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ABSTRACT 
Wind and solar power generation differ from conventional 

energy generation because of the variable and uncertain nature 
of their power output. This variability and uncertainty can have 
significant impacts on grid operations. Thus, short-term 
forecasting of wind and solar power generation is uniquely 
helpful for balancing supply and demand in an electric power 
system. This paper investigates the correlation between wind 
and solar power forecast errors. The forecast and the actual 
data were obtained from the Western Wind and Solar 
Integration Study. Both the day-ahead and 4-hour-ahead 
forecast errors for the Western Interconnection of the United 
States were analyzed. A joint distribution of wind and solar 
power forecast errors was estimated using a kernel density 
estimation method; the Pearson’s correlation coefficient 
between wind and solar forecast errors was also evaluated. The 
results showed that wind and solar power forecast errors were 
weakly correlated. The absolute Pearson’s correlation 
coefficient between wind and solar power forecast errors 
increased with the size of the analyzed region. The study is also 
useful for assessing the ability of balancing areas to integrate 
wind and solar power generation. 

Keywords: Grid integration, correlation, solar forecasting, 
western interconnection, wind forecasting, forecasting error 
distribution 

INTRODUCTION 

Wind energy and solar energy are becoming increasingly 
important sources of renewable energy in the electric power 
system. It has been suggested that the United States can 
produce 20% of its electric power needs from wind power 
plants by the year 2030 [1]. The Utility Solar Assessment study 
reported that solar power could provide 10% of U.S. power 
needs by 2025 [2]. At these high levels of renewable energy 

penetration, wind and solar power forecasting would become 
significantly important for electricity system operations. One of 
the critical challenges with wind and solar power generation in 
power system operations is the variable and uncertain nature of 
such resources. Because electric grid operators must 
continuously balance supply and demand to maintain the 
reliability of the power grid, forecast inaccuracies can result in 
substantial economic losses. Although forecast systems are 
improving, they will never be perfect, and wind and solar 
forecast errors are always present. It is crucial that electricity 
system operators understand the patterns of wind and solar 
forecast errors to maximize their economic benefits, and the 
correlations between wind and solar forecast errors is one area 
where a better understanding could lead to reduced system 
costs. 

This paper focuses on analyzing wind forecast error 
distributions, solar forecast error distributions, and the 
correlations between the two. A general overview of wind and 
solar forecasts is provided in the next two sections, followed by 
the research objectives of this paper. 

Overview of Wind Forecasting 

Wind forecast models can be broadly divided into two 
categories [3]: (i) forecasting based on analysis of historical 
time series of wind; and (ii) forecasting based on numerical 
weather prediction (NWP) models. The first type of forecast 
model generally provides reasonable results in the estimation of 
long-term horizons, such as mean monthly, quarterly, and 
annual wind speed. Measure-correlate-predict is one of the 
most popular methods used for long-term wind and power 
forecasting [4, 5]. For short-term horizons (daily or hourly 
forecasts), the impact of atmospheric dynamics becomes more 
important, and NWP models become more suitable. Short-term 
wind power generation forecasting (between 1 and 72 hours) is 
uniquely helpful in power system planning for the unit 
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commitment and economic dispatch process, which is also a 
focus of this paper. 

Overview of Solar Forecasting 

Solar irradiance variations are caused primarily by cloud 
movement, cloud formation, and dissipation. In the literature, 
researchers have developed a variety of methods for solar 
power forecasting, such as the use of NWP models [6–8], 
tracking cloud movements from satellite images [9, 10], and 
tracking cloud movements from direct ground observations 
with sky cameras [11–13]. NWP models are the most popular 
method for forecasting solar irradiance several hours or days in 
advance. Mathiesen and Kleissl [7] analyzed the global 
horizontal irradiance in the continental United States forecasted 
by three popular NWP models: the North American Model, the 
Global Forecast System, and the European Centre for Medium-
Range Weather Forecasts. Chen et al. [8] developed an 
advanced statistical method for solar power forecasting based 
on artificial intelligence techniques. Crispim et al. [11] used 
total sky imagers (TSI) to extract cloud features using a radial 
basis function–based neural network model for time horizons 
from 1 to 60 minutes. Chow et al. [12] also used TSI to forecast 
short-term global horizontal irradiance, and the results 
suggested that TSI was useful for forecasting time horizons up 
to 15 to 25 minutes. Marquez and Coimbra [13] presented a 
method to forecast 1-minute averaged direct normal irradiance 
at the ground level for time horizons between 3 and 15 minutes 
using TSI images. As discussed above, different solar 
irradiance forecast methods have been developed for various 
timescales; however, Loren et al. [14] showed that cloud 
movement–based forecasts likely provide better results than 
NWP forecasts for forecast timescales of 3 to 4 hours or less, 
beyond which NWP models perform better. 

