultural residues. They also provide a breakdown of acreage by land use. The data were aggregated to the USDA region level, using averages when necessary. The information provided for the BSM2 was based on runs of POLYSYS (The University of Tennessee), USDA projections (Interagency Agricultural Projections Committee 2011), and data provided by the Economic Research Service of the USDA. Although the data were obtained through ORNL, they are not always synonymous with data from the Billion Ton Update (Perlack and Stokes 2011) because they originated from different runs of POLYSYS.

• Aggregation of Tankage Data from State Agencies

The data were researched by state, mostly from the state Oil and Gas Commission websites.

• Ethanol Transportation Memo

The internal transportation memo was compiled in 2011 by Olga Antonia, formerly of NREL, and includes information regarding biofuel delivery costs. Data are provided for terminal costs in addition to transportation by truck, rail, and barge. A simple calculator was also created to derive ethanol.

• Internal Risk Analysis for GPRA and SEDS

This internal document written in 2008 by Robert Wallace, formerly of NREL, details the process and results for the Government Performance and Results Act (GPRA) and the Stochastic Energy Deployment System (SEDS – seds.nrel.gov) risk/uncertainty analysis performed for the biochemical conversion process for lignocellulosic biomass to ethanol.

Appendix B

This section contains a comprehensive list of all input variables in the BSM2 along with a description of the variable, the data source, the actual value (or group of values), and the units of measurement. The listed values are taken from the BSM2 reference policy case, which includes moderate incentives for ethanol production and a \$0.50 per gallon gasoline tax—see Newes et al. (forthcoming). The variables are organized in the following manner: single data points are shown in the first list, followed by tables of arrayed functions and graphs of the graphical functions.

CM.Cume_Govt_Exposure	e_Loan_Guarantee		Stock Initialization
Value: 0	Units: USD	An accumulation of government load guarantees; initialized to 0 at the start of the model	
CM.Cume_Govt_Subs_FC			Stock Initialization
Value: 0	Units: USD	An accumulation of fixed capital investment subsidies; initialized to 0 at the start of the model.	
CM.Cume_Govt_Subs_FS	6		Stock Initialization
Value: 0	Units: USD	An accumulation of feedstock subsidies; initialized to 0 at the start of the model.	
CM.Days_per_Year_Online		Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol	
Value: 0.96	Units: day/yr	The expected number of days per year that a plant is operational and online.	table 1
CM.Debt_Interest_Rate_a	s_Pct	Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol	
Value: 8	Units: 1/yr	The interest rate for debt financing as a percent per year.	table 1
CM.demo_dev_time			Scenario Value
Value: 1.5	Units: yr	The dwell time between the initiation and completion of a demonstration- scale development effort.	
CM.demo_op_time			Scenario Value
Value: 3	Units: yr	The amount of time that a demonstration-scale development effort spends "on-line".	
CM.depreciation_period		Process Design and Economics for Conversion of Lignocellul	osic Biomass to Ethanol
Value: 7	Units: yr	The depreciation period of capital equipment based on financials from the design report as listed below.	
CM.Doubling			Constant Value
Value: 1	Units: Doubling	Constant. Keeps units consistent in model.	
CM.exogenous_C_initiatii	on_interval		Constant Value
Value: 1E+09	Units: yr	Length of pulse input for oncoming commercial plants.	

CM.exogenous_C_initiatii	on_interval_NL		Constant Value
Value: 1E+09	Units: yr	Length of pulse input for oncoming commercial plants that are "not likely" to actually come online.	
CM.exogenous_P_initiatii	on_interval		Constant Value
Value: 1E+09	Units: yr	Length of pulse input for oncoming pioneer plants.	
CM.exogenous_P_initiatii	on_interval_NL		Constant Value
Value: 1E+09	Units: yr	Length of pulse input for oncoming pioneer plants that are "not likely" to actually come online.	
CM.Expected_Tax_Rate		Process Design and Economics for Biochemical Conversion of Ligno	cellulosic Biomass to Ethanol
Value: 0.35	Units: Unitless	Expected tax rate associated with income.	table 1
CM.fraction_of_Ploneer_c	ost_growth_anticipated		Scenario Value
Value: 1	Units: Unitless	Enables input of scenarios around investor expectations of cost growth in NPV calculation.	
CM.invest_attractiveness_	weighting		BSM Calibration
Value: 15	Units: 1/USD-billions	Weighting factor for logit function calculation.	
CM.k_C			BSM Calibration
Value: 0	Units: Unitless	An assumed non-\$-based utility component of attractiveness of commercial scale operations.	
CM.k_OTHER			BSM Calibration
Value: 0	Units: Unitless	An assumed non-\$-based utility component of attractiveness of other uses of plant construction capacity.	
CM.k_P			BSM Calibration
Value: 0	Units: Unitless	An assumed non-\$-based utility component of attractiveness of pioneer- scale operations.	
CM.Limit_Plant_Number_1	or_FCI?		Scenario Value
Value: 1	Units: Unitless	A scenario switch to limit the number of plants for fixed capital investment.	
CM.Limit_Plant_Number_for_Loan?		Internal List of Potential Biofuels Conversion Facilities	
---------------------------------	------------------------	--	-------------------------
Value: 1	Units: Unitless	A scenario switch to limit the number of plants for loans.	
CM.Mature_Industry_Ec	quity_Fraction	BSM	A Modeler Assumption
Value: 0.3	Units: Unitless	Expected fraction of investment to be funded through equity financing for commercial plants for mature industry	
CM.Mature_Industry_Ra	ate_of_Return_as_%	Process Design and Economics for Conversion of Lignocellulos	sic Biomass to Ethanol
Value: 10	Units: Percent/yr	Project rate of return required for mature industry project.	table 1
CM.Max_Loan_Guarant	ee_Plants	Internal List of Potential Biofuels	s Conversion Facilities
Value: 10	Units: projects	Maximum number of plants with loan guarantees.	
CM.Max_Starch_Prod'n			Expert Opinion
Value: 15	Units: billions-gal/yr	Maximum number of billion gallons of starch-based EtOH production per year.	
CM.neutral_constraint_	for_cellulosics		Scenario Value
Value: 1	Units: Unitless	Neutralized input for cellulosic ethanol facilities to counteract the maximum plant constraint that is applied to starch ethanol facilities.	
CM.neutral_impact			Scenario Value
Value: 1	Units: Unitless	Used to convert units from nominal units to billions, and from billions to nominal units.	
CM.NPV_rel_to_a_billio	n_OTHER		BSM Calibration
Value: 0.2	Units: USD-billions	Assumed NPV (relative to a billion \$) associated with other uses of plant construction capacity.	
CM.one			Constant Value
Value: 1	Units: Unitless	Constant; by definition.	
CM.one_billion			Constant Value
Value: 1E+09	Units: 1/billions	Constant; by definition.	
CM.One_Dollar			Constant Value
Value: 1	Units: USD	Constant; by definition.	

CM.one_hundred_%			Constant Value
Value: 100	Units: Percent	Constant; by definition.	
CM.one_million			Constant Value
Value: 1000000	Units: 1/million	Constant; by definition.	
CM.one_project			Constant Value
Value: 1	Units: projects	Constant; by definition.	
CM.Op_Experience_Per_`	f ear		Scenario Value
Value: 1	Units: 1/projects	Years of experience generated per year of operation, for each operation in operation. Applies to demonstration- and pilot-scale operations.	
CM.optimistic_exogenous	s_C_scenario		Scenario Value
Value: 0	Units: Unitless	Switch to bring "unlikely" commercial plants online. See Internal Conversion Facility List" spreadsheet for judgment on likely/unlikely plants.	
CM.optimistic_exogenous	s_P_scenario		Scenario Value
Value: 0	Units: Unitless	Switch to bring "unlikely" pioneer plants online. See Internal Conversion Facility List" spreadsheet for judgment on likely/unlikely plants.	
CM.pilot_dev_time			BSM Modeler Assumption
Value: 0.75	Units: yr	Dwell time between initiation and completion of pilot-scale development effort.	
CM.pilot_op_time			BSM Modeler Assumption
Value: 1.5	Units: yr	Time that pilot-scale development effort spends online and operational.	
CM.pioneer_capacity_sca	le_factor		BSM Calibration
Value: 0.35	Units: Unitless	Scaling factor that relates pioneer-scale to commercial scale capacity.	
CM.pioneer_coproduct_s	cale_factor		BSM Calibration
Value: 0	Units: Unitless	Scaling factor that relates pioneer-scale to commercial scale co-product revenues.	
CM.pioneer_cost_scale_f	actor		BSM Calibration
Value: 0.6	Units: Unitless	Scaling factor that relates pioneer-scale to commercial scale costs.	

CM.Plant_Economic_Lifetime			Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol	
Value: 30	Units:	yr	The economic lifetime of a plant in on-line years	
CM.Policy_Expiration_Time			Scenario Value	
Value: 2022	Units:	yr	The year in which policy is set to expire.	
CM.Policy_Implementation_	Time		Scenario Value	
Value: 2011	Units:	yr	The year in which policy is set to begin.	
CM.rate_of_industry_proces	s_yield	_adjustment	Scenario Value	
Value: 1	Units:	1/yr	Fractional rate of incorporation of state of art knowledge into existing plants in industry.	
CM.Regions_in_play			Scenario Value	
Value: 10	Units:	Unitless	Number of regions in consideration.	
CM.Run_CM_in_Isolation?			Scenario Value	
Value: 1	Units:	Unitless	Switch to determine whether conversion module is to be run in isolation or not.	
CM.term_of_loan			Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol	
Value: 10	Units:	yr	Number of years of a project loan.	
CM.Util_rate_for_starting_u	o		Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol	
Value: 0.5	Units:	Unitless	Utilization fraction for start-up commercial-scale plants.	
CM.Years_in_Startup_C			Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol	
Value: 0.25	Units:	yr	Assumed time to do start-up for commercial-scale plant.	
DLM.Got_Regional_Infrastru	icture?		Scenario Value	
Value: 0	Units:	Unitless	A switch that indicates whether there is regional distribution infrastructure available.	

DSM.Got_HiBlend_Tankage?				Scenario Value
Value: 0	Units:	Unitless	A switch that indicates whether or not there is high blend (E85) tankage available.	
DSM.months_per_year				Constant Value
Value: 12	Units:	month/yr	Constant; number of months per year.	
DSM.one_station				Constant Value
Value: 1	Units:	Stations	Constant; represents one station for unit consistency.	
DSM_Inputs.add'I_gas_tax_an	nt			Scenario Value
Value: 0.5	Units:	USD/gal	Gasoline tax in dollars per gallon at the pump. Example: carbon tax.	
DSM_Inputs.avg_per_gal_mar	kup			NACS Gas Price Kit 2011
Value: 0.15	Units:	USD/gal	Assumed dollar markup of gasoline between distributor and retail.	
DSM_Inputs.avging_time_for_	cons'r	1		BSM Calibration
Value: 0.5	Units:	yr	Averaging time for regional overall EtOH consumption; input to a smoothing function that filters noise from the EtOH consumption pattern.	
DSM_Inputs.b_Hi_Plend_Price	e_coup	ling_Coeff		The Demand for E85 Ethanol
Value: 0.75	Units:	Unitless	The discount applied to gasoline price, and used to set the price of hi- blend, if the scenario selects calculation based on price coupling.	
DSM_Inputs.Background_C_E	tOH_P	oP_implementation_	_time	Scenario Value
Value: 2011	Units:	yr	Start year for EtOH subsidy at the point of production.	
DSM_Inputs.Background_C_E	tOH_P	oP_Subs_stop_time		Scenario Value
Value: 2051	Units:	yr	Year in which the EtOH subsidy is to end.	
DSM_Inputs.Background_C_E	тон_	POP_Subsidy_Amou	nt	Scenario Value
Value: 0.15	Units:	USD/gal	EtOH subsidy amount at the point of production.	
DSM_Inputs.Background_C_E	tOH_P	oP_Subsidy_Switch		Scenario Value
Value: 1	Units:	Unitless	A switch to determine whether EtOH subsidy at the point of production is available or not.	

DSM_Inputs.base_Infras_acquisition_rate		BSM Modeler Assumption	
Value: 0.5	Units: 1/yr	Non-constrained baseline rate at which infrastructure gap is eliminated per year.	
DSM_Inputs.BTU\gal_eth	anol	Enhancing Nitrogen Use Efficiency in Sorghum in Kansas	
Value: 76	Units: btu/gallon	Energy content of EtOH.	
DSM_Inputs.BTU\gal_gas	oline	Forest Residues Transportation Costing Model	
Value: 115	Units: btu/gallon	Energy content of gasoline.	
DSM_Inputs.c_Cost_Plus	_Markup_Coeff	BSM Calibration	
Value: 1.3	Units: Unitless	Applied to POD price, and used to set the cost-plus markup pricing rule for hi blend.	
DSM_Inputs.C_ETOH_PC	P_Subsidy_Amount	Scenario Value	
Value: 2.5	Units: USD/gal	Amount of subsidy at PoP that is tied to a cellulosic volumetric constraint.	
DSM_Inputs.C_EtOH_Pol	P_Subsidy_Switch	Scenario Value	
Value: 1	Units: Unitless	A switch to activate a subsidy for ethanol at the commercial-scale point of production.	
DSM_Inputs.C_PoP_subs	s_stop_time	Scenario Value	
Value: 2051	Units: yr	Year in which subsidies are scheduled to turn off.	
DSM_Inputs.depreciation	_period	BSM Calibration	
Value: 7	Units: yr	Depreciation period for capital equipment, in years.	
DSM_Inputs.desired_ETC	OH_inv_adj_time	BSM Calibration	
Value: 0.25	Units: yr	Time, in years, to adjust regional overages/shortages in inventories.	
DSM_Inputs.Desired_EtO	H_inv_coverage	BSM Calibration	_
Value: 0.1	Units: yr	Size of aggregate system inventory desired measured in years-worth of average consumption.	
DSM_Inputs.DistStor_sul	os_stop_time	Scenario Value	
Value: 2020	Units: yr	Year in which the distribution and storage subsidy is scheduled to end.	

DSM_Inputs.dwell_time_	for_considering_investm	nent	BSM Calibration
Value: 1	Units: yr	Average length of time that a decision is under consideration, in years.	
DSM_Inputs.EtOH_Dist'r		ch	Scenario Value
Value: 1	Units: Unitless	A switch to activate a subsidy for ethanol in distribution and storage.	
DSM_Inputs.Expected_T	ax_Rate	Process Design and Economics for Biochemical Conversion of Ligr	nocellulosic Biomass to Ethanol
Value: 0.35	Units: Unitless	Expected tax rate associated with income from investment.	
DSM_Inputs.f_Hi_Blend_ actor	Gasoline_Price_Coupling	g_Weighting_F	BSM Calibration
Value: 0.7	Units: Unitless	Weighting factor used to weight price coupling (vs cost-plus pricing) in weighted avg calculation of high blend price. Range between 0 and 1.	
DSM_Inputs.FCI_subs_s	top_time		Scenario Value
Value: 2031	Units: yr	Year in which the FCI subsidies are scheduled to end.	
DSM_Inputs.FCI_subs_s	witch		Scenario Value
Value: 1	Units: Unitless	A switch to activate a subsidy for FCI.	
DSM_Inputs.frac_avg_te	rm_vol_req'd_for_acq		BSM Calibration
Value: 0.25	Units: Unitless	Fraction of average per-terminal gasoline volume that sets threshold for acquiring infrastructure when there is a surplus of EtOH relative to terminals with EtOH infrastructure.	
DSM_Inputs.Frac_FCI_s	ubs		Scenario Value
Value: 0.8	Units: Unitless	Fraction of Fixed Capital Expense that is subsidized by the government.	
DSM_Inputs.gas_price_a	veraging_time		BSM Calibration
Value: 2	Units: yr	Provides averaging time for price smoothing of price dynamics. An input to long term price for gasoline, hi-blend.	
DSM_Inputs.gas_tax_sto	pp_time		Scenario Value
Value: 2051	Units: yr	Year in which the gas tax is scheduled to turn off.	

DSM_Inputs.gas_tax_s	switch		Scenario Value
Value: 1	Units: Unitless	A switch to control whether a gas tax scenario is in place.	
DSM_Inputs.hi_blend_	_PoU_subsidy_amt		Scenario Value
Value: 0.5	Units: USD/gal	Dollars per gallon of point of use hi-blend subsidy.	
DSM_Inputs.hi_blend_	_subsidy_switch		Scenario Value
Value: 1	Units: Unitless	A switch to turn on the point of use hi-blend subsidy.	
DSM_Inputs.HiBlend_	subs_stop_time		Scenario Value
Value: 2024	Units: yr	Year in which the hi-blend subsidy is set to end.	
DSM_Inputs.implemer	ntation_time		Scenario Value
Value: 2011	Units: yr	Year in which all price-oriented DSM initiatives are to be turned on.	
DSM_Inputs.import_av	vg_adj_time		BSM Calibration
Value: 0.5	Units: yr	Averaging time for calculating the fraction of total influx to the region that is imported from the other regions.	
DSM_Inputs.k_Gas_O	ccasional_Users		BSM Calibration
Value: 1.1	Units: Unitless	Assumed non-dollar-based utility component of attractiveness of gasoline for occasional hi-blend users.	
DSM_Inputs.k_Gas_R	egular_Users		BSM Calibration
Value: 0	Units: Unitless	Assumed non-dollar-based utility component of attractiveness of gasoline for regular hi-blend users.	
DSM_Inputs.k_Hi_Blei	nd_Occasional_Users		BSM Calibration
Value: 0	Units: Unitless	Assumed non-dollar-based utility component of attractiveness of hi-blend for occasional hi-blend users.	
DSM_Inputs.k_Hi_Ble	nd_Regular_Users		BSM Calibration
Value: 1.1	Units: Unitless	Assumed non-dollar-based utility component of attractiveness of hi-blend for regular hi-blend users.	

DSM_Inputs.Max_Cellu	llosic_Volume_for_PoP_Sub	sidy	Scenario Value
Value: 1E+09	Units: gal	Maximum volume of cellulosic ethanol at the point of production eligible for subsidy. Set to a high value to effectively "turn off" this constraint for PoP subsidy.	
DSM_Inputs.max_rate_	of_becoming_regular_HiBle	end_user	BSM Calibration
Value: 0.5	Units: 1/yr	Sets the maximum rate at which the regular hi-blend user-gap is eliminated.	
DSM_Inputs.New_hi_bl	end_pricing_structure_swite	ch	Scenario Value
Value: 1	Units: Unitless	Switch activates "new" weighted average pricing structure.	
DSM_Inputs.occasiona	I_user_price_attractiveness	_weighting	BSM Calibration
Value: 2	Units: gal/USD	Weighting factor for logit function calculation.	
DSM_Inputs.one_hund	red_percent		Constant Value
Value: 100	Units: Percent	Constant, by definition.	
DSM_Inputs.Pct_Hi_Ble	end_Subsidy_Accruing_to_E	End_User	Scenario Value
Value: 0	Units: Unitless	The percentage of subsidy at the point of use that gets passed on to the end-user rather than accruing to the retailer.	
DSM_Inputs.rate_of_pu	itting_on_table		BSM Calibration
Value: 1	Units: 1 <i>l</i> yr	Fractional rate at which susceptible stations determine whether they want to consider investing in hi-blend tankage and equipment.	
DSM_Inputs.regular_us	ser_price_attractiveness_we	ighting	BSM Calibration
Value: 2	Units: gal/USD	Weighting factor for logit function calculation.	
DSM_Inputs.Repurp_su	ubs_stop_time		Scenario Value
Value: 2031	Units: yr	Year in which capital subsidy for repurposing is scheduled to end.	
DSM_Inputs.Repurpose	e_subs_switch		Scenario Value
Value: 1	Units: Unitless	Policy switch to facilitate testing of capital subsidy for repurposing.	

DSM_Inputs.S_EtOH_P	PoP_implementation_time	Scenario Value
Value: 2011	Units: yr	Year in which the starch subsidy at the point of production begins implementation.
DSM_Inputs.S_EtOH_P	PoP_Subs_Stop_Time	Scenario Value
Value: 2012	Units: yr	Year in which the starch subsidy at the point of production ends.
DSM_Inputs.S_ETOH_F	POP_Subsidy_Amount	Scenario Value
Value: 0.45	Units: USD/gal	The amount of money for the starch subsidy at the point of production.
DSM_Inputs.term_of_Ic	ban	BSM Modeler Assumption
Value: 10	Units: yr	Length of project loan, in years.
DSM_Inputs.time_to_d	rop_out	BSM Calibration
Value: 0.5	Units: yr	Time, on average in years, to drop out of regular use when gap takes on a negative value.
DSM_Inputs.total_initial_stations		U.S. Census: Gasoline Stations in the US
Value: 118154	Units: stations	Initial count of all dispensing stations in the United States.
DSM_Inputs.total_proje	ect_length	Scenario Value
Value: 25	Units: yr	Project lifetime for investment in hi-blend equipment.
FLM.acre_threshold_fo	or_YPA_calc	BSM Calibration
Value: 10000	Units: acre	Acre threshold for calculating yield per acre.
FLM.acres_per_square	mile	Constant Value
Value: 640	Units: acre/mi^2	Constant; the number of acres per square mile.
FLM.Advanced_PrePro	_Cost_Multiplier	Scenario Value
Value: 1	Units: Unitless	Advanced preprocessing cost multiplier.
FLM.Advanced_Q_&_H	L_Cost_Multiplier	Scenario Value
Value: 1	Units: Unitless	Advanced queuing and handling cost multiplier.

FLM.Advanced_Storage_Cost_Multiplier		Scenario Valu	ю
Value: 1	Units: Unitless	Advanced storage cost multiplier.	
FLM.avg_radial_weightin	g_factor	The Math Forum: Average Radial Distance of Points within a Circ	le
Value: 0.666667	Units: Unitless	The average distance to the center of a circle from any point in the circle.	
FLM.expected_days_per_	_yr_online	Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethan	ol
Value: 355	Units: day/year	Expected days of operation for a conversion plant. table	1
FLM.Expected_HC_tons_	per_load	Biomass Logistics Mod	el
Value: 18.9	Units: ton/load	Expected herbaceous energy crop tons per load.	
FLM.Expected_WC_tons_	_per_load	Biomass Logistics Mod	el
Value: 25	Units: ton/load	Expected woody energy crop tons per load.	
FLM.feedstock_safety_st	ock_factor	BSM Calibratic	'n
Value: 1.075	Units: Unitless	Feedstock safety stock factor.	
FLM.Forest_Res_Transpo	ort_CPT	Forest Residues Transportation Costing Mod	el
Value: 5.08	Units: usd/ton	Forest residue harvest/collection cost per ton.	
FLM.Forest_Residue_HC	C_cost_multiplier	Scenario Valu	ю
Value: 1	Units: Unitless	Forest residue harvest/collection cost multiplier.	
FLM.fraction_of_land_su	pplying_plant	Water Usage for Current and Future Ethanol Production	n
Value: 0.025	Units: Unitless	Fraction of land supplying feedstock to plant.	
FLM.HC_HCCPA_cost_m	ultiplier	Scenario Valu	ю
Value: 1	Units: Unitless	Herbaceous energy crop harvest/collection cost per acre multiplier.	
FLM.Initial_Advanced_Pr	ePro_CPT	Biomass Logistics Mod	el
Value: 6	Units: usd/ton	Initial advanced preprocessing cost, in dollars, per ton.	
FLM.Initial_Advanced_Q	&_H_CPT	Biomass Logistics Mod	el
Value: 1.6	Units: usd/ton	Initial advanced queuing and handling cost, in dollars, per ton.	

FLM.Initial_Advanced_St	torage_CPT		Biomass Logistics Model
Value: 6	Units: usd/ton	Initial advanced storage cost per ton.	
FLM.Initial_Forest_Resid	lue_HCCPT	Forest Residues	Transportation Costing Model
Value: 22.54	Units: usd/ton	Initial forest residue harvest collection cost per ton.	
FLM.Initial_Pioneer_PreF	Pro_CPT		Biomass Logistics Model
Value: 12.96	Units: usd/ton	Initial pioneer preprocessing cost per ton.	
FLM.Initial_Pioneer_Q_&	_H_CPT		Biomass Logistics Model
Value: 1.98	Units: usd/ton	Initial pioneer queuing and handling cost per ton.	
FLM.Initial_Pioneer_Stor	age_CPT		Biomass Logistics Model
Value: 5	Units: usd/ton	Initial pioneer storage cost per ton.	
FLM.Initial_Transport_vt	ol_cost_per_mile		Biomass Logistics Model
Value: 3.96	Units: usd/load/mi	Initial transportation variable cost per mile.	
FLM.Initial_Urban_Resid	ue_HCCPT	Forest Residues	Transportation Costing Model
Value: 40	Units: usd/ton	Initial urban residue harvest collection cost per ton.	
FLM.nominal_FS_adj_rat	te		BSM Calibration
Value: 0.2	Units: 1 <i>l</i> yr	Nominal feedstock adjustment rate used for increasing yield per acre if it is deemed necessary.	
FLM.one_million			Constant Value
Value: 1000000	Units: Unitless	Constant, by definition.	
FLM.Pioneer_PrePro_Co	st_Multiplier		Scenario Value
Value: 1	Units: Unitless	Pioneer preprocessing cost multiplier.	
FLM.Pioneer_Q_&_H_Co	st_Multiplier		Scenario Value
Value: 1	Units: Unitless	Pioneer queuing and handling cost multiplier.	

FLM.Pioneer_Storage_Cost_Multiplier		Scenario Value
Value: 1	Units: Unitless	Pioneer storage cost multiplier.
FLM.plant_input_capacity	_tpd	Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol
Value: 2253.52	Units: ton/day	Plant input capacity in tons per day.
FLM.road_windage_factor		BSM Modeler Assumption
Value: 1.41421	Units: Unitless	Expected multiplier for converting straight-line distance to distance on roadways.
FLM.Transport_cost_mult	iplier	Scenario Value
Value: 1	Units: Unitless	Transportation cost multiplier.
FLM.Transport_Fixed_cos	t_per_load	Biomass Logistics Model
Value: 10.12	Units: USD/load	Fixed transportation cost per load.
FLM.two		Constant Value
Value: 2	Units: Unitless	The number 2. Constant.
FLM.Urban_Res_Transpor	t_CPT	Secondary Mill Residues and Urban Wood Waste Quantities in the United States: Final Report
Value: 18.86	Units: USD/ton	Urban residue transportation cost per ton.
FLM.Urban_Residue_HCC	_cost_multiplier	Scenario Value
Value: 1	Units: Unitless	Urban residue harvest collection cost multiplier.
FLM.use_IBSAL_cost_data	a?	Scenario Value
Value: 0	Units: Unitless	A switch for the use of IBSAL (now BLM) cost data.
FLM.Use_only_one_FSI	ogistic_design?	Scenario Value
Value: 0	Units: Unitless	A switch to use only one feedstock logistic design.
FLM.WC_HCCPA_cost_m	ultiplier	Scenario Value
Value: 1	Units: Unitless	Woody crop harvest collection cost per acre cost multiplier.

FSM.acres_per_square_	mile		Constant Value
Value: 640	Units: acre/mi^2	Acres per square mile. Constant.	
FSM.Averaging_time_fo	r_LT_stock\use_ratio		BSM Calibration
Value: 3	Units: yr	Averaging time for long-term crop inventory/consumption ratio.	
FSM.BCAP_Ann_Payme	nt_Sunset_Time	Biomass Crop Assistance Prog	ram; Proposed Rule
Value: 2051	Units: yr	Year to switch off BCAP legislation.	table 1
FSM.BCAP_Ann_Payme	nt_Switch		Scenario Value
Value: 1	Units: Unitless	Turns on/off annual payments as part of BCAP regulation.	
FSM.BCAP_CHST_Start	_Time	Biomass Crop Assistance Prog	ram; Proposed Rule
Value: 2011	Units: yr	Year to switch on CHST (collection, harvest, storage & transportation) payments.	table 1
FSM.BCAP_CHST_Suns	et_Time	Biomass Crop Assistance Prog	ram; Proposed Rule
Value: 2013	Units: yr	Year to switch off CHST (collection, harvest, storage & transportation) payments.	table 1
FSM.BCAP_CHST_Swite	:h		Scenario Value
Value: 1	Units: Unitless	Turns on/off CHST (collection, harvest, storage & transportation) payments as part of BCAP regulation.	
FSM.BCAP_Establishme	ent_Payment_Pct	Biomass Crop Assistance Prog	ram; Proposed Rule
Value: 0.75	Units: Unitless	Percent of total production costs that are covered by establishment payments as part of BCAP regulation.	
FSM.BCAP_Establishme	ent_Switch		Scenario Value
Value: 1	Units: Unitless	A switch that turns on/off establishment payments as part of BCAP regulation.	
FSM.Cell_land_adjustme	ent_time		BSM Calibration
Value: 3	Units: yr	Cellulosic land adjustment time in years. Reflects assumed speed of eliminating gap between desired and actual land allocated to producing cellulose.	

FSM.cellulosic_demand_non	e			Scenario Value
Value: 0	Units:	million-ton/yr	Potential cellulosic demand scenario.	
FSM.CHST_utilization_factor				Biomass Logistics Model
Value: 1	Units:	Unitless	Percent by which to reduce total collection, harvest, storage and transportation payments due to other factors.	
FSM.Couple_with_ReEDS?				Scenario Value
Value: 0	Units:	Unitless	A switch to allow for the BSM to run coupled with ReEDS.	
FSM.Cume_BCAP_Payments				Constant Value
Value: 0	Units:	USD	Total cumulative dollars spent on BCAP for all crops and residues.	
FSM.Cume_Cellulosic_Feeds	tock_P	rod'n		Constant Value
Value: 0	Units:	million-ton	Total cumulative cellulosic feedstock production.	
FSM.DDG_EtOH_coproduct_	multipli	er		Scenario Value
Value: 0	Units:	Unitless	The fraction of corn ethanol demand diverted to distillers dry grains coproduct.	
FSM.farmer_discount_rate				BSM Calibration
Value: 0.2	Units:	1 <i>l</i> yr	Farmer discount rate required for farmers to decide to grow energy crops.	
FSM.feedstock_shrinkage_ra	te			BSM Calibration
Value: 1	Units:	1 <i>l</i> yr	Feedstock shrinkage rate per year.	
FSM.forest_residue_dwell_tir	ne			BSM Calibration
Value: 5	Units:	yr	Number of years for forest residue dwell time.	
FSM.Forest_Urban_fract				BSM Calibration
Value: 0.04	Units:	Unitless	Fraction of woody yield that constitutes urban residue.	
FSM.frac_CRP_land_NOT_mi	grateat	ole		Scenario Value
Value: 0.6	Units:	Unitless	Fraction of CRP land that cannot be migrated to crop production.	

FSM.frac_DDG_offset			Scenario Value
Value: 0	Units:	Unitless	Fraction of DDG offsetting domestic corn demand.
FSM.frac_dealloc_pasture			BSM Calibration
Value: 0.05	Units:	1 <i>l</i> yr	Deallocation rate of pasture, per year.
FSM.Frac_HC_Harvested			Constant Value
Value: 1	Units:	Unitless	Fraction of herbaceous cellulose harvested.
FSM.Frac_HC_Harvested_Pa	sture		Constant Value
Value: 1	Units:	Unitless	Fraction of herbaceous cellulose harvested from pasture.
FSM.frac_Pasture_Land_NO	T_migra	iteable	Scenario Value
Value: 0.2	Units:	Unitless	Fraction of the pasture land that is not migrateable.
FSM.Harvest_from_CRP_La	nd?		Scenario Value
Value: 0	Units:	Unitless	A switch to allow for the harvesting of herbaceous cellulose from CRP land.
FSM.Hay\Pasture_Yield_Fac	tor		POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 0.7	Units:	Unitless	Hay and pasture yield factor as a fraction of pasture land used for hay production.
FSM.Hay_Yield_Growth_Ass	'n		Scenario Value
Value: 0	Units:	unit/acre-yr^2	The increase in hay yield, in tons, per acre per year per year, due to improved agronomic practices, genetic engineering, etc.
FSM.HC_pasture_PCPA_fact	tor		POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 1	Units:	Unitless	Herbaceous energy crop production cost per acre on pasture land factor, by region for 10 years.
FSM.HC_Pasture_yield_facto	or		POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 0.85	Units:	Unitless	The fraction of pasture land used for herbaceous energy crop production

FSM.HC_PCPA_input_cost_sensitivity_factor		Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis
Value: 0.11	Units: Unitless	Sensitivity of production costs to changes in energy prices.
FSM.HC_'project_length	1'	POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 8	Units: yr	Length of herbaceous energy crop cycle; the lifetime of switchgrass production.
FSM.input_cost_sensiti	vity_switch	Scenario Value
Value: 1	Units: Unitless	A switch to activate input cost elasticities.
FSM.Is_CM_connected?	2	Scenario Value
Value: 1	Units: Unitless	A switch the indicate whether the conversion module is connected.
FSM.lambda_annual		BSM Calibration
Value: 0.5	Units: Unitless	A logit coefficient.
FSM.lambda_hay		BSM Calibration
Value: 0.5	Units: Unitless	A logit coefficient for hay, by region.
FSM.lambda_PCEC		BSM Calibration
Value: 0.5	Units: Unitless	A logit coefficient for perennial cellulosic energy crops.
FSM.Max_CHST_Payme	ent	Biomass Crop Assistance Program; Proposed Rule
Value: 45	Units: USD/ton	Maximum CHST (collection, harvest, storage & transportation) payment that will be given to any individual through BCAP legislation.
FSM.max_FS_offer_pric	e_plantgate	BSM Calibration
Value: 110	Units: usd/ton	Maximum offer price for cellulosic feedstock at the plant gate in dollar per ton.
FSM.Move_CRP_Land_t	to_Active_Land?	Scenario Value
Value: 0	Units: Unitless	A switch to allow CRP land to move to active land or not.
FSM.Move_Pasture_Lar	nd_to_Active_Land?	Scenario Value
Value: 0	Units: Unitless	A switch to allow pasture land to active land or not.

FSM.one_million		Constant Value
 Value: 1000000	Units: 1/million	One million. Constant.
FSM.one_thousand		Constant Value
Value: 1000	Units: 1/thousand	One thousand. Constant.
FSM.Pasture_as_Cellulo	se_PCPA_Factor	POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 1	Units: Unitless	Pasture as cellulose production cost per acre.
FSM.Pasture_as_Pasture	e_PCPA_Factor	POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 0.2	Units: Unitless	Pasture as pasture production cost per acre.
FSM.period_count		Constant Value
Value: 1	Units: Unitless	An iteration counter for the ReEDS coupling scenario.
FSM.perlack_demand_s	witch	BSM Calibration
Value: 0	Units: Unitless	A switch for perlack demand.
FSM.spread_in_frac_chg	g_from_crop_prodn_consn	BSM Calibration
Value: 1	Units: 1/yr	Controls the response of price to a gap between crop production and consumption. Must be negative for high inventory to lead to lower prices. Higher absolute values lead to greater price changes for any given inventory coverage level.
FSM.spread_in_frac_cho	g_from_crop_stock_use	BSM Calibration
Value: 1	Units: 1 <i>l</i> yr	Controls the response of price to crop stock use.
FSM.spread_in_frac_chg	g_from_FS_inventory	BSM Calibration
Value: 1	Units: 1/yr	Controls the response of price to feedstock inventory.
FSM.spread_in_frac_chg		BSM Calibration
Value: 1	Units: 1/yr	Controls the response of price to a gap between feedstock production and consumption.

FSM.spread_in_frac_c	hg_from_Hay_prodn_consr	BSM Calibration
Value: 1	Units: 1/yr	Controls the response of price to a gap between hay production and consumption.
FSM.study_area_fract		BSM Calibration
Value: 0.01	Units: Unitless	Fraction of total potential collected at Forest Residue "grower payment" price.
FSM.target_feedstock	_inv_coverage	BSM Calibration
Value: 1	Units: yr	Target feedstock inventory coverage in years.
FSM.urban_residue_dv	well_time	BSM Calibration
Value: 3	Units: yr	Urban residue dwell time in years.
FSM.use_IBSAL_loss_	fraction?	Scenario Value
Value: 0	Units: Unitless	Switch to activate the IBSAL (now BLM) loss fraction.
FSM.W_Pasture_yield_	_factor	POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 0.85	Units: Unitless	Multiplier applied to woody cellulosic yields in crop land in order to estimate woody cellulosic yields in pasture lands.
FSM.WC_pasture_PCF	PA_factor	POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory
Value: 1	Units: Unitless	Woody energy crop production cost per acre on pasture land factor, by region.
FSM.WC_PCPA_input_	_cost_sensitivity_factor	Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis
Value: 0	Units: Unitless	Sensitivity of production costs to changes in energy prices.
IM.annual_cost_reduc	tionfor_imports	Scenario Value
Value: 0.05	Units: USD	Annual cost reduction for imports.
IM.base_threshold_Po	P_price_for_import	Scenario Value
Value: 2	Units: USD/gal	Assumed threshold price that makes it profitable to to import into the United States.