Research Motivation and Objectives 

Wind and solar power forecast errors are generally important 
factors in variable renewable generation integration studies. 
The accuracy of wind and solar power forecast error 
distributions can have a significant impact on the confidence 
intervals associated with wind and solar power forecasting, and 
hence with the amount of reserves carried to accommodate 
these errors. 

Confidence intervals can be estimated based on an 
assumed error distribution on the point forecasts. Different 
types of distribution methods have been developed to 
characterize wind forecast error distribution, including the 
normal distribution [15, 16], the Weibull distribution [17], the 
Beta distribution [18], and the hyperbolic distribution [19, 20]. 
Hodge et al. [20] showed that the hyperbolic distribution 
represented a better fit to the entire wind power forecast error 
distribution. For the analysis of the solar power forecast error 
distribution, Hodge et al. [21] analyzed solar ramping 
distributions at different timescales and weather patterns. 

Understanding the correlation between wind power 
forecast errors and solar power forecast errors within different 
spatial and temporal scales can provide a better understanding 
of the flexibility requirements and reliability impacts of wind 
and solar integration on the grid. Therefore, the overall 
objective of this paper is to comprehensively analyze wind and 
solar power forecast errors by: 

i. Developing a model to represent the joint distribution of 
wind and solar forecast errors. To this end, the 
multivariate kernel density estimation (KDE) method was 
adopted. 

ii. Investigating the correlation between wind and solar 
power forecast errors at multiple spatial and temporal 
scales. Specifically, day-ahead and 4-hour-ahead wind 
and solar power forecast errors were analyzed. 

iii. Investigating the correlation between wind and solar 
power forecast errors of (1) one electricity bus that 
consisted of both wind and solar power generations; (2) a 
group of electricity buses; and (3) all wind power plants 
and solar power plants in an interconnection area. 

The remainder of the paper is organized as follows. The 
next section describes the methodology to characterize the joint 
distribution of forecast errors and the correlation between wind 
and solar forecast errors. Section III summarizes the data 
analyzed in the paper. The results and discussion for the three 
scenarios studied are presented in Section IV. Concluding 
remarks and ideas on how future work will proceed are given 
in the final section. 

CORRELATION BETWEEN WIND AND SOLAR 
POWER FORECAST ERRORS 

Wind and Solar Power Forecast Errors 

The distributions of wind and solar power forecast errors at 
multiple spatial and temporal scales were investigated for this 
paper. The two timescales analyzed in this study were day-
ahead and 4-hour-ahead forecast errors. The forecast errors 
were calculated using the following equations. 

wfwaw PPe −=  (1) 

sfsas PPe −=  (2) 

where we and se represent wind and solar forecast errors, 

respectively; wfP and waP are the forecast and actual wind 

power generations, respectively; sfP and saP represent the 
forecast and actual solar power generations, respectively. 
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Correlation between Wind and Solar Forecast Errors 

To evaluate the correlation between wind and solar forecast 
errors, (i) the KDE method [22] was adopted to represent the 
distribution of the forecast errors in this paper; and (ii) the 
Pearson’s correlation coefficient between wind and solar 
forecast errors was also evaluated. 

The lack of solar photovoltaic energy generation at night is 
one concern with high penetrations of solar energy. Because of 
this lack of generation, a large portion of solar power forecast 
errors are zeros. These zero magnitude solar power forecast 
errors do not reflect the accuracy or ability of the forecast 
methods, and thus were removed when evaluating the 
distribution of solar power forecast errors. For the distribution 
of wind power forecast errors, the original data set was used. 
When evaluating the joint distribution of wind and solar power 
forecast errors, to match the wind and solar data set, wind 
power forecast errors that corresponded to times of zero solar 
power output were also removed from the data set. 

Kernel Density Estimation, also known as the Parzen-
Rosenblatt window method [23, 24], is a nonparametric 
approach to estimate the probability density function of a 
random variable. KDE has been widely used in the wind energy 
community for wind distribution characterization [25–28], 
wind power density estimation [29], and wind power 
forecasting [30]. For an independent and identically distributed 
sample, nxxx ,,, 21  , drawn from some distribution with an 

unknown density f , the KDE is defined as [31]. 
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where T
dxxxx ),,,( 21 = , T

idiii XXXX ),,,( 21 = , and 
ni ,,2,1 = . Here, K(x) is the kernel that is a symmetric 

probability density function, H is the bandwidth matrix that is 
symmetric and positive-definite, and 

)()( 2/12/1 xHKHxK H
−−= . The choice of K is not crucial to the 

accuracy of KDEs [32]. In this paper, the Gaussian kernel, 
( )xxxK Td 2/1exp)2()( 2/ −= −p , is considered throughout. In 

contrast, the choice of H is crucial in determining the 

performance of f̂  [33]. The mean integrated squared error, the 
most commonly used optimality criterion [33], is used in this 
paper. 

Pearson’s Correlation Coefficient Pearson’s 
correlation coefficient is a measure of the correlation between 
two variables (or sets of data) [34]. In this paper, the Pearson’s 
correlation coefficient between wind and solar forecast errors is 
evaluated. The Pearson’s correlation coefficient, ρ, is defined as 
the covariance of wind and solar forecast error variables 
divided by the product of their standard deviations, which is 
expressed as 

sw ee

sw ee
ss

ρ
),cov(

=  (5) 

In Eq. 5, we and se represent wind and solar forecast errors, 
respectively. 

DATA SUMMARY 

The data used in this work was obtained from the Western Wind 
and Solar Integration Study Phase 2 (WWSIS-2), which is one 
of the world’s largest regional integration studies to date [35, 
36]. The WestConnect geographic footprint is shown in Fig. 1. 
Day-ahead and 4-hour-ahead wind and solar forecast errors 
were investigated in this study. The correlations between wind 
and solar power forecast errors were analyzed based on bus 
numbers of the wind and solar power plants. Five scenarios 
were created in the WWSIS-2 [36]; the high-solar scenario—
8% wind and 25% solar—was adopted in this paper for the 
correlation analysis. A brief summary of the wind and solar 
data sets is given in the following sections. 

Wind Data Sets 

For the WWSIS, wind speeds were synthesized using an NWP 
model on a 10-minute, 2-km interval. Simulated wind plant 
power output for the years from 2004 to 2006 was generated, 
referred to here as the actuals [37]. Each wind plant was 
assumed to consist of 10 3-MW turbines. In this paper, the 60-
minute wind plant output for 2006 was used as the actual (or 
real-time) data. The day-ahead wind power forecasts were 
synthesized using the same NWP model as the actuals with a 
different input data set and at a different geographic resolution. 
The details of the data can be found in the WWSIS Phase 1 
report [35]. The 4-hour-ahead forecasts were synthesized using 
a 2-hour-ahead persistence approach. More information can be 
found in the WWSIS Phase 2 report [36]. 
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FIGURE 1. GEOGRAPHIC FOOTPRINT OF 

WESTCONNECT UTILITIES [36] 

Solar Data Sets 

The solar data was synthesized using the algorithm developed 
by Hummon et al. [38]. The algorithm generated synthetic 
global horizontal irradiance values based on a 1-minute interval 
using satellite-derived, 10-km x 10-km gridded, hourly 
irradiance data. In this paper, the 60-minute solar plant output 
for 2006 was used as the actual data. Day-ahead solar forecasts 
were taken from the WWSIS phase 1 solar forecasts conducted 
by 3TIER based on NWP simulations [36]. The 4-hour-ahead 
forecasts were synthesized using a 2-hour-ahead persistence of 
cloudiness approach. 