IM.ceiling_for_EtOH_import				Scenario Value
Value: 5E+09	Units:	gal/yr	Maximum potential imports of EtOH from outside the United States.	
IM.EtOH_import_tariff_stop_t	ime			Scenario Value
Value: 2051	Units:	yr	Year in which the ethanol import tariff is lifted.	
IM.import_tariff				Scenario Value
Value: 0.45	Units:	USD/gal	Import tariff on ethanol.	
IM.time_at_which_cost_redu	ction_f	or_imports_begins		Scenario Value
Value: 2051	Units:	yr	Year in which cost reduction for imports is set to begin.	
Outputs.Cume_Celllulosic_E	tOH_Pr	od'n		Stock Initialization
Value: 0	Units:	gal/yr	Cumulative cellulosic ethanol production.	
Outputs.one_station				Constant Value
Value: 1	Units:	Stations	One station. Constant for units integrity.	
PIM.Baseline_EtOH_POP_pri	ce			BSM Modeler Assumption
Value: 1.64	Units:	USD/gal	Baseline price for EtOH at point of production.	
PIM.Cumulative_Cellulosic_l	ndustry	/_Output		Stock Initialization
Value: 0	Units:	gal	Cumulative cellulosic industry output.	
PIM.EtOH_POP_Price_Index				Constant Value
Value: 100	Units:	Percent	Ethanol price index relative to baseline value.	
PIM.EtOH_price_sensitivity				BSM Calibration
Value: -3	Units:	Unitless	Controls the response of price to inventory coverage. Must be negative for high inventory to lead to lower prices. Higher absolute values lead to greater price changes for any given inventory coverage level.	
PIM.InterRegion_Transit				Constant Value
Value: 0	Units:	gal	'Dummy' stock that always should be 0 to enable import/export logic.	

PIM.spread_in_EtOH_frac_chg_from_inventory			
Value: 2	Units: 1/yr	Fraction of change in ethanol inventory.	
PIM.spread_in_EtOH_frac_c	hg_from_prodn_consn		BSM Calibration

CM.Completed_Demo_Scale_Ops

Stock Initialization

A counter for the number of demonstration scale operations that have been completed as of the start of the model.

Subscript 1:	Value:	Units:
BC	0	projects
Combo	0	projects
S	10	projects
SPlus	0	projects
ТС	0	projects

CM.Completed_Pilot_Ops

Stock Initialization

A counter for the number of pilot scale operations that have been completed as of the start of the model.

Subscript 1:	Value:	Units:
BC	14	projects
Combo	0	projects
S	0	projects
SPlus	0	projects
TC	4	projects

CM.Cume_Failures_C

Stock Initialization

A counter for the number of commercial scale operations that have failed as of the start of the model.

Subscript 1:	Value:	Units:	
BC	0	projects	
Combo	0	projects	
S	0	projects	
SPlus	0	projects	
TC	0	projects	

CM.Cume_Failures_P

Stock Initialization

A counter for the number of pioneer scale operations that have failed as of the start of the model.

Subscript 1:	Value:	Units:
BC	0	projects
Combo	0	projects
S	0	projects
SPlus	0	projects
TC	0	projects

CM.Cumulative__Demo_Experience

_

Cumulative years of experience in demo-scale operations.

Subscript 1:	Value:	Units:
BC	1.23	yr
Combo	0	yr
S	10	yr
SPlus	0	уг
ТС	1	yr

CM.Cumulative_Industry_Output

Cumulative output from commercial operations.

Internal List of Potential Biofuels Conversion Facilities

Internal List of Potential Biofuels Conversion Facilities

Subscript 1:	Value:	Units:	
BC	0	billions-gal	
Combo	0	billions-gal	
S	88.838	billions-gal	
SPlus	0	billions-gal	
ТС	0	billions-gal	

CM.Cumulative__Pilot_Experience

Internal List of Potential Biofuels Conversion Facilities

Currulative years of pliot experience.	Cumulative	vears of	f pilot ex	kperience.
--	------------	----------	------------	------------

Subscript 1:	Value:	Units:	
BC	30.5	yr	
Combo	0	yr	
S	10	yr	
SPlus	0	yr	
TC	10.1	yr	

BSM Calibration

CM.Demo_Progress_Ratios

The fraction of potential change in maturity that is remaining with each doubling of cumulative demonstration experience. This drives the level of maturity of the demonstration effort, by industry.

Subscript 1:	Value:	Units:
BC	0.75	1/Doubling
Combo	0.75	1/Doubling
S	0.75	1/Doubling
SPlus	0.75	1/Doubling
ТС	0.75	1/Doubling

CM.Demo_Projects_in_Development

Internal List of Potential Biofuels Conversion Facilities

Tracks the number of demonstration-scale operations that are in development before they are operational.

Sub	oscript 1:	Value:	Units:
BC		2	projects
Cor	mbo	0	projects
S		0	projects
SPI	us	0	projects
ТС		0	projects

CM.Demo_Scale_Operations

Internal List of Potential Biofuels Conversion Facilities

Tracks the number of demonstration-scale operations that are currently operational.

Subscript 1:	Value:	Units:
BC	1	projects
Combo	0	projects
S	0	projects
SPlus	0	projects
ТС	0	projects

CM.Early_Pilot_Multipliers

For the initial pilot plants, the fraction of different mature technology attributes that has been realized.

Subscript 1:	Value:	Units:	
CapitalCost	2	Unitless	
DebtFrac	0	Unitless	
InputCap	0.8	Unitless	
ProcessYield	0.5	Unitless	
PSuccess	0.1	Unitless	
Risk	10	Unitless	

CM.equity_frac_P

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Expected fraction of investment to be funded through equity financing for pioneer plants, after loan guarantees have been applied.

Subscript 1:	Value:	Units:
BC	0.3	Unitless
Combo	0	Unitless
S	0	Unitless
SPlus	0	Unitless
ТС	0.3	Unitless

CM.Exp_Other_Coproduct_Sales_Rev_C

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Expected revenue from other coproducts from commercial plant when fully operational.

Subscript 1:	Value:	Units:
BC	0	USD/yr
Combo	0	USD/yr
S	1.4E+07	USD/yr
SPlus	7700000	USD/yr
ТС	1.54E+07	USD/yr

Expert Opinion

CM.Exp_Power_Sales_Rev_C

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Expected power sales revenue from commercial-scale plant when fully operational.

Subscript 1:	Value:	Units:
BC	6600000	USD/yr
Combo	0	USD/yr
S	0	USD/yr
SPlus	0	USD/yr
TC	0	USD/yr

CM.Expected_Fixed_Op_Cost_C

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Expected fixed operating cost for n-th commercial-scale plant.

Subscript 1:	Value:	Units:	
BC	1.07E+07	USD/yr	
Combo	1E+09	USD/yr	
S	5142300	USD/yr	
SPlus	1E+07	USD/yr	
ТС	2.32E+07	USD/yr	

CM.Expected_FS_Cost_\$\ton_by_tech

Expected cost per ton for feedstock by technology, delivered at throat of reactor.

Subscript 1:	Value:	Units:	
BC	44	USD/ton	
Combo	35	USD/ton	
S	110	USD/ton	
SPlus	35	USD/ton	
TC	44	USD/ton	

CM.Expected_Other_VBL_Op_Cost_C

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Expected variable operating costs, excluding feedstock, for n-th commercial plant.

Subscript 1:	Value:	Units:
BC	2.67E+07	USD/yr
Combo	1E+09	USD/yr
S	1.94973E+07	USD/yr
SPlus	2.47E+07	USD/yr
ТС	7280000	USD/yr

CM.FCI_Subsidy_Switch

Fixed capital investment subsidy switch can be turned on/off to create appropriate scenario.

Subscript 1:	Value:	Units:
BC	1	Unitless
Combo	0	Unitless
S	0	Unitless
SPlus	0	Unitless
ТС	1	Unitless

CM.FCl_subz_frac_P

Scenario Value

Scenario Value

Defines the degree of capital subsidy specific to pioneer plants, by technology. Applies to expected fixed capital investment for "next" plant. Applies to pioneer only.

Subscript 1:	Value:	Units:
BC	0.6	Unitless
Combo	0	Unitless
S	0	Unitless
SPlus	0	Unitless
тс	0.6	Unitless

CM.Feedstock_Subsidy_Switch

Scenario Value

Feedstock subsidy switch can be turned on/off to create appropriate scenario.

Subscript 1:	Value:	Units:
BC	0	Unitless
Combo	0	Unitless
S	0	Unitless
SPlus	0	Unitless
ТС	0	Unitless

CM.FS_Subs_Frac_P

Defines the degree of feedstock subsidy specific to pioneer plants, by technology.

Subscript 1:	Value:	Units:
BC	0	Unitless
Combo	0	Unitless
S	0	Unitless
SPlus	0	Unitless
тс	0	Unitless

CM.Initial_Indices_of__Demo_Maturity

The initial level of maturity of demonstration effort, by industry.

Subscript 1: Units: Value: BC 0.167 Unitless Combo 0 Unitless S 1 Unitless SPlus 0 Unitless ΤС 0.1 Unitless

CM.Initial_Indices_of_Commercial_Maturity

The initial level of maturity of commercial effort, by industry.

Internal List of Potential Biofuels Conversion Facilities

Internal List of Potential Biofuels Conversion Facilities

Subscript 1:	Value:	Units:	
BC	0	Unitless	
Combo	0	Unitless	
S	0.9	Unitless	
SPlus	0	Unitless	
ТС	0	Unitless	

Scenario Value

CM.Initial_Indices_of_Pilot_Maturity

Internal List of Potential Biofuels Conversion Facilities

Subscript 1:	Value:	Units:	
BC	0.692	Unitless	
Combo	0	Unitless	
S	1	Unitless	
SPlus	0	Unitless	
ТС	0.584	Unitless	

CM.ls_it_Cellulose?

Constant Value

A scenario switch to indicate whether a technology involves cellulose or not.

Subscript 1:	Value:	Units:
BC	1	Unitless
Combo	1	Unitless
S	0	Unitless
SPlus	1	Unitless
TC	1	Unitless

CM.Loan_Guarantee_Switch

A scenario switch to indicate which technologies are eligible for loan guarantees.

Subscript 1: Value: Units: BC Unitless 1 Combo 0 Unitless S Unitless 0 SPlus Unitless 0 ΤС Unitless 1

Scenario Value

CM.Mature_Commercial_Multipliers

Internal Risk Analysis for GPRA and SEDS

In a fully mature commercial industry, multiplier of 1 implies mature industry values for technology attributes.

Subscript 1:	Value:	Units:	
CapitalCost	1	Unitless	
DebtFrac	1	Unitless	
InputCap	1	Unitless	
ProcessYield	1	Unitless	
PSuccess	1	Unitless	
Risk	1	Unitless	

CM.Mature_Demo_Multipliers

Internal Risk Analysis for GPRA and SEDS

In a fully mature demonstration industry, multiplier of 1 implies mature industry values for technology attributes.

Subscript 1:	Value:	Units:	
CapitalCost	1.25	Unitless	
DebtFrac	0	Unitless	
InputCap	0.8	Unitless	
ProcessYield	0.85	Unitless	
PSuccess	0.95	Unitless	
Risk	1.5	Unitless	

CM.Mature_FS_Thruput_Capacity_C

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Calculates mature commercial feedstock throughput, measured at throat of reactor.

Subscript 1:	Value:	Units:
BC	2205	ton/day
Combo	2000	ton/day
S	1226	ton/day
SPlus	1497	ton/day
тс	2205	ton/day

CM.Mature_Industry_FCI

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Capital Investment for a commercial-scale project when industry is mature.

Subscript 1:	Value:	Units:
BC	4.006E+08	USD
Combo	1E+30	USD
S	5.69671E+07	USD
SPlus	1.029E+08	USD
TC	4.8975E+08	USD
	Subscript 1: BC Combo S SPlus TC	Subscript 1: Value: BC 4.006E+08 Combo 1E+30 S 5.69671E+07 SPlus 1.029E+08 TC 4.8975E+08

CM.Mature_Industry_P_Success

Sets likelihood of technically successful plant for completely mature industry.

Subscript 1:	Value:	Units:
BC	1	Unitless
Combo	1	Unitless
S	1	Unitless
SPlus	1	Unitless
ТС	1	Unitless

CM.Mature_Industry_Process_Yield

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Calculates expected process yield for fully mature technology.

Subscript 1:	Value:	Units:	
BC	79	gal/ton	
Combo	0.01	gal/ton	
S	117	gal/ton	
SPlus	89.59	gal/ton	
TC	83.8	gal/ton	

Scenario Value

CM.Mature_Pilot_Multipliers

Internal Risk Analysis for GPRA and SEDS

In a full [,]	v mature	pilot industry	, multiplier of 1	implies	mature industry	v values for	technology	attributes
	/	1 /				/		

Subscript 1:	Value:	Units:	
CapitalCost	1.5	Unitless	
DebtFrac	0	Unitless	
InputCap	0.8	Unitless	
ProcessYield	0.75	Unitless	
PSuccess	0.5	Unitless	
Risk	5	Unitless	

CM.Max_Feedstock_prod'n_by_Feedstock_type__tpy

Cellulosic feedstock production by feedstock type in million tons per year (by cellulose type, by region).

Subscript 1:	Value:	Units:	
Forest	8.6E+07	ton/yr	
Herb	4.3E+08	ton/yr	
Res	1.9E+07	ton/yr	
Urban	1.2E+07	ton/yr	
Wood	1.7E+07	ton/yr	

CM.Min_Cume_Industry_Output_For_Learning

Sets threshold of production before calculating rate of growth in industry output, and hence, learning.

Subscript 1:	Value:	Units:	
BC	0.005	billions-gal	
Combo	0.005	billions-gal	
S	0.005	billions-gal	
SPlus	0.005	billions-gal	
ТС	0.005	billions-gal	

Scenario Value

BSM Calibration

CM.Min_Demo_Experience_for_Learning

BSM Calibration

Sets operating time threshold before calculating rate of growth in demonstration experience, and hence, learning.

Subscript 1:	Value:	Units:
BC	0.25	уr
Combo	0.25	yr
S	0.25	yr
SPlus	0.25	УГ
ТС	0.25	yr

CM.Min_Pilot_Experience_for_Learning

BSM Calibration

Sets operating time threshold before calculating rate of growth in pilot experience, and hence, learning.

Subscript 1:	Value:	Units:
BC	0.25	yr
Combo	0.25	yr
S	0.25	yr
SPlus	0.25	yr
TC	0.25	yr

CM.Number_of_Doublings_of_Cume_Output

Accumulates number of doublings in cumulative commercial output.

Internal List of Potential Biofuels Conversion Facilities

Subscript 1:	Value:	Units:	
BC	0	Doubling	
Combo	0	Doubling	
S	6.38	Doubling	
SPlus	0	Doubling	
ТС	0	Doubling	

CM.Number_of_Doublings_of_Demo_Experience

Internal List of Potential Biofuels Conversion Facilities

Internal List of Potential Biofuels Conversion Facilities

Accumulates number of doublings in demonstration-scale experience.

Subscript 1:	Value:	Units:
BC	5.25	Doubling
Combo	0	Doubling
S	0	Doubling
SPlus	0	Doubling
ТС	5.19	Doubling

CM.Number_of_Doublings_of_Pilot_Experience

Accumulates number of doublings in pilot-scale experience.

Subscript 1: Units: Value: BC 1.48 Doubling Doubling 0 Combo S 0 Doubling SPlus 0 Doubling ΤС 1.02 Doubling

CM.Pilot_Efforts_in_Development

Internal List of Potential Biofuels Conversion Facilities

Tracks pilot-scale operations that are in development and not yet operational.

Subscript 1:	Value:	Units:
BC	5	projects
Combo	0	projects
S	0	projects
SPlus	0	projects
TC	0	projects

CM.Pilot_Progress_Ratios

Expert Opinion

The fraction of potential change in pilot effort that remains after each doubling of cumulative pilot experience.

Subscript 1:	Value:	Units:	
BC	0.75	1/Doubling	
Combo	0.75	1/Doubling	
S	0.75	1/Doubling	
SPlus	0.75	1/Doubling	
ТС	0.75	1/Doubling	

CM.Pilot_Scale_Operations

Internal List of Potential Biofuels Conversion Facilities

Tracks pilot-scale operations that are currently operational.

Subscript 1:	Value:	Units:
BC	7	projects
Combo	0	projects
S	0	projects
SPlus	0	projects
тс	2	projects

CM.Progress_Ratios_Commercial

The fraction of potential change in demo maturity that remains with each doubling of cumulative industry output. Drives level of maturity of demo effort, by industry.

Subscript 1:	Value:	Units:	
BC	0.75	1/Doubling	
Combo	0.75	1/Doubling	
S	0.75	1/Doubling	
SPlus	0.75	1/Doubling	
TC	0.75	1/Doubling	

CM.Regional_coeffs

Set of switches that enable testing of different regions individually or in concert.

Subscript 1:	Value:	Units:
А	1	Unitless
CB	1	Unitless
DS	1	Unitless
LS	1	Unitless
М	1	Unitless
NE	1	Unitless
NP	1	Unitless
Р	1	Unitless
SE	1	Unitless
SP	1	Unitless

BSM Calibration

Stock Initialization

61

CM.Retirement_Fraction_C

Constant Value

Fraction of commercial scale plants retiring per year.

Subscript 1:	Value:	Units:	
BC	0	1/yr	
Combo	0	1/yr	
S	0	1/yr	
SPlus	0	1/yr	
тс	0	1/yr	

CM.technology_trac_coeffs

Set of switches that enable testing of different technologies individually or in concert.

Subscript 1:	Value:	Units:
BC	1	Unitless
Combo	0	Unitless
S	1	Unitless
SPlus	0	Unitless
TC	1	Unitless

CM.Years_in_D&C_C

Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol

Assumed time in design and construction for commercial-scale plant.

Subscript 1:	Value:	Units:
BC	3	yr
Combo	3	yr
S	1	yr
SPlus	3	yr
ТС	3	yr

DSM.NPV_Threshold_for_Investment

Provides normalizing value for investment.

Subscript 1:	Value:	Units:	
BrandIndep	100000	USD	
HMart	100000	USD	
OilOwned	100000	USD	
UnbrandIndep	100000	USD	

BSM Calibration

DSM_Inputs.debt_interest_rate_as_frac

Interest rate for debt financing, expressed as a fraction per year.

Subscript 1:	Value:	Units:	
BrandIndep	0.07	1/yr	
HMart	0.07	1/yr	
OilOwned	0.07	1/yr	
UnbrandIndep	0.07	1/yr	

DSM_Inputs.ETOH_Dist'n_Storage_Subsidy_Amount

Amount of money, in dollars per gallon, subsidized for distribution and storage.