CASE STUDIES 

In this paper, wind and solar forecast error correlations are 
analyzed based on bus numbers. Each bus may aggregate 
multiple wind and solar plants. In total, wind power and solar 
power were aggregated into 76 and 455 buses, respectively. 
The wind power capacity in each bus varied from 30 MW to 
2,230 MW; the solar power capacity in each bus varied from 1 
MW to 1,050 MW. Among the 76 sets of wind data and 455 
sets of solar data, there were 26 pairs of data sets that had the 
same bus number. Three scenarios were analyzed based on the 

bus numbers of the wind and solar plants. The first scenario 
found all the buses that had both wind and solar power 
generation, and investigated the correlation between wind and 
solar forecast errors for each pair of wind and solar outputs. 
The second scenario analyzed wind and solar forecast 
correlation for all 26 pairs of wind and solar outputs 
considering wind forecast error aggregation and solar forecast 
error aggregation. The third scenario investigated the 
correlation of the aggregation of all wind plant forecast errors 
and aggregated solar plant forecast errors within the Western 
Interconnection of the United States. 

Case I: Results and Discussion 

The first case examined wind and solar plants that are located 
on the same bus, and investigated the correlation between wind 
and solar forecast errors for each pair of wind and solar 
outputs. 

Distribution of Wind and Solar Forecast Errors All 
26 pairs of data were analyzed in the first case. For brevity, the 
results for three pairs of wind and solar outputs were provided 
to show the diversity of distribution behavior. Figure 2 shows 
three typical types of joint distributions of wind and solar 
forecast errors. Figures 2(a)–(c) illustrate the distributions for 
day-ahead forecast errors, and Figs. 2(d)–(f) show the joint 
distributions for 4-hour-ahead forecast errors. For the 26 pairs 
of data sets, we obtained 52 distributions of wind and solar 
forecast errors, including day-ahead and 4-hour-ahead 
forecasts. Among the 52 distributions, only two of them were 
multimodal (shown in Figs. 2(b) and 2(c)). As shown in Figs. 
2(b) and 2(c), there was one major mode in the joint 
distribution, and the other modes were relatively smaller; 
therefore, the two estimated distributions of wind and solar 
forecast errors could be treated practically as unimodal. In Fig. 
2, the terms “Max wind actual” and “Max solar actual” 
represent the maximum actual wind power output and 
maximum actual solar power output for the corresponding bus 
number, respectively. The examination of these joint 
distributions provides important information for solar and wind 
power integration.  The peak of each of the distributions is 
centered around zero, showing that the most likely occurrence 
is both a small wind power forecasting error, and a small solar 
power forecasting error. Additionally, the spread of the 
distribution is always in the cardinal directions (i.e. due North-
South or East-West).  This means that when there is a large 
forecasting error for either wind or solar, it is extremely rare 
that there is also a large error for the other technology.  This is 
a fortuitous result, as a diagonal spread of the distribution 
sloping upward (along a Southwest to Northeast axis) would 
indicate that at a time of high system stress (large wind or solar 
forecasting error), the other forecast would compound the 
problems experienced.  Of course, a large negative correlation 
would be preferable, a large positive wind forecasting event 
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would be offset by a large negative solar forecasting event, but 
this would be a highly unexpected outcome. 

The univariate distributions of wind forecast errors are 
illustrated in Fig. 3. The three figures on the top show the 
distribution of day-ahead forecast errors; the figures on the 
bottom illustrate the distribution of 4-hour-ahead forecast 
errors. Figures 3(b) and 3(c) present the distributions of day-
ahead forecast errors for wind power output in buses 2 and 8 
for one principal mode and two relatively small modes; these 
correspond to the illustrations in Figs. 2(b) and 2(c). The 
distributions of day-ahead and 4-hour-ahead solar forecast 
errors are shown in Fig. 4. Among the 26 distributions of solar 
forecast errors, 22 distributions displayed a unimodal 
characteristic. Two typical multimodal distributions of solar 
forecast errors are illustrated in Figs. 4(b) and 4(c). 