Subscript 1:	Value:	Units:	
А	0.15	USD/gal	
СВ	0.15	USD/gal	
DS	0.15	USD/gal	
LS	0.15	USD/gal	
М	0.15	USD/gal	
NE	0.15	USD/gal	
NP	0.15	USD/gal	
Р	0.15	USD/gal	
SE	0.15	USD/gal	
SP	0.15	USD/gal	

DSM_Inputs.Expected_FCI__New_Tankage_&_Equip

Expected fixed capital investment, in dollars, for greenfield tankage and equipment.

E85 Retail Business Case: When and Why to Sell E85

Subscript 1:	Value:	Units:	
А	60000	USD	
СВ	62407	USD	
DS	62407	USD	
LS	62407	USD	
М	62407	USD	
NE	62407	USD	
NP	62407	USD	
Ρ	62407	USD	
SE	62407	USD	
SP	62407	USD	

Scenario Value

table 7
DSM_Inputs.Expected_FCI_Repurposing_Midgrade

E85 Retail Business Case: When and Why to Sell E85

Expected fixed capital investment, in dollars, repurposing midgrade tankage to hi-blend.

Subscript 1:	Value:	Units:	
А	24500	USD	
CB	24500	USD	
DS	24500	USD	
LS	24500	USD	
Μ	24500	USD	
NE	24500	USD	
NP	24500	USD	
Р	24500	USD	
SE	24500	USD	
SP	24500	USD	

DSM_Inputs.fraction_NonUsers_susceptible

Fraction of potential new hi-blend users who are susceptible of becoming users. Default of 1 indicates that all with access are susceptible.

Subscript 1:	Value:	Units:
Α	1	Unitless
CB	1	Unitless
DS	1	Unitless
LS	1	Unitless
Μ	1	Unitless
NE	1	Unitless
NP	1	Unitless
Р	1	Unitless
SE	1	Unitless
SP	1	Unitless

BSM Calibration

table 7

DSM_Inputs.fuel_excise_tax

API: Gasoline Taxes July 2011

Ethanol Transportation Memo

Excise tax on gasoline equivalent, applied at the point of distribution in dollars per gallon.

Subscript 1:	Value:	Units:	
А	0.502	USD/gal	
СВ	0.484	USD/gal	
DS	0.385	USD/gal	
LS	0.484	USD/gal	
М	0.414	USD/gal	
NE	0.492	USD/gal	
NP	0.484	USD/gal	
Р	0.604	USD/gal	
SE	0.385	USD/gal	
SP	0.385	USD/gal	

DSM_Inputs.Full_Infas_in_region_dist'n_storage_cost

Cost per gallon of moving and storing EtOH within a region when there is complete EtOH infrastructure in place.

Subscript 1:	Value:	Units:	
А	0.05	USD/gal	
СВ	0.05	USD/gal	
DS	0.05	USD/gal	
LS	0.05	USD/gal	
Μ	0.05	USD/gal	
NE	0.05	USD/gal	
NP	0.05	USD/gal	
Р	0.05	USD/gal	
SE	0.05	USD/gal	
SP	0.05	USD/gal	

65

DSM_Inputs.Gasoline_POD_price_scenario_switch

Scenario Value

Nominal price per gallon for gasoline equivalent at point of distribution before taxes.

Subscript 1:	Value:	Units:
GAS_AD_HOC_1	0	Unitless
GAS_AD_HOC_2	0	Unitless
GAS_AEO_HM	0	Unitless
GAS_AEO_HP	0	Unitless
GAS_AEO_LM	0	Unitless
GAS_AEO_LP	0	Unitless
GAS_AEO_REF	1	Unitless
GAS_USER	0	Unitless

DSM_Inputs.Gross_Expected_Other_Rev_per_visit

Expected non-fuel gas station revenue per visit.

Summary Real Estate Appraisal Report Gas Station/Convenience Store

Subscript 1:	Value:	Units:	
BrandIndep	5	USD/Visit	
HMart	8.34	USD/Visit	
OilOwned	8.34	USD/Visit	
UnbrandIndep	8.34	USD/Visit	

DSM_Inputs.hi_blend_Coefficient

_

5798-10a: Standard Specification for Fuel Ethanol (Ed75-Ed-85) for Automotive Spark-Ignition Engines

Volumetric fraction of gallon of E85 that is EtOH.

Subscript 1:	Value:	Units:	
Α	0.755	Unitless	
СВ	0.755	Unitless	
DS	0.755	Unitless	
LS	0.755	Unitless	
М	0.755	Unitless	
NE	0.755	Unitless	
NP	0.755	Unitless	
Р	0.755	Unitless	
SE	0.755	Unitless	
SP	0.755	Unitless	

DSM_Inputs.Hi_Blend_Tax

BSM Modeler Assumption

E85 Retail Business Case: When and Why to Sell E85

Expected tax for EtOH.

Subscript 1:	Value:	Units:
А	0	USD/gal
CB	0	USD/gal
DS	0	USD/gal
LS	0	USD/gal
Μ	0	USD/gal
NE	0	USD/gal
NP	0	USD/gal
Р	0	USD/gal
SE	0	USD/gal
SP	0	USD/gal

DSM_Inputs.Incremental_Traffic_Fraction

Fractional increment (relative to current traffic) that is expected to accrue to the station as a result of investment in hiblend capability.

Subscript 1:	Value:	Units:	
BrandIndep	0.005	Unitless	
HMart	0.005	Unitless	
OilOwned	0.005	Unitless	
UnbrandIndep	0.005	Unitless	

DSM_Inputs.initial_%_stations_ownership_dist'n

Initial ownership distribution of all dispensing stations.

Subscript 1:	Value:	Units:	
BrandIndep	52	Percent	
HMart	2.5	Percent	
OilOwned	5	Percent	
UnbrandIndep	40.5	Percent	

DSM_Inputs.Initial_Non_HiBlend_Users

Stock Initialization

Percent of hi-blend capable owners in the region who do not use hi-blend at all.

Subscript 1:	Value:	Units:
А	100	Percent
СВ	100	Percent
DS	100	Percent
LS	100	Percent
Μ	100	Percent
NE	100	Percent
NP	100	Percent
Р	100	Percent
SE	100	Percent
SP	100	Percent

DSM_Inputs.Initial_Occasional_Hi_Blend_Users

Percent of hi-blend capable owners in the region who use hi-blend occasionally (per model logic).

Subscript 1:	Value:	Units:	
А	0	Percent	
СВ	0	Percent	
DS	0	Percent	
LS	0	Percent	
Μ	0	Percent	
NE	0	Percent	
NP	0	Percent	
Р	0	Percent	
SE	0	Percent	
SP	0	Percent	

DSM_Inputs.Initial_Regular_Hi_Blend_Users

Percent of hi-blend capable owners in the region who are regular and habituated users of hi-blend.

Subscript 1:	Value:	Units:
Α	0	Percent
СВ	0	Percent
DS	0	Percent
LS	0	Percent
М	0	Percent
NE	0	Percent
NP	0	Percent
Ρ	0	Percent
SE	0	Percent
SP	0	Percent

DSM_Inputs.initial_total_regional_terminals

Initial total number of fuel terminals by region.

Subscript 1: Value: Units: А 146 terminals СВ 183 terminals DS 60 terminals LS 91 terminals 42 М terminals NE 254 terminals 23 NP terminals Ρ 203 terminals SE 135 terminals SP 124 terminals

Aggregation of Tankage Data from State Agencies

DSM_Inputs.Lo_blend_coefficient

EPA E15 Factsheet

Volumetric fraction of gallon of E10 that is EtOH.

Subscript 1:	Value:	Units:
А	0.1	Unitless
СВ	0.1	Unitless
DS	0.1	Unitless
LS	0.1	Unitless
Μ	0.1	Unitless
NE	0.1	Unitless
NP	0.1	Unitless
Р	0.1	Unitless
SE	0.1	Unitless
SP	0.1	Unitless

DSM_Inputs.Margin_on_Other_Rev

Assumed margin on non-fuel revenue at gas stations.

Subscript 1:	Value:	Units:
BrandIndep	0.3	Unitless
HMart	0.3	Unitless
OilOwned	0.3	Unitless
UnbrandIndep	0.3	Unitless

DSM_Inputs.Markup_on_Gasoline_Sales

Assumed markup on gasoline sales in dollars per gallon.

Subscript 1:	Value:	Units:	
BrandIndep	0.15	USD/gal	
HMart	0.15	USD/gal	
OilOwned	0.15	USD/gal	
UnbrandIndep	0.15	USD/gal	

EPA E15 Factsheet

NACS Gas Price Kit 2011

DSM_Inputs.max_fraction_susceptible_for_considering_by_ow ner

Ethanol Transportation Memo

Gives maximum fraction of those stations from among those who possibly could consider hi-blend capability, who are actually susceptible to seriously considering the option.

Subscript 1:	Value:	Units:	
BrandIndep	1	Unitless	
HMart	1	Unitless	
OilOwned	1	Unitless	
UnbrandIndep	1	Unitless	

DSM_Inputs.No_Infas_in_region_dist'n_storage_cost

_

Cost of moving and storing EtOH within the region when there is no EtOH infrastructure in place.

Subscript 1:	Value:	Units:	
А	0.25	USD/gal	
CB	0.25	USD/gal	
DS	0.25	USD/gal	
LS	0.25	USD/gal	
Μ	0.25	USD/gal	
NE	0.25	USD/gal	
NP	0.25	USD/gal	
Р	0.25	USD/gal	
SE	0.25	USD/gal	
SP	0.25	USD/gal	

DSM_Inputs.PoD_to_PoU_Delivery_Cost

Cost, in dollars per gallon, to deliver fuel from the point of distribution to the point of use.

Subscript 1:	Value:	Units:	
A	0.04	USD/gal	
CB	0.04	USD/gal	
DS	0.04	USD/gal	
LS	0.04	USD/gal	
М	0.04	USD/gal	
NE	0.04	USD/gal	
NP	0.04	USD/gal	
Р	0.04	USD/gal	
SE	0.04	USD/gal	
SP	0.04	USD/gal	

DSM_Inputs.rate_of_becoming_occasional_HiBlend_user

Fractional rate of potential users becoming hi-blend users per year.

Subscript 1:	Value:	Units:	
А	0.5	1/yr	
СВ	0.5	1/yr	
DS	0.5	1/yr	
LS	0.5	1/yr	
М	0.5	1/yr	
NE	0.5	1/yr	
NP	0.5	1/yr	
Р	0.5	1/yr	
SE	0.5	1/yr	
SP	0.5	1/yr	

BSM Calibration

DSM_Inputs.regional_dispensing_station_distn

USDA Land Values and Cash Rents: 2010 Summary

BSM Modeler Assumption

Regional distribution by percent of all dispensing stations in the United States.

Subscript 1:	Value:	Units:	
Α	0.13	Unitless	
СВ	0.134	Unitless	
DS	0.051	Unitless	
LS	0.076	Unitless	
М	0.065	Unitless	
NE	0.164	Unitless	
NP	0.029	Unitless	
Р	0.096	Unitless	
SE	0.148	Unitless	
SP	0.106	Unitless	

DSM_Inputs.req'd_rate_of_return

Project rate of return required to stimulate investment in a project.

Subscript 1:	Value:	Units:	
BrandIndep	0.15	1/yr	
HMart	0.15	1/yr	
OilOwned	0.15	1/yr	
UnbrandIndep	0.15	1/yr	

DSM_Inputs.Share_Current_HiBlend_CapableTraffic_to_Hi_Ble nd_Weighting_Factor

Weighting factor for calculating the expected share of current hi-blend capable traffic that would make the switch to hi-blend if the tankage was available.

DSM_Inputs.station_sales_dist'n_by_ownership

_

Distribution of fuel sales by ownership of gasoline stations.

E85 Retail Business Case: When and Why to Sell E85

Subscript 1:	Value:	Units:	
BrandIndep	38.65	Percent	
HMart	7.7	Percent	
OilOwned	15	Percent	
UnbrandIndep	38.65	Percent	

DSM_Inputs.x_region_import_cost

Cost of moving EtOH into a region from an external region.

Subscript 1:	Value:	Units:	
А	0.075	USD/gal	
СВ	0.075	USD/gal	
DS	0.075	USD/gal	
LS	0.075	USD/gal	
Μ	0.075	USD/gal	
NE	0.075	USD/gal	
NP	0.075	USD/gal	
Р	0.075	USD/gal	
SE	0.075	USD/gal	
SP	0.075	USD/gal	

FLM.Ag_Res_HCCPA_cost_multiplier

Agricultural residue harvest cost, in dollars, per acre, by crop and region.

Subscript 1:	Value:	Units:
Corn	0	Unitless
Cotton	0	Unitless
Other_Grains	0	Unitless
Soy	0	Unitless
Wheat	0	Unitless

FLM.Expected_Residue_tons_per_load

Expected agricultural residue tons per load.

Subscript 1:	Value:	Units:	
Corn	17	ton/load	
Cotton	17	ton/load	
Other_Grains	17	ton/load	
Soy	17	ton/load	
Wheat	17	ton/load	

Scenario Value

Biomass Logistics Model

FLM.Fraction_of_Supply_System_Advanced

Scenario Value

Biomass Logistics Model

Fraction of supply system that is advanced, as defined by the Biomass Logistics Model (Idaho National Laboratory).

Subscript 1:	Value:	Units:
A	0	Unitless
СВ	0	Unitless
DS	0	Unitless
LS	0	Unitless
Μ	0	Unitless
NE	0	Unitless
NP	0	Unitless
P	0	Unitless
SE	0	Unitless
SP	0	Unitless

FLM.Initial_HC_HCCPA

Initial herbaceous energy crop harvest collection cost per acre, by crop and region.

Units: Subscript 1: Value: USD/acre-yr 52.96 А СВ 52.96 USD/acre-yr DS 52.96 USD/acre-yr LS 52.96 USD/acre-yr М 52.96 USD/acre-yr NE 52.96 USD/acre-yr NP 52.96 USD/acre-yr Ρ 52.96 USD/acre-yr 52.96 SE USD/acre-yr SP 52.96 USD/acre-yr

FLM.Initial_WC_HCCPA

Subscript 1:	Value:	Units:	
A	754.4	USD/acre-yr	
СВ	752.4	USD/acre-yr	
DS	801.2	USD/acre-yr	
LS	784.4	USD/acre-yr	
М	786	USD/acre-yr	
NE	660.854	USD/acre-yr	
NP	801.2	USD/acre-yr	
Р	808.4	USD/acre-yr	
SE	801.2	USD/acre-yr	
SP	801.2	USD/acre-yr	

Initial woody crop harvest and collection cost per ton.

FLM.regionalizing_demo

Percent of demonstration plants in each region.

Internal List of Potential Biofuels Conversion Facilities

Scenario Value

Subscript 1:	Value:	Units:	
А	0.0714	Unitless	
СВ	0.214286	Unitless	
DS	0.0714	Unitless	
LS	0.0714	Unitless	
Μ	0.142857	Unitless	
NE	0.0714	Unitless	
NP	0.0714	Unitless	
Р	0.142857	Unitless	
SE	0.0714	Unitless	
SP	0.0714	Unitless	

FLM.which_FS__design_to_use?

Determines which feedstock design to use.

Subscript 1:	Value:	Units:	
Advanced	0	Unitless	
Conventional	1	Unitless	
Pioneer	0	Unitless	

FSM.Ag_Attractiveness_Weight

BSM Calibration

Agriculture attractiveness weight, by region. A logit coefficient.

Subscript 1:	Value:	Units:	
А	0.004	acre-yr/USD	
CB	0.004	acre-yr/USD	
DS	0.004	acre-yr/USD	
LS	0.004	acre-yr/USD	
Μ	0.004	acre-yr/USD	
NE	0.004	acre-yr/USD	
NP	0.004	acre-yr/USD	
Р	0.004	acre-yr/USD	
SE	0.004	acre-yr/USD	
SP	0.004	acre-yr/USD	

FSM.Ag_Attractiveness_Weight_Pasture

Agriculture attractiveness weight of pasture, by region. A logit coefficient.

Subscript 1:	Value:	Units:
A	0.05	acres-years/usd
СВ	0.05	acres-years/usd
DS	0.05	acres-years/usd
LS	0.05	acres-years/usd
Μ	0.05	acres-years/usd
NE	0.05	acres-years/usd
NP	0.05	acres-years/usd
Р	0.05	acres-years/usd
SE	0.05	acres-years/usd
SP	0.05	acres-years/usd

BSM Calibration

FSM.annual_residue_rent_factor

BSM Calibration

Constant Value

Percent by which to reduce rent factor, accounting for land that is not rentable and land that is not used primarily for residue production, by region.

Subscript 1:	Value:	Units:
Α	0.5	Unitless
СВ	0.5	Unitless
DS	0.5	Unitless
LS	0.5	Unitless
Μ	0.5	Unitless
NE	0.5	Unitless
NP	0.5	Unitless
Р	0.5	Unitless
SE	0.5	Unitless
SP	0.5	Unitless

FSM.Annual_Subsidy_%

_

_

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Annual subsidy percentage.

Subscript 1:	Value:	Units:
Corn	0	Unitless
Cotton	0	Unitless
Other_Grains	0	Unitless
Soy	0	Unitless
Wheat	0	Unitless

FSM.Baseline_to_Nominal_Conversion_Factors

Baseline to Nominal Conversion Factors (effectively only converting cotton from thousand bales to lbs; other crops remain in USDA units of million bushels).

Subscript 1:	Value:	Units:
Corn	1	unit/USDA
Other_Grains	1	unit/USDA
Soy	1	unit/USDA
Wheat	1	unit/USDA

FSM.Cash_Rent_by_Region:_Annual_Payment

USDA Land Values and Cash Rents: 2010 Summary

Cropland rented for	cash: tl	he average cas	h rent per acre	. by region.
				,

Subscript 1:	Value:	Units:
А	71	USD/acre-yr
СВ	152	USD/acre-yr
DS	84	USD/acre-yr
LS	107	USD/acre-yr
М	75	USD/acre-yr
NE	53.5	USD/acre-yr
NP	71	USD/acre-yr
Р	219	USD/acre-yr
SE	62	USD/acre-yr
SP	33.5	USD/acre-yr

FSM.Cell_in_development_weighting_factors

Weighting factor for anticipated feedstock supply that is represented by acres in development.

Subscript 1:	Value:	Units:	
Herbaceous	1	Unitless	
Woody	0.1	Unitless	

FSM.cellulose_crop_coeffs

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Identifies which annual crops are generating residues, by crop.

Subscript 1:	Value:	Units:	
Corn	1	Unitless	
Cotton	0	Unitless	
Other_Grains	1	Unitless	
Soy	0	Unitless	
Wheat	1	Unitless	

FSM.Cellulosic_Coeffs

Converts HC and WC contributions to a matrix form.

Subscript 1:	Value:	Units:	
Herbaceous	1	Unitless	
Woody	0	Unitless	

Constant Value

BSM Calibration

FSM.cellulosic_scenario

Scenario Value

Switch to select cellulosic demand scenario.

Subscript 1:	Value:	Units:
0	1	Unitless
AEO2009	0	Unitless
EISA2007	0	Unitless
Hi	0	Unitless
Lo	0	Unitless
Med	0	Unitless

FSM.Corn_ETOH_Scenario_switch

_

_

Switch to select corn demand scenario.

Subscript 1:	Value:	Units:
0	1	Unitless
AEO2009	0	Unitless
EISA2007	0	Unitless
Hi	0	Unitless
Lo	0	Unitless
Med	0	Unitless

FSM.Crop_PCPA_input_cost_sensitivity_factor

Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis

Sensitivity of production costs to changes in energy prices.

Subscript 1:	Value:	Units:	
Corn	0.05	Unitless	
Cotton	0.05	Unitless	
Other_Grains	0.05	Unitless	
Soy	0.04	Unitless	
Wheat	0.06	Unitless	

FSM.Crop_Price_Index

Annual crop price index.

	Subscript 1:	Value:	Units:	
	Corn	100	Unitless	
	Cotton	100	Unitless	
	Other_Grains	100	Unitless	
	Soy	100	Unitless	
	Wheat	100	Unitless	
FSM.dea	illoc_rate_Annual			BSM Calibration
	Deallocation rate of annual cr	ops.		
	Subscript 1:	Value:	Units:	
	Corn	0.1	1/yr	
	Cotton	0.1	1/yr	
	Other_Grains	0.1	1/yr	
	Soy	0.1	1/yr	
	Wheat	0.1	1/yr	
FSM.dea	lloc_rate_Cell_in_Prod'n			BSM Calibration
	Deallocation rate of perennial	energy crops in production, by e	energy crop.	
	Subscript 1:	Value:	Units:	
	Herbaceous	0.125	1/yr	
	Woody	1	1 <i>/</i> yr	
FSM.deg	ree_of_price_coupling_with_COR	N		BSM Calibration
	Degree of price coupling with	corn, by crop.		
	Subscript 1:	Value:	Units:	
	Corn	0	Unitless	
	Cotton	0	Unitless	
	Other_Grains	0.5	Unitless	
	Soy	0	Unitless	
	Wheat	0	Unitless	

FSM.Feedstock_Inventory

Constant Value

Cellulosic feedstock inventory, by region.

Subscript 1:	Value:	Units:
А	0	million-ton
СВ	0	million-ton
DS	0	million-ton
LS	0	million-ton
Μ	0	million-ton
NE	0	million-ton
NP	0	million-ton
Р	0	million-ton
SE	0	million-ton
SP	0	million-ton

FSM.Forest_redidue_Cellulosic_coeffs

Calculates the forest residue contribution to total cellulosic feedstocks produced.

Subscript 1:	Value:	Units:	
Forest	1	Unitless	
Herb	0	Unitless	
Res	0	Unitless	
Urban	0	Unitless	
Wood	0	Unitless	

Constant Value

FSM.forest_residue_factor

Constant Value

Percent by which to reduce rent factor, accounting for land that is not rentable and land that is not used primarily for residue production, by region.

Subscript 1:	Value:	Units:	
Α	1	Unitless	
CB	1	Unitless	
DS	1	Unitless	
LS	1	Unitless	
М	1	Unitless	
NE	1	Unitless	
NP	1	Unitless	
Р	1	Unitless	
SE	1	Unitless	
SP	1	Unitless	

FSM.forest_residue_prod'n_by_region

Forest residue production, by region.

Subscript 1:	Value:	Units:
А	0	million-ton/yr
СВ	0	million-ton/yr
DS	0	million-ton/yr
LS	0	million-ton/yr
М	0	million-ton/yr
NE	0	million-ton/yr
NP	0	million-ton/yr
Р	0	million-ton/yr
SE	0	million-ton/yr
SP	0	million-ton/yr

FSM.frac__Cell_in_Dev_%_harvestable

_

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Fraction of acres of cellulosic energy crops in development that are harvestable.

Subscript 1:	Value:	Units:
Herbaceous	0.5	Unitless
Woody	0	Unitless

Constant Value

FSM.FS_Price_PlantGate

Feedstock price at plant gate.

Subscript 1:	Value:	Units:
А	0	USD/ton
CB	0	USD/ton
DS	0	USD/ton
LS	0	USD/ton
Μ	0	USD/ton
NE	0	USD/ton
NP	0	USD/ton
Р	0	USD/ton
SE	0	USD/ton
SP	0	USD/ton

FSM.grain_lb_per_bu

Conversion factor for pounds per bushel, by crop.

University of Missouri: G4020 Tables for Weights and Measurements: Crops

Subscript 1:	Value:	Units:	
Corn	56	lb/bu	
Cotton	0	lb/bu	
Other_Grains	45.333	lb/bu	
Soy	0	lb/bu	
Wheat	60	lb/bu	

FSM.harvest_efficiency_HC

Estimated harvest efficiency for herbaceous cellulose.

Subscript 1:	Value:	Units:	
Advanced	0.9	Unitless	
Conventional	0.77	Unitless	
Pioneer	0.77	Unitless	

Biomass Logistics Model

FSM.harvest_efficiency_residue

Biomass Logistics Model

Estimated harvest efficiency for residue.

Subscript 1:	Value:	Units:	
Advanced	0.948	Unitless	
Conventional	0.53	Unitless	
Pioneer	0.53	Unitless	

FSM.harvest_efficiency_WC

Estimated harvest efficiency for woody cellulose.

Subscript 1:	Value:	Units:	_
Advanced	1	Unitless	-
Conventional	1	Unitless	
Pioneer	1	Unitless	_

FSM.hay_and_forage_demand_growth_scenario

A scenario for the demand for hay and forage relative to 2007 value. A positive number represents a slope for demand growth.

Subscript 1:	Value:	Units:
A	0	Unitless
СВ	0	Unitless
DS	0	Unitless
LS	0	Unitless
М	0	Unitless
NE	0	Unitless
NP	0	Unitless
Р	0	Unitless
SE	0	Unitless
SP	0	Unitless

Biomass Logistics Model

Scenario Value

FSM.Hay_Price_Index

Hay price index, by region.

Subscript 1:	Value:	Units:	
А	100	Unitless	_
СВ	100	Unitless	
DS	100	Unitless	
LS	100	Unitless	
Μ	100	Unitless	
NE	100	Unitless	
NP	100	Unitless	
Р	100	Unitless	
SE	100	Unitless	
SP	100	Unitless	

FSM.HC_cellulosic_coefffffs

Herbaceous energy crop cellulosic coefficients for calculating HC contribution to total cellulosic feedstocks produced.

Subscript 1:	Value:	Units:
Forest	0	Unitless
Herb	1	Unitless
Res	0	Unitless
Urban	0	Unitless
Wood	0	Unitless

FSM.HC_yield_growth_ass'ns

The increase in herbaceous energy crop yield, in tons, per acre per year per year, due to improved agronomic practices, genetic engineering, etc.

Subscript 1:	Value:	Units:
Herbaceous	0.25	unit/acre-yr^2
Woody	0	unit/acre-yr^2

Scenario Value

Constant Value

Herbaceous energy crops yield (in tons) per acre coefficients (10 years). Used to handle yield growth relative to the production year for herbaceous cellulosics.

Subscript 1:	Value:	Units:	
1	0	Unitless	
2	1	Unitless	
3	1	Unitless	
4	1	Unitless	
5	1	Unitless	
6	1	Unitless	
7	1	Unitless	
8	1	Unitless	
9	1	Unitless	
10	1	Unitless	

FSM.initial_cellulosic_price

Initial cellulosic feedstock price at plant gate in dollars per ton.

Subscript 1:	Value:	Units:	
А	45	usd/ton	-
СВ	45	usd/ton	
DS	45	usd/ton	
LS	45	usd/ton	
М	35	usd/ton	
NE	45	usd/ton	
NP	35	usd/ton	
Ρ	35	usd/ton	
SE	45	usd/ton	
SP	35	usd/ton	

BSM Calibration

FSM.INITIAL_CRP_land_by_region

Subscript 1:	Value:	Units:
А	533	thousand-acres
CB	3352	thousand-acres
DS	1059	thousand-acres
LS	1828	thousand-acres
Μ	7226	thousand-acres
NE	83	thousand-acres
NP	7688	thousand-acres
P	2027	thousand-acres
SE	888	thousand-acres
SP	4744	thousand-acres

Initial area, in thousand acres, of conservation reserve program land, by region.

FSM.INITIAL_Hay_GP

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Initial grower payment per ton of hay, by region.

Subscript 1:	Value:	Units:	
А	119.09	usd/ton	
CB	119.09	usd/ton	
DS	119.09	usd/ton	
LS	119.09	usd/ton	
М	119.09	usd/ton	
NE	119.09	usd/ton	
NP	119.09	usd/ton	
Ρ	119.09	usd/ton	
SE	119.09	usd/ton	
SP	119.09	usd/ton	

FSM.initial_Hay_Land_by_region

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Subscript 1:	Value:	Units:	
А	7163.96	thousand-acres	
CB	7470.1	thousand-acres	
DS	2596.05	thousand-acres	
LS	4740.41	thousand-acres	
Μ	9227.11	thousand-acres	
NE	3979.76	thousand-acres	
NP	11786	thousand-acres	
Р	3522.88	thousand-acres	
SE	2312.78	thousand-acres	
SP	8900.95	thousand-acres	

Initial hay land area, in thousand acres and by region.

FSM.INITIAL_Hay_PCPA

_

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Initial hay production cost per acre per year, by region.

Subscript 1:	Value:	Units:	
Α	151.462	USD/acre-yr	
СВ	142.32	USD/acre-yr	
DS	131.404	USD/acre-yr	
LS	142.318	USD/acre-yr	
М	120.725	USD/acre-yr	
NE	147.292	USD/acre-yr	
NP	133.27	USD/acre-yr	
Р	110.823	USD/acre-yr	
SE	118.998	USD/acre-yr	
SP	105.945	USD/acre-yr	

FSM.Initial_Hay_YPA

Initial hay yield per acre per year.

Subscript 1:	Value:	Units:
Α	2.21731	ton/acre-yr
СВ	2.6228	ton/acre-yr
DS	3.14883	ton/acre-yr
LS	2.49821	ton/acre-yr
Μ	2.84586	ton/acre-yr
NE	2.40513	ton/acre-yr
NP	2.11112	ton/acre-yr
Р	3.49463	ton/acre-yr
SE	2.23871	ton/acre-yr
SP	2.12385	ton/acre-yr

FSM.Initial_Pasture_%_in_Pasture

Initial percentage of pasture land used as pasture, by region.

Subscript 1: Value: Units: Unitless 1 А СВ Unitless 1 DS Unitless 1 LS 1 Unitless М Unitless 1 NE Unitless 1 NP Unitless 1 Ρ Unitless 1 SE Unitless 1 SP 1 Unitless

Constant Value

FSM.INITIAL_pasture_land_by_region

5	Subscript 1:	Value:	Units:
Þ	4	3678.3	thousand-acres
C	CB	3627.47	thousand-acres
C	DS	2093.09	thousand-acres
L	_S	1422.5	thousand-acres
Ν	V	4128.14	thousand-acres
1	NE	918.241	thousand-acres
١	NP	3566.25	thousand-acres
F	>	1679.57	thousand-acres
5	SE	1953.32	thousand-acres
5	SP	9438.04	thousand-acres

Initial crop land used for pasture land, in thousand acres by region.

FSM.Max_Frac_CRP_Harvestable_for_HC

Maximum fraction of CRP land harvestable for herbaceous energy crops, by region.

Subscript 1:	Value:	Units:	
Α	0.4	Unitless	_
CB	0.4	Unitless	
DS	0.4	Unitless	
LS	0.4	Unitless	
Μ	0.4	Unitless	
NE	0.4	Unitless	
NP	0.4	Unitless	
Ρ	0.4	Unitless	
SE	0.4	Unitless	
SP	0.4	Unitless	

Scenario Value

FSM.migration_rate_from_Pasture_to_Active_Crop_Land

Scenario Value

Annual migration rate of pasture to active farmland.

Subscript 1:	Value:	Units:	
A	0	1/yr	
СВ	0	1/yr	
DS	0	1/yr	
LS	0	1/yr	
М	0	1/yr	
NE	0	1/yr	
NP	0	1/yr	
Р	0	1/yr	
SE	0	1/yr	
SP	0	1/yr	

FSM.New_Practice_Producers_%_by_Region

Percent of new practice farmers, by region.

Subscript 1:	Value:	Units:	
Α	0	Unitless	
СВ	0	Unitless	
DS	0	Unitless	
LS	0	Unitless	
М	0	Unitless	
NE	0	Unitless	
NP	0	Unitless	
Р	0	Unitless	
SE	0	Unitless	
SP	0	Unitless	

Constant Value

FSM.nominal_yield_growth_ass'ns

USDA Agricultural Projections to 2020

Increase in annual crop yield, in nominal units, per acre per year per year due to improved agronomic practices, genetic engineering, etc.

0.45

0.33

Units: Subscript 1: Value: 2 unit/acre-yr^2 5 unit/acre-yr^2 Other_Grains 0.5 unit/acre-yr^2

unit/acre-yr^2

unit/acre-yr^2

FSM.Old_Practice_Producers_%_by_Region

Soy Wheat

Corn

Cotton

Percent of old practice producers, by region.

Subscript 1:	Value:	Units:
А	1	Unitless
СВ	1	Unitless
DS	1	Unitless
LS	1	Unitless
Μ	1	Unitless
NE	1	Unitless
NP	1	Unitless
Р	1	Unitless
SE	1	Unitless
SP	1	Unitless

Constant Value

table 19

FSM.Pasture\CRP_HC_GPPA_weights

Scenario Value

Relative value of herbaceous energy crops grown on CRP land to value of herbaceous energy crops grown on pasture land in terms of grower payment per acre per year.

Subscript 1:	Value:	Units:
А	1	Unitless
СВ	1	Unitless
DS	1	Unitless
LS	1	Unitless
Μ	1	Unitless
NE	1	Unitless
NP	1	Unitless
Р	1	Unitless
SE	1	Unitless
SP	1	Unitless

FSM.Pasture__Switching

Fraction pastureland switching from pasture to energy crops, by region.

5	Subscript 1:	Value:	Units:
,	A	0	Unitless
(СВ	0	Unitless
I	DS	0	Unitless
l	LS	0	Unitless
I	Μ	0	Unitless
I	NE	0	Unitless
I	NP	0	Unitless
I	P	0	Unitless
3	SE	0	Unitless
5	SP	0	Unitless

Constant Value

FSM.Perlack_Crop_Prod'n_mm

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Perlack Crop Production in Million Units per Year, by crop.

Subscript 1:	Value:	Units:
Corn	13755	million-units/yr
Cotton	15474.6	million-units/yr
Other_Grains	546.571	million-units/yr
Soy	3355	million-units/yr
Wheat	2125	million-units/yr

FSM.population

U.S. Census 2010 Population Map

The population of the United States, by region.

Subscript 1:	Value:	Units:	
А	3.0075E+07	person	
CB	3.98862E+07	person	
DS	1.04166E+07	person	
LS	2.08746E+07	person	
Μ	2.20655E+07	person	
NE	6.19887E+07	person	
NP	6166230	person	
Р	4.78096E+07	person	
SE	3.78941E+07	person	
SP	2.88969E+07	person	

FSM.Production_Year_Multiplier

Constant Value

Selects appropriate	production [•]	vear to apply	/ the establish	ment payments.
		/ /		

Subscript 1:	Value:	Units:
1	1	Unitless
2	0	Unitless
3	0	Unitless
4	0	Unitless
5	0	Unitless
6	0	Unitless
7	0	Unitless
8	0	Unitless
9	0	Unitless
10	0	Unitless

FSM.rate_of_migration_to_active

Annual migration rate of CRP land to active cropland.

Subscript 1:	Value:	Units:	
A	0.15	1/yr	
СВ	0.15	1/yr	
DS	0.15	1/yr	
LS	0.15	1/yr	
Μ	0.15	1/yr	
NE	0.15	1/yr	
NP	0.15	1/yr	
Р	0.15	1/yr	
SE	0.15	1/yr	
SP	0.15	1/vr	

BSM Calibration

FSM.regional_dist'n_of_cellulose_capacity

BSM Calibration

Regional distribution of cellulose capacity, by region.

Subscript 1:	Value:	Units:
А	9	Unitless
СВ	20	Unitless
DS	15	Unitless
LS	10	Unitless
Μ	2	Unitless
NE	4	Unitless
NP	15	Unitless
Р	5	Unitless
SE	10	Unitless
SP	10	Unitless

FSM.regional_weather_factor

Weather factor, by region.

Subscript 1:	Value:	Units:	
A	1	Unitless	
СВ	1	Unitless	
DS	1	Unitless	
LS	1	Unitless	
М	1	Unitless	
NE	1	Unitless	
NP	1	Unitless	
Р	1	Unitless	
SE	1	Unitless	
SP	1	Unitless	

Scenario Value

FSM.Res_Cellulosic_coeffs

Constant Value

Residue cellulosic coefficients for calculating residue contribution to total cellulosic feedstocks produced.

Subs	cript 1:	Value:	Units:
Fores	st	0	Unitless
Herb		0	Unitless
Res		1	Unitless
Urbai	n	0	Unitless
Wood	b	0	Unitless

FSM.Residue_PCPA_input_cost_sensitivity_factor

Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis

Sensitivity of residue production costs to changes in energy prices.

Subscript 1:	Value:	Units:
Corn	0.07	Unitless
Cotton	0.07	Unitless
Other_Grains	0.07	Unitless
Soy	0.07	Unitless
Wheat	0.07	Unitless

FSM.Secondary_Crop_PCPA_input_cost_sensitivity_factor

Pacey Economics Internal Report: Energy Price-Production Cost Coupling Analysis

Sensitivity of secondary crop production costs to changes in energy prices.

Subscript 1:	Value:	Units:	
Corn	0.05	Unitless	
Cotton	0.05	Unitless	
Other_Grains	0.05	Unitless	
Soy	0.04	Unitless	
Wheat	0.04	Unitless	

FSM.storage_loss_HC

Herbaceous crop storage loss.