Pearson’s Correlation Coefficient We averaged the 
values of Pearson’s correlation coefficient between wind and 
solar forecast errors computed for the 26 pairs of wind and 
solar power outputs. The absolute maximum Pearson’s 
correlation coefficients of the day-ahead and 4-hour-ahead 
forecasts were estimated to be -0.08 and -0.15, respectively. In 
addition, the average Pearson’s correlation coefficients of day-
ahead and 4-hour-ahead forecasts were estimated to be -0.03 
and -0.07, respectively. Therefore, there is correlation between 
wind and solar power forecast errors on a single bus, though 
not a strong correlation. This is an important finding for power 
systems operations because it implies that in systems with high 
penetrations of both wind and solar power reserves that are 
held to accommodate the variability of wind or solar power can 
be shared. 

   
(a) Day-ahead (pair 1) (b) Day-ahead (pair 2) (c) Day-ahead (pair 8) 

   
(d) Four-hour-ahead (pair 1) 

(Max wind actual: 110.9 MW;  
Max solar actual: 143.1 MW) 

(e) Four-hour-ahead (pair 2) 
(Max wind actual: 50 MW;  

Max solar actual: 340.7 MW) 

(f) Four-hour-ahead (pair 8) 
(Max wind actual: 58.5 MW;  

Max solar actual: 17 MW) 

FIGURE 2. JOINT DISTRIBUTION OF WIND AND SOLAR POWER FORECAST ERRORS (CASE I)
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(a) Wind bus 1 (Max actual: 110.9 MW) (b) Wind bus 2 (Max actual: 50 MW) (c) Wind bus 8 (Max actual: 58.5 MW) 

FIGURE 3. UNIVARIATE DISTRIBUTION OF WIND POWER FORECAST ERRORS (CASE I)

   
(a) Solar bus 1 (Max actual: 143.1 MW) (b) Solar bus 4 (Max actual: 152.3 MW) (c) Solar bus 12 (Max actual: 228.3 MW) 

FIGURE 4. UNIVARIATE DISTRIBUTION OF SOLAR POWER FORECAST ERRORS (CASE I)

Case II: Results and Discussion 

The second scenario analyzed wind and solar forecast 
correlation for all pairs of wind and solar output considering 
the aggregated wind forecast errors and the aggregated solar 
forecast errors for all of the 26 paired bus locations. 

Distribution of Wind and Solar Forecast Errors 
Figures 5(a) and 5(b) show the distributions of wind and solar 
power forecast errors, respectively. In Fig. 5, the red curve 
represents the distribution of day-ahead forecast errors; the blue 
curve is the distribution of 4-hour-ahead forecast errors. We 
observed that the distribution of wind forecast errors was 
unimodal. In Fig. 5(b), the distribution of day-ahead solar 
forecast errors presents a small mode at the point of 
approximately -180 MW; however, the distribution can still be 
treated practically as unimodal. As shown in Fig. 5(a), (i) the 4-

hour-ahead forecast error distribution had larger probability 
density than the day-ahead forecast error distribution when the 
forecast error was smaller (approximately -300 to 300 MW); 
and (ii) the 4-hour-ahead forecast error distribution had smaller 
probability density than the day-ahead forecast error 
distribution when the forecast error was larger (approximately 
less than -300 MW). Similar results between the day-ahead and 
4-hour-ahead solar forecast errors are also observed in Fig. 
5(b). These observations indicate that 4-hour-ahead forecasts 
are generally more accurate than the day-ahead forecasts. 

The joint distribution of wind and solar forecast errors is 
illustrated in Fig. 6. We observed that the joint distributions for 
both day-ahead and 4-hour-ahead forecast errors were 
unimodal. The area of the contour region in Fig. 6(b) is 
relatively smaller than that in Fig. 6(a), which also indicates 
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that 4-hour-ahead forecasts are generally more accurate than 
day-ahead forecasts. It is important to note that there is a far 
larger spread of the joint distributions when aggregated over all 
the buses, than when viewed from the perspective of an 
individual bus.  This reflects the higher correlations observed 
between the two technologies’ errors when considering larger 
geographic and time scales. 