Subscript 1:	Value:	Units:	
Advanced	0.95	Unitless	
Conventional	0.95	Unitless	
Pioneer	0.95	Unitless	

Biomass Logistics Model
FSM.storage_loss_residue

Biomass Logistics Model

Biomass Logistics Model

Residual	crop	storage	loss
----------	------	---------	------

Subscript 1:	Value:	Units:	
Advanced	0.95	Unitless	
Conventional	0.95	Unitless	
Pioneer	0.95	Unitless	

FSM.storage_loss_WC

Woody cellulose storage loss.

Subscript 1:	Value:	Units:	
Advanced	1	Unitless	
Conventional	1	Unitless	
Pioneer	1	Unitless	

FSM.Sustainable_Residue_as_Frac_of_Yield

BLM Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Fraction of residue that can be removed sustainably.

Subscript 1:	Value:	Units:	
Corn	0.38	Unitless	
Cotton	0.13	Unitless	
Other_Grains	0.45	Unitless	
Soy	0	Unitless	
Wheat	0.45	Unitless	

FSM.Switching

Constant Value

Fraction active farmland switching from annual crops to energy crops, by region.

Subscript 1:	Value:	Units:
A	0	Unitless
CB	0	Unitless
DS	0	Unitless
LS	0	Unitless
Μ	0	Unitless
NE	0	Unitless
NP	0	Unitless
Р	0	Unitless
SE	0	Unitless
SP	0	Unitless

FSM.Tot_HC_YPA_in_dev

The total HC yield per acre in development.

Subscript 1:	Value:	Units:	
A	0	ton/acre-yr	
СВ	0	ton/acre-yr	
DS	0	ton/acre-yr	
LS	0	ton/acre-yr	
Μ	0	ton/acre-yr	
NE	0	ton/acre-yr	
NP	0	ton/acre-yr	
Р	0	ton/acre-yr	
SE	0	ton/acre-yr	
SP	0	ton/acre-vr	

Constant Value

FSM.Tot_HC_YPA_in_dev_P

Constant Value

The total HC yield per acre in development in pasture land.

Subscript 1:	Value:	Units:
Α	0	ton/acre-yr
СВ	0	ton/acre-yr
DS	0	ton/acre-yr
LS	0	ton/acre-yr
М	0	ton/acre-yr
NE	0	ton/acre-yr
NP	0	ton/acre-yr
Р	0	ton/acre-yr
SE	0	ton/acre-yr
SP	0	ton/acre-yr

FSM.Tot_HC_YPA_in_Prod'n_P

Total HC yield per acre in production on pasture land.

Subscript 1:	Value:	Units:	
A	0	ton/acre-yr	
СВ	0	ton/acre-yr	
DS	0	ton/acre-yr	
LS	0	ton/acre-yr	
Μ	0	ton/acre-yr	
NE	0	ton/acre-yr	
NP	0	ton/acre-yr	
Р	0	ton/acre-yr	
SE	0	ton/acre-yr	
SP	0	ton/acre-vr	

Constant Value

FSM.Total_HC_YPA_In_Prod'n

Constant Value

Constant Value

The total herbaceous cellulose yield per acre currently in production.

Subscript 1:	Value:	Units:
Α	0	ton/acre-yr
СВ	0	ton/acre-yr
DS	0	ton/acre-yr
LS	0	ton/acre-yr
Μ	0	ton/acre-yr
NE	0	ton/acre-yr
NP	0	ton/acre-yr
Р	0	ton/acre-yr
SE	0	ton/acre-yr
SP	0	ton/acre-yr

FSM.Urban_Res_Cellulosic_coeffs

Urban residue cellulosic coefficients for calculating residue contribution to total cellulosic feedstocks produced.

Subscript 1:	Value:	Units:	
Forest	0	Unitless	
Herb	0	Unitless	
Res	0	Unitless	
Urban	1	Unitless	
Wood	0	Unitless	

FSM.urban_residue_prod'n_by_region

Constant Value

Urban residue production, by region.

Subscript 1:	Value:	Units:
А	0	million-ton/yr
СВ	0	million-ton/yr
DS	0	million-ton/yr
LS	0	million-ton/yr
Μ	0	million-ton/yr
NE	0	million-ton/yr
NP	0	million-ton/yr
Р	0	million-ton/yr
SE	0	million-ton/yr
SP	0	million-ton/yr

FSM.w_annual

Logit coefficient (calibration parameter) for annual crops, by region.

Subscript 1:	Value:	Units:	
A	0	Unitless	
СВ	0	Unitless	
DS	0	Unitless	
LS	0	Unitless	
М	0	Unitless	
NE	0	Unitless	
NP	0	Unitless	
Р	0	Unitless	
SE	0	Unitless	
SP	0	Unitless	

BSM Calibration

FSM.w_hay

Logit coefficient (calibration parameter) for hay, by region.

BSM Calibration

Subscript 1:	Value:	Units:	
A	4.6	Unitless	
CB	1.24	Unitless	
DS	1.99	Unitless	
LS	1.4	Unitless	
Μ	1.18	Unitless	
NE	3.87	Unitless	
NP	0.8	Unitless	
Р	2.52	Unitless	
SE	1.17	Unitless	
SP	1.43	Unitless	

FSM.w_PCEC

Logit coefficient (calibration parameter) for perennial cellulosic energy crops.

Subscript 1:	Value:	Units:	
A	1.5	Unitless	
СВ	1.4	Unitless	
DS	1.44	Unitless	
LS	1.5	Unitless	
Μ	2.055	Unitless	
NE	1.6	Unitless	
NP	1.035	Unitless	
Р	3.305	Unitless	
SE	2.04	Unitless	
SP	1.98	Unitless	

FSM.WC_cellulosic_coeffffffs

Constant Value

Woody energy crop cellulosic coefficients for calculating WC contribution to total cellulosic feedstocks produced, by cellulose type.

Subscript 1:	Value:	Units:
Forest	0	Unitless
Herb	0	Unitless
Res	0	Unitless
Urban	0	Unitless
Wood	1	Unitless

FSM.WC_'project_length'

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Length of woody energy crops "project"; lifetime of woody energy crop production.

Subscript 1:	Value:	Units:	
A	8	yr	
CB	8	yr	
DS	8	yr	
LS	8	yr	
Μ	8	yr	
NE	8	yr	
NP	8	yr	
P	8	yr	
SE	8	yr	
SP	8	yr	

FSM.yield_offsets

_

Yield offsets by annual crop.

Subscript 1:	Value:	Units:	
Corn	1	Unitless	
Cotton	0.95	Unitless	
Other_Grains	1	Unitless	
Soy	0.9	Unitless	
Wheat	1.1	Unitless	

BSM Calibration

IM.distribution_of_imports

EIA: Fuel Ethanol Imports by Area of Entry

Assumed regional distribution of imports into the United States from outside the United States.

Subscript 1:	Value:	Units:
А	0	Unitless
CB	0	Unitless
DS	0	Unitless
LS	0	Unitless
Μ	0	Unitless
NE	1	Unitless
NP	0	Unitless
Р	0	Unitless
SE	0	Unitless
SP	0	Unitless

Outputs.Cume_Additional_Tax_on_Gasoline

Cumulative point of use subsidy for hi-blend fuel, in dollars.

Subscript 1:	Value:	Units:
A	0	USD
СВ	0	USD
DS	0	USD
LS	0	USD
Μ	0	USD
NE	0	USD
NP	0	USD
Р	0	USD
SE	0	USD
SP	0	USD

Outputs.Cume_C_PoP_Subsidy

Stock Initialization

Cumulative point of production subsidy.

Subscript 1:	Value:	Units:	
A	0	USD	
СВ	0	USD	
DS	0	USD	
LS	0	USD	
М	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

Outputs.Cume_Dist'n_Storage_Subsidy

Cumulative distribution and storage subsidy.

Subscript 1:	Value:	Units:	
A	0	USD	
CB	0	USD	
DS	0	USD	
LS	0	USD	
М	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

Outputs.Cume_Hi_Blend_PoU_Subsidy

Stock Initialization

Cumulative hi-blend point of use subsidy.

Subscript 1:	Value:	Units:	
Α	0	USD	
CB	0	USD	
DS	0	USD	
LS	0	USD	
Μ	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

Outputs.Cume_S_PoP_Subsidy

Cumulative starch point of production subsidy.

Subscript 1:	Value:	Units:	
A	0	USD	
СВ	0	USD	
DS	0	USD	
LS	0	USD	
М	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

Outputs.Cume_Station_FCI_subsidy

Stock Initialization

Cumulative station fixed capital investment subsidy.

Subscript 1:	Value:	Units:	
А	0	USD	
CB	0	USD	
DS	0	USD	
LS	0	USD	
Μ	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

Outputs.Cume_Station_Repurpose_subsidy

Cumulative station repurposing subsidy

Subscript 1:	Value:	Units:	
А	0	USD	
CB	0	USD	
DS	0	USD	
LS	0	USD	
М	0	USD	
NE	0	USD	
NP	0	USD	
Р	0	USD	
SE	0	USD	
SP	0	USD	

PIM.avg_frac_total_'prod'n'_imported

BSM Modeler Assumption

Exponentially weighted moving average. Tells on average the total imports to the region from other regions, relative to the total regional production. Defined as internal production plus imports from other regions.

Subscript 1:	Value:	Units:	
А	1	Unitless	
CB	0	Unitless	
DS	1	Unitless	
LS	0	Unitless	
Μ	1	Unitless	
NE	1	Unitless	
NP	0	Unitless	
Р	1	Unitless	
SE	1	Unitless	
SP	1	Unitless	

CM.exogenous_C_initiation_quantity

Internal List of Potential Biofuels Conversion Facilities

		Units: projects	s Th y∈ C	ne number of ear and regior M.exogenous	commercial as indicated _C_initiation	plants likely d by the tech _time.	to be initiated nology and	d in the speci	fied			
		А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
	BC	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CM.exc	ogenous_C_initiat	tion_quantity_NL						Interi	nal List of Po	tential Biofue	ls Conversi	on Facilities
		Units: projects	s Tł sp C	ne number of becified year a M.exogenous	commercial and region as _C_initiation	plants less li s indicated b _time_NL.	kely to be ini y the technol	tiated in the ogy and				
		А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
	BC	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
CM.exc	ogenous_C_initiat	tion_time						Interi	nal List of Po	tential Biofue	ls Conversi	on Facilities
		Units: yr	Tł te th	ne year comm chnologies ar e specified ye	nercial plants nd regions. Par is found in	are likely to The number n CM.exogei	be initiated f of plants to c nous_C_initia	or specified ome online d ation_quantity	luring			
		А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
	BC	0.00	2,010.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	тс	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

CM.exogenous_C_initiation_time_NL

		Units: yr		The year not-li and regions. T year is found ir	kely plants are he number of CM.exogenc	e to be initia plants to co ous_C_initia	ted for specif ome online di tion_quantity	ied technolog uring the spe _NL.	gies cified			
		А	CB	DS	LS	М	NE	NP	Р	SE	SP	
	BC	0.00	0.00	0.00	2,010.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2,010.00	0.00	
CM.exc	ogenous_P_initia	tion_quantity						Interi	nal List of Po	otential Biofuel	s Conversi	on Facilities
		Units: projects		The number of and region as i CM.exogenous	pioneer plant indicated by th _P_initiation_	s likely to b ne technolog <u>t</u> ime.	e initiated in t gy and	he specified	year			
		А	CB	DS	LS	М	NE	NP	Р	SE	SP	
·	BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CM.exc	ogenous_P_initia	tion_quantity_NL						Interi	nal List of Po	otential Biofuel	s Conversi	on Facilities
		Units: projects		The number of year and regio CM.exogenous	pioneer plant n as indicated P_initiation_	s less likely by the tech time_NL.	to be initiate nology and	d in the spec	ified			
		А	CB	DS	LS	М	NE	NP	Ρ	SE	SP	
	BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

CM.exogenous_P_initiation_time

Units: yr

Internal List of Potential Biofuels Conversion Facilities

	technologies and regions. The number of plants to come online during the specified year is found in CM.exogenous_P_initiation_quantity.											
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP		
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
тс	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

The year commercial plants are likely to be initiated for specified

CM.exogenous_P_initiation_time_NL

Internal List of Potential Biofuels Conversion Facilities

	Units: yr	Tł ar ye	The year not-likely plants are to be initiated for specified technologies and regions. The number of plants to come online during the specified year is found in CM.exogenous_P_initiation_quantity_NL.								
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

CM.In_Design&Cons_C

Internal List of Potential Biofuels Conversion Facilities

Units: projects Tracks the number of commercial-scale operations that are in design and construction stages. Values below are for initiation.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CM.In_Design&Cons_P

Units: projects

Internal List of Potential Biofuels Conversion Facilities

	construction stages. Values below are for initiation.											
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP		
BC	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Tracks the number of pioneer-scale operations that are in design and

CM.OnLine_C

Internal List of Potential Biofuels Conversion Facilities

Units: projects Tracks commercial-scale operations that are currently on-line and capable of producing output.

	А	CB	DS	LS	М	NE	NP	Ρ	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	6.00	158.00	4.00	43.00	6.00	6.00	78.00	9.00	2.00	8.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
тс	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CM.OnLine_P

Internal List of Potential Biofuels Conversion Facilities

Constant Value

	Units: projects		Tracks pilot-scale operations that are currently on-line capable of producing output.								
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
BC	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
тс	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

CM.Pioneer_Plant_Start_Batchifier

Units: projects Accumulates continuous signal and then ejects discrete quantity to ensure integer values for starting plants.

	А	CB	DS	LS	М	NE	NP	Ρ	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CM.Plant_Start_Accumulator

Stock Initialization

	Units: projec	ts A P	Accumulates a continuous signal and produces discrete quantities of plants.								
	А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
тс	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

CM.PY_in_Startup_C

Stock Initialization

Units: projects-gal/ton Tracks the total process yield associated with pioneer-scale plants in start-up.

	А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CM.PY_in_Startup_P

Stock Initialization

Units: projects-gal/ton Tracks the total process yield associated with commercial-scale plants in start-up.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CM.Starting_Up_C

	Units: project	Units: projects Tracks commercial-scale operations that are in start-up mode.										
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP		
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

CM.Starting_Up_P

Tracks pioneer-scale operations that are in start-up mode.

	А	CB	DS	LS	М	NE	NP	Р	SE	SP
BC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Combo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SPlus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ТС	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DSM.Equity_Fraction

Units: Unitless	Expected fraction of investment to be funded through equity financing
	after loan guarantees have been applied.

	А	CB	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
HMart	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
OilOwned	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
UnbrandIndep	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70

DSM_Inputs.Expected_Share_Inc_Traffic_to_Hi_Blend

Units: projects

	Units: Unitles	: Unitless Fraction of incremental traffic expected to use hi-blend if investment in tankage is made.								
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
HMart	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OilOwned	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
UnbrandIndep	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

DSM_Inputs.initial_frac_ALL_stations_with_repurposable_tankag

Status and Issues for Ethanol (E85) in the United States

Stock Initialization

Scenario Value

Scenario Value

Units: Unitless Fraction of stations, by region, that have hi-blend repurposable tankage.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
HMart	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
OilOwned	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
UnbrandIndep	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30

DSM_Inputs.initial_frac_stations_considering_invest

Units: Unitless

Initial fraction of stations, by region, without repurposable tankage, that are considering investment in hi-blend tankage.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HMart	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OilOwned	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
UnbrandIndep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DSM_Inputs.initial_frac_stations_considering_repurpose

Units: Unitless Initial fraction of stations, by region, with repurposable tankage, that are considering repurposing.

	А	CB	DS	LS	М	NE	NP	Ρ	SE	SP
BrandIndep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HMart	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OilOwned	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
UnbrandIndep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DSM_Inputs.initial_frac_stations_with_hi_blend_invest

	Units: Unitles	ss Ir ha	Initial fraction of stations, by region, without repurposable tankage, that have already invested in hi-blend tankage.							
	А	CB	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
HMart	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
OilOwned	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
UnbrandIndep	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01

DSM_Inputs.initial_frac_stations_with_repurposed_tankage

Units:	Unitless		Initial fraction of st have already repu	tations, by irposed.	region,	with repurposable	tankage,	that	
		00	50			N 100			_

	A	CB	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
HMart	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
OilOwned	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01
UnbrandIndep	0.01	0.04	0.00	0.07	0.02	0.01	0.08	0.01	0.01	0.01

Stock Initialization

BSM Calibration

BSM Calibration

DSM_Inputs.Volume_Per_Visit

Units: gal/Visit

NACS 2007 Annual Report

	0		1	U	0 1	1				
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
BrandIndep	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60
HMart	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60
OilOwned	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60
UnbrandIndep	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60	9.60

Expected average number of gallons per fill-up visit.

FLM.Initial_Ag_Residue_HCCPA

BLM and POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: USD/acre-yr Initial agricultural residue harvest collection cost per acre.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
Corn	61.04	71.58	63.92	67.76	69.89	60.66	63.03	79.42	57.94	60.61
Cotton	9.21	10.96	10.59	0.00	15.75	0.00	0.00	34.74	8.76	7.98
Other_Grains	29.07	27.65	36.62	18.31	26.64	22.48	27.35	24.09	15.01	22.32
Soy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wheat	27.40	27.29	25.19	27.40	18.50	29.57	16.85	27.99	22.15	14.66

FLM.Preprocessing_cost_per_ton

Biomass Logistics Model

Linite	LISD/top	Preprocessing	cost per top (general)
UTIIIS.	030/101	Preprocessing	cost per ton (general).

	Forest	Res	Urban	Wood	Herb
Advanced	42.44	21.55	42.44	42.44	23.77
Conventional	24.20	17.51	24.20	24.20	12.34
Pioneer	24.20	17.51	24.20	24.20	17.46

FLM.Q_&_H_cost_per_ton

Units: USD/ton Queuing and Handling cost per ton (general).

Biomass Logistics Model

	Forest	Res	Urban	Wood	Herb
Advanced	1.54	1.38	1.54	1.54	0.70
Conventional	1.55	1.26	1.55	1.55	1.26
Pioneer	1.55	1.26	1.55	1.55	1.26

FLM.S	torage_cost_per_t	on								В	iomass Log	istics Model
		Units: USD/to	on s	Storage cost p	er ton.							
		Forest	Res	Urban	Wood	Herb						
	Advanced	1.53	6.46	1.53	1.53	4.03						
	Conventional	1.46	5.62	1.46	1.46	5.92						
	Pioneer	1.46	5.62	1.46	1.46	6.08						-
FSM.C	Cell_inDev_%										Stock	Initialization
		Units: Unitles	s F	Fraction of acti prop developm	ive farmland f ient, by energ	or crops and y crop and r	d cellulose in egion.	cellulosic en	ergy			
		А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
	Herbaceous	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Woody	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
FSM.C	Cell_inProd'n_%										Stock	Initialization
		Units: Unitles	s f	Fraction of acti	ive farmland f n, by energy c	or crops and	d cellulose in jion.	cellulosic en	ergy			
		А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
	Herbaceous	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	•
	Woody	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
FSM.C	Cell_Transition_Tim	ie			POLYS	SYS Data thr	ough Person	al Communic	cation with Ro	obert Perlack	of Oak Rid	ge National Laboratory
		Units: yr	C	Cellulosic trans	sition time in y	years, by en	ergy crop and	d by region.				-
		А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
	Herbaceous	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
	Woody	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	7.00	7.00	

FSM.crop_switches

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

	Units: Unitles	ss A re	A switch indicating whether annual crops can be grown in a particular region.									
	А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP		
Corn	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Cotton	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00		
Other_Grains	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Soy	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00		
Wheat	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

FSM.Initial_Annual_YPA_nominal_units

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

	Units: units/a	acre-yr l	Initial annual yield, in nominal units, per acre, per year, by region for annual crops.										
	А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP			
Corn	139.97	173.91	149.55	161.90	155.89	139.58	149.29	191.23	130.99	141.36			
Cotton	782.79	944.98	906.61	0.00	1,367.25	0.00	505.75	2,865.83	749.53	696.13			
Other_Grains	67.64	64.43	87.61	41.13	58.96	50.76	64.72	53.99	32.95	51.60			
Soy	35.73	47.79	37.75	42.35	0.00	39.20	41.13	0.00	30.10	25.89			
Wheat	63.08	63.14	58.04	63.42	39.47	67.95	37.94	63.17	50.06	32.43			

FSM.INITIAL_Crop__PCPA

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: USD/acre-yr Initial crop production per acre, per year, by region, for annual crops.

	А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP
Corn	321.44	278.14	315.89	313.57	709.55	500.83	284.91	988.56	284.93	276.24
Cotton	233.17	249.12	317.06	0.00	453.88	0.00	181.06	165.23	393.63	234.18
Other_Grains	159.91	121.13	197.29	85.10	182.69	112.02	133.34	228.47	66.98	149.58
Soy	156.47	129.60	164.55	143.96	0.00	163.06	123.35	0.00	170.82	123.96
Wheat	155.31	120.42	125.89	99.35	127.11	204.91	108.64	192.38	145.52	194.07

USDA Baseline and POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

FSM.Initial_Crop_regional_prices

	Units: usd/ur	nits Ir	Initial crop regional price per nominal unit, by crop and region.							
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
Corn	4.62	4.31	4.61	4.02	4.62	4.59	4.13	5.16	4.77	4.71
Cotton	0.66	0.66	0.66	0.00	0.66	0.00	0.66	0.66	0.66	0.66
Other_Grains	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Soy	10.48	10.44	10.61	10.02	0.00	10.37	9.89	0.00	10.37	10.19
Wheat	5.90	5.88	5.94	5.62	5.60	6.03	5.39	6.38	5.52	5.78

FSM.INITIAL_HC_PCPA_by_yr

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: USD/acre-yr Initial herbaceous energy crop production cost per acre per year, by region.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
1	427.45	314.84	377.12	314.11	0.00	340.17	268.02	260.75	433.07	319.85
2	210.70	195.09	202.30	195.28	0.00	199.16	160.91	176.97	199.86	169.14
3	203.70	202.79	194.71	203.01	0.00	207.32	168.57	176.97	193.26	162.05
4	203.70	202.79	194.71	203.01	0.00	207.32	168.57	184.04	193.26	162.05
5	210.77	209.86	201.76	210.07	0.00	214.44	175.63	176.97	199.47	173.96
6	203.70	202.79	194.71	203.01	0.00	207.32	168.57	176.97	234.41	162.05
7	203.70	202.79	194.71	203.01	0.00	207.32	168.57	176.97	193.26	162.05
8	203.70	202.79	194.71	203.01	0.00	207.32	168.57	176.97	193.26	162.05
9	203.70	202.79	194.71	203.01	0.00	207.32	168.57	176.97	193.26	162.05
10	203.70	202.79	194.71	203.01	0.00	207.32	168.57	169.11	193.26	162.05

FSM.Initial_HC_YPA_by_yr

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: ton/acre-yr

cre-yr Initial herbaceous energy crop yield per acre per year, by region.

	А	CB	DS	LS	М	NE	NP	Р	SE	SP
1	2.56	2.21	1.83	1.39	0.00	2.05	1.57	0.00	0.00	1.56
2	5.13	4.42	3.67	2.77	0.00	4.10	3.15	0.00	4.04	3.13
3	5.13	4.42	3.67	2.77	0.00	5.50	3.15	0.00	4.04	3.13
4	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
5	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
6	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
7	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
8	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
9	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15
10	7.69	6.63	5.50	4.16	0.00	5.50	4.72	0.00	6.06	6.15

FSM.initial_land_dist'ns_by_crop_by_region

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units:	thousand-acres	Initial	lanc	l dis	tri	bution	by	/ annua	l crop	anc	l regior	۱
--------	----------------	---------	------	-------	-----	--------	----	---------	--------	-----	----------	---

	А	CB	DS	LS	М	NE	NP	Р	SE	SP
Corn	3,233.89	39,815.50	1,700.68	13,345.40	1,266.07	2,338.51	19,716.30	272.21	958.41	2,253.10
Cotton	1,178.67	396.85	1,933.27	0.00	393.00	0.00	90.00	362.00	1,812.90	4,432.48
Other_Grains	96.71	237.15	277.98	490.10	1,482.13	224.34	3,905.22	279.54	12.39	2,194.43
Soy	4,996.29	35,843.30	6,040.60	11,073.30	0.00	1,434.38	16,222.20	0.00	1,066.93	423.05
Wheat	1,345.95	3,214.63	1,115.11	2,557.12	8,970.55	475.99	20,718.30	3,362.99	381.70	6,357.60

FSM.Initial_Res_PCPA

BLM and POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: USD/acre-yr Initial residue production cost per acre per year, by crop and region. Includes cost of collection and nutrient replacement.

	А	CB	DS	LS	М	NE	NP	Ρ	SE	SP
Corn	61.04	71.58	63.92	67.76	69.89	60.66	63.03	79.42	57.94	60.61
Cotton	9.21	10.96	10.59	0.00	15.75	0.00	0.00	34.74	8.76	7.98
Other_Grains	29.07	27.65	36.62	18.31	26.64	22.48	27.35	24.09	15.01	22.32
Soy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wheat	27.40	27.29	25.19	27.40	18.50	29.57	16.85	27.99	22.15	14.66

FSM.Initial_Sec_Crop_PCPA

Corn

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

SP

0.00

Units: USD/acre-yr Initial secondary crop production cost per acre per year, by crop and region. СВ DS NE SE А LS Μ NP Ρ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cotton	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other_Grains	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Soy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wheat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

FSM.I	NITIAL_WC_PCPA	_by_yr			POLYS	SYS Data thi	rough Person	al Communio	cation with Ro	obert Perlack	of Oak Ridg	je National Laboratorv
		Units: USD/ac	re-yr	Initial woody er	nergy crop pr	oduction co	st per acre pe	er year, by re	gion.			,
		А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
	1	281.25	308.02	307.45	308.02	0.00	309.27	369.59	310.63	281.25	309.78	
	2	103.42	60.58	60.28	60.58	0.00	61.55	134.39	62.27	103.42	61.85	
	3	111.49	154.93	139.47	154.93	0.00	97.86	23.10	109.21	111.49	138.52	
	4	44.94	22.16	22.14	22.16	0.00	22.23	48.64	22.28	44.94	22.25	
	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	6	44.94	45.01	41.80	45.01	0.00	45.13	48.64	61.14	44.94	52.54	
	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	8	0.00	0.00	0.00	0.00	0.00	0.00	11.93	0.00	0.00	0.00	
	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
FSM.k	(BSM	Calibratior
		Units: Unitless	5	A logit coefficie	ent, by crop a	nd region.						
		А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
	Corn	3.55	2.05	1.99	2.05	1.13	3.65	1.01	2.56	0.25	0.05	
	Cotton	2.84	-0.46	1.86	0.00	-2.19	0.00	-0.95	-6.38	1.19	0.62	
	Other_Grains	-0.25	-1.95	-0.84	-0.75	-0.94	0.01	-1.25	0.68	-2.33	-0.42	
	Soy	4.20	2.41	3.17	2.20	0.00	3.01	1.12	0.00	1.11	0.22	
	Wheat	3.47	1.59	2.31	1.50	1.76	2.48	1.96	2.93	0.57	2.12	
FSM.P	Pasture_Cellin_I	Dev_%									Con	istant Value
		Units: Unitless	6	Fraction of pas and region.	ture in cellulo	osic energy	crop develop	ment, by ene	rgy crop			
		А	СВ	DS	LS	М	NE	NP	Ρ	SE	SP	
	Herbaceous	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Woody	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
FSM P	Desture Cell in I	Prod'n %									Con	istant Value
1 3141.6	asture_cenm_r	Units: Unitles	3	Fraction of pas	ture in cellulo	osic enerav	crop producti	on by energy	/ crop		00,7	
		erne. ernied	-	and region.		see chorgy		en, sy energ	, 510p			
		А	CB	DS	LS	М	NE	NP	Ρ	SE	SP	
	Herbaceous	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Woody	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

FSM.Regional_Cellulosic_Crop_Switches

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

	Units: Unitless A switch indicating which perennial energy crops can be grown, by region.										
	А	СВ	DS	LS	М	NE	NP	Р	SE	SP	
Herbaceous	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	
Woody	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	

FSM.Val_Sec_Crop_as_Frac

ERS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: Unitless Value of secondary product as fraction of primary crop price.

	А	СВ	DS	LS	М	NE	NP	Р	SE	SP
Corn	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
Cotton	0.19	0.24	0.23	0.00	0.28	0.00	0.00	0.29	0.17	0.24
Other_Grains	0.25	0.26	0.02	0.47	0.06	0.46	0.09	0.10	0.32	0.08
Soy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wheat	0.06	0.06	0.06	0.04	0.04	0.07	0.03	0.03	0.06	0.06

FSM.WC_YPA_by_yr

> 9 10

POLYSYS Data through Personal Communication with Robert Perlack of Oak Ridge National Laboratory

Units: ton/ac	re-yr V re	Woody energy crop yield, in tons, per acre per year from cropland, by region.										
А	СВ	DS	LS	М	NE	NP	Р	SE	SP			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
39.44	36.64	38.56	35.04	0.00	34.32	38.80	48.00	40.00	39.44			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

This graphical input can impose a temporary shock or shift to the chosen gas price scenario in Units: Unitless a multiplicative manner.

CM.Max_Plant_Construction_Capacity

DSM_Inputs.Gas_Price_Shock_Scenario

Maximum number of plants that can be constructed in a given year.

Units: projects/yr

BSM Calibration

Scenario Value

FSM.cellulosic_demand_AE02009

Annual Energy Outlook 2011

FSM.cellulosic_demand_EISA2007

Potential cellulosic demand scenario.

Energy Independence and Security Act of 2007

Units: million-ton/yr

FSM.cellulosic_demand_hi

Scenario Value

Scenario Value

Potential cellulosic demand scenario.

FSM.cellulosic_demand_low

Potential cellulosic demand scenario.

FSM.cellulosic_demand_medium

Scenario Value

Potential cellulosic demand scenario.

FSM.corn_demand_AE02009

Reference case for corn demand. Potential corn demand scenario.

FSM.corn_demand_EISA2007

Energy Independence and Security Act of 2007

Potential corn demand scenario.

Year

FSM.corn_ETOH_high

Scenario Value

Units: million-ton/yr

FSM.corn_ETOH_very_high

Potential corn demand scenario.

Scenario Value

FSM.USDA_corn_EtOH_mm

USDA Agricultural Projections to 2020

Units: million-ton/yr

table 19

USDA corn ethanol demand scenario.

FSM.Year

Scenario Value

Units: yr

IM.frac__import_capacity_utilized

BSM Calibration

Fractional utilization of potential import capacity of EtOH from outside the United States. $\,$ U

Units: Unitless

IM.old_values_for_frac_import_capacity_utilized

Fractional utilization of potential import capacity of EtOH from outside the United States. Units: Unitless

BSM Calibration

Non-subsidized point of production price relative to import threshold [unitless]

####

CM.starch_prod'n_rconstraint

BSM Calibration

Constrains growth of starch industry as it nears the maximum allowed production.

Units: Unitless

	A	1.0 -										
		0.0 -										
	0.0	1.0 -										
	СВ	0.0										
-		10	-									
	DS											
		0.0 -										
-		1.0 -										
	LS	-										
-		0.0 _										
8	м	1.0										
ŧ		0.0 -										
ā .		1.0										
nst	NE	-										
<u></u> δ.		0.0										
	ND	1.0										
	INF	0.0										
P		1.0	-									
	P	_										
-		0.0 _										·····
	с г	1.0										
	3E	00										
-		1.0										
	SP	-										
		0.0		1			1	1				
		1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
				1	1			1				
	A		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	CB		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	DS		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	LS		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
nes	М		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
S	NE		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	NP		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	Р		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	SE		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0
	SP		1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.1	0.0

Graphical function that specifies the degree to which a technology will proliferate in each region. Units: Unitless

BSM Calibration

${\sf DLM.impact_of_remaining_terminals_on_acquisition}$

Relates remaining terminals without EtOH infrastructure to the rate at which infrastructure gap is Units: Unitless eliminated per year.

A 10												
000 05 100 00		A 1	.0 -									
CB 1.0 00 Image: CB 1.0 00 Image: CB 1.0 00 Image: CB		0	.0									
DS 10	Impact [unitless]	CB 0	.0									
Is 10 Is 10 M 10 Is Is <td></td> <td>DS 0</td> <td>.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		DS 0	.0									
M 1.0 NE 0.0 NP 1.0 0.0 0.0 P 0.0 SP 1.0 0.0 0.0 SP 1.0 SP 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SP 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SP 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SOURD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A 0.5 0.9 1.0 1.0 1.0 1.0 1.0 DS 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 NP 0.5 0.9 1.0	Values [unitless]	LS 0	.0									
NE 10 NP 10 00 10 P 00 SE 00 SP 00 00 00 SE 00 SP 00 0.0 0.1 0.0 0.1 SE 0.0 SP 0.0 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.9 1.0 1.0 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.9		1 M 0	.00									
Image: Second state	npact [L	1 NE 0	.00									
P 1.0 0.0 1.0 SE 0.0 0.1 0.2 0.0 SP 0.0 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.9 <	<u>-</u> - -	1 NP 0	.0 - 0.									
SE 1.0 0.0 SP 1.0 0.0 O.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A 0.5 0.9 1.0		P 0	.00									
SP 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A 0.5 0.9 1.0		1 SE 0	.00									
A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A 0.5 0.9 1.0		1 SP 0	0									
A 0.5 0.9 1.0			0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
CB 0.5 0.9 1.0		A	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DS 0.5 0.9 1.0		CB	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
LS 0.5 0.9 1.0		DS	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M 0.5 0.9 1.0	ŝ	LS	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
NE 0.5 0.9 1.0	lue	М	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
NP 0.5 0.9 1.0	Ş	NE	0.5	0.9	10	1.0	10	10	1.0	1.0	1.0	1.0
P 0.5 0.9 1.0		NP	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		Р	0.5	0.9	10	1.0	10	10	10	10	10	10
		05	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
SP 05 00 10 10 10 10 10 10 10 10 10 10 10		SE	0.5	09	10	10	10	10	10	10	10	10

Terminals without infrastructure [Terminals]

DSM.regional_upstream_coverage

BSM Calibration

Relates the fraction of terminals within the region that have EtOH infrastructure to the fraction of Units: Unitless stations with access to a terminal with E85 capability.

[%]		1.0 -										
	A	0.0										
		1.0										
	СВ	0.0										
		1.0										
	DS	00										
C × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×		1.0										
9	LS	-										
- <u>-</u>		0.0										
rag	М	-										
ove		0.0										
<u>a</u>	NE	1.0										
je.		0.0										
Reg	NP	1.0										
	141	0.0										
	_	1.0 -										
	P	00										
		1.0										
	SE	00										
		1.0										
	SP	00										
:		00	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	10
	А		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	CB		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	DS		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
s	LS		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
alue	Μ		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
>	NE		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	NP		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	Р		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	SE		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0
	SP		0.3	0.4	0.6	0.6	0.8	0.8	0.9	0.9	1.0	1.0

Terminals with ethanol infrastructure [%]

DSM_Inputs.base_Gasoline_POD_price_before_tax_s cenarios

Nominal price per gallon for gasoline equivalent at point of distribution before taxes.

Units: USD/gal

DSM_Inputs.regional_lo_blend_ramp_up

Fraction of potential demand for E10 that is realized, as a function of time.

Year 1.0 А 0.0 1.0 СВ 0.0 Fraction of realized E10 potential [unitless] 1.0 DS 0.0 1.0 LS 0.0 1.0 М 0.0 1.0 NE 0.0 1.0 NP 0.0 1.0 Ρ 0.0 1.0 SE 0.0 1.0 SP 0.0 2006 2008 2010 2012 2013 2015 2007 2009 2011 2014 А 0.8 0.3 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 CB 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 DS 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Values LS 0.3 0.9 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 М 0.3 0.9 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 NE 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NP 1.0 1.0 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 Ρ 0.3 0.9 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 SE 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 SP 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

FS	M.Dom_Dman	d																		US,	DA Ag	yricu t u	iral Pi	rojectio	ons to	2018
	Domestic den	nand fo	r crop	S.												Unit	ts: m	illion-t	on/yr						ta	ible 8
												Yea	r													
	Corn	15K - 10K - 5K - 0K		~	\checkmark																					
/yr]	Cotton	15K - 10K - 5K - 0K																								
nd [Million-ton.	Other Grains	15K - 10K - 5K - 0K																								
Lema	Soy	15K - 10K - 5K - 0K																								
	Wheat	15K - 10K - 5K - 0K																								
			2008	2009	2007	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Corn Cotton Other Grains		10K 5K 1K	15K 4K 1K	16K 3K 1K	16K 3K 1K	16К 3К 1К	17K 3K 1K	17K 3K 1K	17K 3K 1K	17K 3K 1K	17K 3K 1K	18K 3K 1K	18K 3K 1K	18K 3K 1K	18K 3K 1K	8K 3K 1K	8K 3K 1K	8K 3K 0K	8K 3K 0K	8K 3K 0K	8К 3К 0К	8K 3K 0K	8K 3K 0K	8K 2K 0K	81 21 01
alues	Soy Wheat		2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2K 1K	2F 1F													

FSM.Frac harvestable CRP land Harvested for HC

Fraction of harvestable CRP land harvested for herbaceous energy crops, by region.