The Pearson’s correlation coefficients of day-ahead and 4-
hour-ahead forecast errors aggregated throughout all 26 sites 

were estimated to be -0.09 and -0.35, respectively. The absolute 
values of the correlation coefficients were significantly larger 
than those in the in Case I, especially for the 4-hour-ahead 
forecasting, in which the correlation coefficient of Case II was 
more than five times greater than that of Case I. An important 
point is that the aggregated forecast errors are less correlated at 
the day-ahead timescale, which influences economic operations 
more than reliability, and more correlated at the short-term 
timescale, where reliability is more impacted by the forecasts. 

  
(a) Wind power forecast error distribution (b) Solar power forecast error distribution 

FIGURE 5. UNIVARIATE DISTRIBUTIONS OF WIND AND SOLAR POWER FORECAST ERRORS (CASE II) 

  
(a) Day-ahead (b) Four-hour-ahead 

FIGURE 6. JOINT DISTRIBUTION OF WIND AND SOLAR POWER FORECAST ERRORS (CASE II) 
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Case III: Results and Discussion 

Case III investigated the correlation of the forecast errors 
arising from the aggregated power output of all 76 wind buses 
and 455 solar buses within the Western Interconnection of the 
United States. 

Distribution of Wind and Solar Forecast Errors 
Figures 7(a) and 7(b) show the distributions of wind and solar 
power forecast errors, respectively. Figure 7(a) also presents a 
unimodal characteristic. Figure 7(b) shows the distribution of 
the 4-hour-ahead solar forecast errors to be multimodal. We 

again observed that both the 4-hour-ahead wind and solar 
forecast error distributions had relatively larger probability 
densities than day-ahead forecast error distributions when 
forecast errors were smaller, and vice versa. 

The joint distribution of wind and solar forecast errors is 
illustrated in Fig. 8. As shown, the joint distributions for both 
the day-ahead and 4-hour-ahead forecast errors were unimodal. 
The area of the contour region in Fig. 8(b) is relatively smaller 
than that in Fig. 8(a), which indicates that 4-hour-ahead 
forecasts are generally more accurate than day-ahead forecasts. 

  
(a) Wind power forecast error distribution (b) Solar power forecast error distribution 

FIGURE 7. UNIVARIATE DISTRIBUTIONS OF WIND AND SOLAR POWER FORECAST ERRORS (CASE III) 

  
(a) Day-ahead (b) Four-hour-ahead 

FIGURE 8. JOINT DISTRIBUTION OF WIND AND SOLAR POWER FORECAST ERRORS (CASE III) 
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Pearson’s Correlation Coefficient Pearson’s 
correlation coefficients of day-ahead and 4-hour-ahead 
forecasts were estimated to be -0.18 and -0.45, respectively. 
Table 1 lists the correlation coefficients for all three cases. It 
was observed that (i) wind and solar forecast errors are weakly 
correlated; (ii) the correlation coefficient between wind and 
solar forecast errors increases with the size of the analyzed 
region; and (iii) the absolute correlation coefficient of 4-hour-
ahead forecast errors is generally greater than that of the day-
ahead forecast errors. 

TABLE 1 THE PEARSON'S CORRELATION COEFFICIENTS 

Cases Day-ahead Four-hour-ahead 

Case I -0.03 -0.07 

Case II -0.09 -0.35 

Case III -0.18 -0.45 

CONCLUSION 

This paper investigated the correlation between wind and solar 
power forecast errors. Both the day-ahead and 4-hour-ahead 
forecast errors for the Western Interconnection of the United 
States were analyzed. A joint distribution of wind and solar 
forecast errors was estimated using the KDE method. 

Three cases were analyzed based on the bus numbers of the 
wind and solar plants. The results showed that the wind 
forecast error distribution was generally unimodal, and the 
solar forecast error distribution presented both unimodal and 
multimodal characteristics within different buses. The results 
also found that wind and solar forecast errors were weakly 
correlated. The absolute Pearson’s correlation coefficient 
between wind and solar forecast errors increased with the size 
of the analyzed region. As expected, 4-hour-ahead forecasts 
were generally more accurate than day-ahead forecasts for both 
wind and solar power outputs. 

Future studies will quantify the impacts of the correlation 
between wind and solar forecast errors when assessing 
balancing areas’ ability to integrate wind and solar power 
generation. 
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