Scenario Value

FSM.frac_movement_to_New_Practice_from_cell_energy_crop

Fraction of movement from cellulosic energy crop to new practice.

BSM Calibration

Price [\$]

Units: 1/yr

		0.00										
		0.06										
	~	0.00										
		0.00										
	CB											
		0.00										
		0.06										
	DS	0.00										
		0.00										
	LS	0.00										
ົດ		0.00										
es		0.06										
Ľ,	M	0.00										
2		0.00										
<u> </u>	NE	0.00										
gt		0.00										
Ë.		0.06										
	NP											
		0.00										
	P	0.06										
	1	0.00										
		0.06										
	SE											
		0.00										
	CD.	0.06										
	SP	0.00 -										
		0.00	0	0	0	0	0	0	0	0	0	0
			8	4	9	00	9	12	4	16	0	20
	Δ		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
	CP.		0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.05	0.05	0.00
	CD		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
	DS		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
es	LS		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
alu	М		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
>	NE		0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.05	0.05	0.00
			0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.00
	NP		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
	Р		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
	SE		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06
	SD.		0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.05	0.05	0.00
	3P		0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.05	0.06

FSM.frac_movement_to_new_practice_from_residue

BSM Calibration

Fraction of movement from residue to new practice.

Price [\$]

	A	0.10										
	СВ	0.00										
Ilues Fraction [unitless]		0.00										
	DS	0.00										
_	LS	0.10										
Fraction [unitless]	м	0.00										
<u>E</u>		0.00										
tion	NE	0.10										
50		0.00										
ш	NP	0.10										
	P	0.10										
		0.00										
-	SE	0.10										
		0.00										
_	SP	0.00										
		İ	20	40	60	80	100	120	140	160	180	200
	A		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	CB		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	DS		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
es	LS		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
/alu	М		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
-	NE		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	NP		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	Р		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	SE		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09
	SP		0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.08	0.09

FSM.Frac_WC_Harvest_Cell_Land

Scenario Value

Fraction of crop land in woody cellulose that is harvested.

FSM.indic_forest_residue_prod'n_by_region

Data through Personal Communication with Robert Perlack of Oak Ridge National , Laboratorv

Amount of total potential collected at forest residue "grower payment" price, in million tons per Units: million-ton/yr year.

FSM.indic_urban_residue_prod'n_by_region

U.S. Billion-Ton Update: Biomass Supply for Bioenergy and Bioproducts

Units: million-ton/yr

Amount of total potential collected at urban residue "grower payment" price, in million ton per year.

FSM.inv_impact_on__feedstock_cons'n

BSM Calibration

Fractional change in cellulosic feedstock consumption based on the ratio of cellulosic feedstock Units: Unitless inventory to a target cellulosic feedstock inventory.

Inventory Index [unitless]

FSM.Max_offer_price_constraint_on_price_increase

BSM Calibration

Maximum offer price when constrained by price increases.

Units: Unitless

Adjustment in hay and forage demand based on hay price index in thousand tons per year, by Units: Unitless region.

						Price [\$]						
	A 1.0	_										
	CB 1.0	_										
	0.0 DS											
	0.0 1.0 LS											
S	0.0											
nitles	M 0.0											
act [r	1.0 NE	_										
Ê	0.0	_										
	NP 0.0	-										
	P 1.0	_										
	1.0 SE											
	0.0 1.0 SP											
	0.0	0	20	40	60	80	100	120	140	160	180	200
	A	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	CB	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	DS	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	LS	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
ñ	M	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
Sal Sal	NE	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	NP	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	P	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	SE	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81
	SP	1.20	1.16	1.13	1.09	1.06	1.00	0.96	0.90	0.87	0.85	0.81

FSM.price_impact_on_Hay_&_Forage_Demand

BSM Calibration

FSM.Raw_Inventory_Input_From_Baseline

USDA Agricultural Projections to 2018

table 7

Units: million-ton

Raw inventory input in million units from baseline, by crop.

FSM.Raw_Price_Input_From_Baseline

USDA Agricultural Projections to 2020

table 7

Units: usd/units

Raw price input in dollars per specified unit from baseline, by crop.

FSM.Raw_Prod'n_Input_From_Baseline

USDA Agricultural Projections to 2018

table 7

Units: million-ton/yr

Raw annual crop production input in million usda from Baseline, by crop.

FSM.relative_price_impact_on__sm_gr_demand

Ratio of crop price index of other grains to crop price index of Corn, by crop.

Other grains to corn crop index ratio

Units: Unitless

BSM Calibration

FSM.Xport_Dmand

Export demand for annual crops in million specified units per year, by crop.

Units: million-ton/yr

Year 15K 10K Corn 5K 0K 15K 10K Cotton 5K 0K Demand [Million-ton/year] 15K 10K Other Grains 5K 0K 15K 10K Soy 5K -0K 15K 10K Wheat 5K 0K 2010 2030 2019 2018 2016 2015 2013 2012 2009 2008 2007 2029 2028 2027 2026 2025 2024 2023 2022 2020 2017 2014 2011 2021 Corn ЗK 2K 3K ЗK 3K ЗK ЗK ЗK 3K Cotton 15K 15K 15K 15K 15K 15K 16K 16K 17K 17K 13K 13K 11K 15K 15K 15K 16K 16K 16K 16K 16K 16K 16K 16K Values Other Grains 0K Soy 2K 2K 2K 2K 2K 2K 2K 2K 2K 1K 1K 2K Wheat 1K
FUM.frac_HiBlend_capable_with_station_coverage

BSM Calibration

Relates the percentage of stations in the region with hiblend capability to the fraction of hiblend- Units: Unitless capable vehicles/owners with access to dispensing stations.

FUM.occasional_user_constraint_on_becoming_regular_HiBlend_User

Relates size of occasional user pool to the rate at which the regular user gap is eliminated. Units: Unitless

BSM Calibration

FUM.preference_share_Regular_Users

BSM Calibration

Sets target % of hiblend capable owners who will use hiblend regularly. Based on ratio of long Units: Percent term (smoothed) prices for gasoline/hiblend.

Long term relative gasoline to high blend price [unitless]

$Inputs_from_DSM_VM.Regional_Potential_gasoline_cons'n$

Annual Energy Outlook 2011

Potential regional gasoline consumption from all vehicles.

Year

Units: gal/yr

	A	20B																								
		0B																								
	CD.	20B	-														_									_
Potential Consumption [gal/yr]	СВ	0B	-																							
		20B	_																							
	DS	08																								
		200																								
[rý]	LS	200							_	_								_					_			_
[gal		08																								
0U	М	208	1 _																							
npt		0B																								
ISUL	NE	20B	-																							_
5		0B																								
a	NP	20B	-																							
ten		0B																	_							
å	P	20B																								
		0B	-																							
		20B	_																							
	SE	0B	-																							_
		20B	_																							
	SP	08																	_				_			-
		00	g	5	8	g	0	、	2	en l	4	w l	ω ' ι	- ' o	ο σ		5	2	8	2	5	9	5	8	8	8
			20	200	20	20	201	201	201	5	201	20	5 3	5 5	10 K	2	202	202	202	202	202	202	202	202	202	203
	А	12B	13B	13B	13B	13B	13B	13B	13B	13B	13B	13B	13B	12B	12B	12B	12B	12B	12B	11B						
	СВ	18B	19B	19B	19B	19B	19B	19B	19B	19B	19B	19B	19B	18B	18B	18B	18B	17B	17B	17B	17B	16B	16B	16B	16B	16B
	DS	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B						
	LS	10B	10B	10B	10B	10B	10B	10B	10B	9B	8B	8B	8B	8B												
ser	М	8B	8B	8B	8B	8B	8B	8B	7B	7B	7B	7B	7B	7B	7B	7B	7B	6B	6B	6B						
/alt	NE	25B	26B	26B	27B	27B	27B	27B	27B	27B	27B	27B	27B	27B	26B	26B	26B	25B	25B	25B	24B	24B	24B	23B	23B	23B
	NP	3B	3B	3B	3B	3B	ЗB	3B	3B	3B	3B	3B	3B	3B	ЗB	3B										
	Р	23B	23B	23B	23B	23B	23B	23B	23B	22B	22B	22B	21B	21B	21B	20B	20B	20B	20B	19B						
	SE	18B	18B	18B	18B	18B	17B	17B	17B	17B	17B	16B	16B	16B	15B	15B	15B	15B	15B	15B						
	SP	12B	12B	12B	12B	12B	12B	11B	11B	11B	11B	11B	11B	10B												

	Potential regio	onal hi	-blen	d cons	sumpti	ion fro	m flex	fuel v	ehicle	S.						Uni	its: g	al/yr								
												Ye	ar													
	A	6B	_																							
		<u>0B</u>																								
	OD.	6B	_																							
	СВ	08																								
		6B	-																							
	DS		-																							
		0B	1 _						_					_												
Values Potential Consumption [gal/yr] A A B A A A A A A A A A A A A A A A A A		6B																								
	LS		_																							
		08																								
	м	00	-																							
		0B	1 _							_																
		6B	-														_	_								
	NE]																							
		0B																								
	ND	6B	_																							
	INF	08	-																							
		6B	-			_										_										
0	Р		-																							
		0B																								
		6B]																							_
	SE	00																								
		6B																								
	SP		-																							
		0B																								
			്ള	' b	8	്ള	' 🗄 '	Ξ	32	′ ۲	44	32		⊱ ' <u>3</u>	o'a	2 2	្ខ	្រំឱ	្ត្រ	57	52	28	52	8	33	ି ଟ୍ର
			8	8	8	8	8	8	8	8	8	8	8	8 8	2 2	4 6	1 2	8	8	8	8	8	8	8	8	8
	Α	1B	18	18	18	18	18	1B	18	28	28	28	28	28	28	38	38	38	38	38	38	38	38	38	38	38
	CB	10	10	40	10	10	20	20	20	20	20	20	20	20	40	40	40	40	40	40	40	40	40	40	40	40
(DC	10	10	10		10	20	20	20	20	30	30	30	30	40	40	40	40	40	40	40	40	40	40	40	40
	05	08	08	08	08	OB	OB	08	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
	LS	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B
ñ	M	0B	0B	0B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B
	NE	1B	1B	1B	1B	2B	2B	2B	3B	3B	4B	4B	4B	5B	5B	5B	5B	6B	6B	6B	6B	6B	6B	6B	6B	6B
	NP	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B
	Р	1B	1B	18	1B	1B	2B	2B	2B	38	38	38	4B	4B	4B	4B	5B	5B	5B	5B	5B	5B	5B	5B	58	5B
	SE	10	10	10	10	20	20	20	20	20	20	20	20	20	20	20	10	40	40	40	40	40	40	10	10	10
	SD.	40	10	10	10	40	40	40	40	20	30	30	00	00	00	00	40	40	40	20	20	20	20	20	20	20
	SP	1 1 B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	28	3B	3B	3B	38	3B	3B	3B					

Inputs_from_DSM_VM.Regional_Potential_Hi_Blend_Cons'n

..... . . . Annual Energy Outlook 2011
	Potential regio	nal lo-	blend	l consi	umptio	on fror	n flex '	ex fuel vehicles. Unit							Units: gal/yr											
												Yea	ar													
	A	4B																								
		0B	_																							
	СВ	4B	_																							_
		08	-																							
	DS	48																								
		40	-	_)	_
ΞÂ	LS	48	-																							_
ga		48																								
tion	М	40	-																							
d L		40		_																	_					_
onsur	NE	4D 0B																								
õ		4B																								
ential	NP	08	-																							
Ť		4B	_																							_
۵.	P	08	-																							
		4B																								
	SE	00	┤_									_										_				-
		4B																								
	SP	08	┤_												_											_
			6	~	00	თ	•	-	0	ю ¹	4	w b	ω ' ι	<u> </u>	o ' a			0	0	4	- 10	6	~	00		0
			200	200	200	200	201	50	201	201	201	5	8	5 6			5 2	202	202	202	202	202	202	202	202	203
	A	0B	0B	1B	1B	1B	1 B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B
	CB	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B
	DS	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B
	LS	0B	0B	0B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B
es	Μ	0B	0B	0B	0B	0B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B
je J	NE	0B	1B	1B	1B	1B	1B	2B	2B	2B	3B	3B	3B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B
	NP	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	0B	1B	1B	1B	1B	0B	0B
	Р	0B	0B	1B	1B	1B	1B	1B	2B	2B	2B	3B	3B	3B	3B	3B	3B	4B	4B	4B	4B	4B	4B	4B	4B	4B
	SE	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B
	SP	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B	2B

$Inputs_from_DSM_VM.Regional_Potential_Io_blend_cons'n_FFV$

Annual Energy Outlook 2011

Inp	outs_from_DS	SM_VM	.Regi	onal_l	Poten	tial_l	o_bler	nd_co	ns'n_	NON_	FFV											Annua	al Ene	rgy Ot	utloo k	2011
	Potential reg	ional lo	-blend	l cons	umptio	on fror	n non-	FFV v	ehicle	9 S.			Units: gal/yr													
												Yea	ar													
	A	20B	_																							
		0B																								
	СВ	20B	- 1					_																		_
		08																								
	DS	208	_																							
		08	-														_									_
ž	LS	208																								
gal		0B																								
Lo Io	М	20B																								
npt u		0B									_															_
ntial Consur	NE	20B	_																							
		08																								
	NP	208	_																							
ote		08																								_
1	Р	208	_																							
		08																								
	SE	20B					_	_									_			_						
		0B																								
	SP	208					_	_											_							
		0B	- <u>.</u>	~	œ	0	0	~	8	о	4	۰. v	ω ' r		οσ	,	, <u>,</u>	0	0	4	ω.	9	N	00	0	0
			200	200	200	200	23	5	2	201	201	8	8 8	5 5			8	202	202	202	202	202	202	202	202	203
	А	13B	13B	13B	13B	13B	12B	12B	12B	12B	12B	12B	11B	11B	11B	11B	11B	10B	10B	10B	10B	10B	9B	9B	9B	9B
	CB	18B	19B	19B	19B	19B	18B	18B	18B	18B	18B	17B	17B	17B	16B	16B	16B	15B	15B	15B	14B	14B	14B	14B	13B	13B
	DS	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	3B	3B	3B	3B	3B	3B	3B	3B	3B
	LS	10B	10B	10B	10B	10B	10B	10B	10B	9B	9B	9B	9B	9B	8B	8B	8B	8B	8B	8B	8B	7B	7B	7B	7B	7B
nes	М	8B	8B	8B	8B	8B	8B	8B	7B	7B	7B	7B	7B	7B	7B	6B	6B	6B	6B	6B	6B	6B	6B	6B	5B	5B
20	NE	26B	26B	27B	27B	26B	26B	26B	26B	26B	25B	25B	25B	24B	24B	23B	23B	22B	22B	21B	21B	20B	20B	20B	20B	19B
	NP	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	3B	2B	2B	2B	2B	2B	2B	2B
	P	23B	23B	23B	23B	23B	23B	23B	22B	22B	22B	21B	21B	21B	20B	20B	19B	19B	18B	18B	18B	17B	17B	17B	17B	16B
	SE SD	188	188	188	18B	188	178	178	178	178	16B	168	16B	16B	15B	158	158	14B	14B	14B	13B	13B	138	13B	128	128
	38	128	128	128	128	128	118	118	118	118	118	118	108	108	108	108	108	9B	9B	9B	9B	9B	8B	88	88	8B

PIM.Regional_Dist'n_storage_cost_weighting_factor

Weighting factor for cost of moving and storing EtOH within the region, based on fraction of Units: Unitless terminals which have EtOH infrastructure

Fraction of terminals with ethanol infrastructure [unitless]

BSM Calibration

PIM.regional_inventory_constraint_on_ETOH_cons'n

1st order controller that relates regional inventory constraints on consumption of ethanol. U

Units: Unitless

BSM Calibration

Note: Graph/values apply to all subscripts.

Note: Graph/values apply to all subscripts.

DSM.frac_of_max_considering_from_penetration

BSM Calibration

Units: Unitless

Relates penetration of hiblend stations within region to the size of the pool who potentially might consider investment in HiBlend. Effectively shuts off additional investment as reach constraints imposed by upstream infrastructure.

	Region													
Gas Station Type	А	CB	DS	LS	М	NE	NP	Р	SE	SP				
Hypermart	~	~	~	~	~	~	✓	~	~	~				
Independent Brand	~	✓	✓	✓	~	~	✓	✓	~	✓				
Oil-Owned	~	✓	✓	~	~	~	✓	~	~	✓				
Unbranded Independent	~	~	✓	~	~	~	✓	~	~	~				

Note: Graph/values apply to all subscripts.

DSM.impact_station_coverage_on_incremental_traffic

```
BSM Calibration
```

Impact of station coverage on incremental traffic. Captures the idea that as market saturates, Units: Unitless incremental visits associated with prospective investment will go to 0.

	Region												
Gas Station Type	А	CB	DS	LS	М	NE	NP	P	SE	SP			
Hypermart	~	~	~	~	~	~	~	~	~	~			
Independent Brand	~	~	✓	✓	~	~	✓	~	~	✓			
Oil-Owned	~	~	✓	✓	~	~	~	~	~	~			
Unbranded Independent	×	✓	✓	✓	✓	✓	×	✓	✓	✓			

Note: Graph/values apply to all subscripts.

BSM Calibration DSM.investment_'hit_rate' Units: Unitless Probability that a station will decide to invest in hi-blend capability. Region Gas Station Type CB DS LS М NE NP Ρ SE SP А Hypermart ~ ~ ~ < < ~ ~ ~ < < Independent Brand ~ ~ ~ ~ ~ ~ ~ ~ ✓ ~ Oil-Owned ✓ ✓ ✓ ✓ ✓ ✓ ✓ ~ Unbranded Independent ∢ ∢ ~ ∢ ~ ~ ~ < ∢ ✓

Note: Graph/values apply to all subscripts.

BSM Calibration DSM.investment_'hit_rate'_RP Units: Unitless Probability that a station will decide to invest in repurposing. Region Gas Station Type CB DS LS М NE NP Ρ SE SP А Hypermart ~ ~ ~ < < ~ ~ ~ < < Independent Brand ~ ~ ~ ~ ~ ~ ~ ~ ✓ ~ Oil-Owned ✓ ✓ ✓ ✓ ✓ ✓ ✓ ~ Unbranded Independent ∢ ∢ ~ ∢ ~ ~ ~ < ✓ ∢

Note: Graph/values apply to all subscripts.

0.0										
	20.00	40.00	60.00	80.00	100.00	120.00	140.00	160.00	180.00	200.00
Value	0.0500	0.0950	0.1583	0.3417	0.5750	0.8000	0.9333	0.9867	1.0000	1.0000

Note: Graph/values apply to all subscripts.