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ABSTRACT 
This paper significantly advanced the hybrid measure-

correlate-predict (MCP) methodology, enabling it to account 
for the variations of both wind speed and direction. The 
advanced hybrid MCP method used the recorded data of 
multiple reference stations to estimate the long-term wind 
condition at the target wind plant site with greater accuracy 
than possible with data from a single reference station. The 
wind data was divided into different sectors according to the 
wind direction, and the MCP strategy was implemented for 
each wind sector separately. The applicability of the proposed 
hybrid strategy was investigated using four different MCP 
methods: (i) linear regression; (ii) variance ratio; (iii) artificial 
neural networks; and (iv) support vector regression. To 
implement the advanced hybrid MCP methodology, we used the 
hourly averaged wind data recorded at six stations in North 
Dakota between the years 2008 and 2010. The station Pillsbury 
was selected as the target plant site. The recorded data at the 
other five stations (Dazey, Galesbury, Hillsboro, Mayville, and 
Prosper) was used as reference station data. The best hybrid 
MCP strategy from different MCP algorithms and reference 
stations was investigated and selected from the 1,024 
combinations. The accuracy of the hybrid MCP method was 
found to be highly sensitive to the combination of individual 
MCP algorithms and reference stations used. It was also 
observed that the best combination of MCP algorithms was 
strongly influenced by the length of the correlation period. 
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ASME member, Corresponding author. 

†Research Assistant Professor, Multidisciplinary Design Optimization 
Laboratory (MDOL), ASME member 

‡Distinguished Professor and Department Chair, Department of 
Mechanical and Aerospace Engineering, ASME Fellow. 

Keywords: Measure-correlate-predict (MCP), power 
generation, resource assessment, wind distribution, wind energy 

INTRODUCTION 
Wind resource assessment is the process of estimating the 

power potential of a wind plant site and has been playing an 
important role in a wind energy project. In general, wind 
resource assessment includes (i) onsite wind conditions 
measurement; (ii) correlations between onsite meteorological 
towers to fill in missing data; (iii) correlations between long-
term weather stations and short-term onsite meteorological 
towers; (iv) analysis of the wind shear and its variations; (v) 
modeling of the distribution of wind conditions; and (vi) 
prediction of the available energy at the site. MCP algorithms 
are used to predict the long-term wind resource at target sites 
using the short-term (one- or two-year) onsite data, and the co-
occurring data at nearby meteorological stations (that also have 
long-term data). The accuracy of long-term predictions 
obtained using MCP methods is subject to (i) the availability of 
a nearby meteorological station; (ii) the uncertainty associated 
with a specific correlation methodology [1]; and (iii) the likely 
dependence of this correlation on physical features such as the 
topography, the distance between the monitoring stations, and 
the type of the local climate regime [2]. 

A wide variety of MCP techniques have been reported in 
the literature, such as: (1) linear regression [3, 4]; (2) variance 
ratio [4, 5]; (3) Weibull scale [5]; (4) artificial neural networks 
(ANNs) [2, 3, 6]; (5) support vector regression (SVR) [7, 8]; 
(6) Mortimer [2]; and (7) wind index MCP [9]. MCP methods 
were first used to estimate the long-term annual mean wind 
speed [10, 11]. Linear regression [12] was presented to 
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characterize the relationship between the reference and target 
site wind speeds. Rogers et al. [13] compared four MCP 
algorithms: (i) a linear regression model; (ii) a model using 
distributions of ratios of wind speeds at the two sites; (iii) a 
vector regression method; and (iv) a method based on the ratio 
of the standard deviations of the two data sets. Perea et al. [4] 
proposed and evaluated three MCP methods based on 
concurrent wind speed time series for two sites: (i) linear 
regression derived from bivariate normal joint distribution; (ii) 
Weibull regression; and (iii) approaches based on conditional 
probability density functions. 

Given the unavoidable practical constraints, the overall 
reliability of the predicted long-term wind distribution remains 
highly sensitive to the one-year distribution of recorded on-site 
data. Quantifying and modeling the uncertainty in the MCP 
methods would provide more credibility to wind resource 
assessment and wind plant performance estimation. Kwon [14] 
and Lackner et al. [15] presented different frameworks to 
analyze uncertainty in MCP-based wind resource assessment. 
The wind resource-based uncertainty models proposed by 
Messac et al. [16] can be applied also to the long-term data 
recorded at meteorological stations when MCP methods are 
used. 

Research Objectives and Motivation 
The hybrid MCP method recently developed by Zhang et 

al. [17] combines the component MCP algorithms by 
characterizing the distance and elevation difference between 
reference stations and the target wind plant site. The overall 
objective of this paper is to significantly advance the original 
hybrid MCP methodology by: 
1. Considering both the wind speed and direction as the 

components of the hybrid MCP methodology; and 
2. Investigating the best combination of different MCP 

methods and reference stations. 
The advancements to the hybrid MCP method are 

presented in the next section. The application of the advanced 
hybrid MCP method and the corresponding results and 
discussion are presented in Section III. Section IV presents the 
concluding remarks of this research. 

ADVANCING THE HYBRID MCP METHOD 
A brief overview of the original hybrid MCP methodology is 
first presented, followed by the description of the advancements 
introduced in this paper. 

Overview of the Original Hybrid MCP Method 
The hybrid MCP method developed by Zhang et al. [17] 

correlates the wind data at the targeted wind plant site with that 
at multiple reference stations. The strategy accounts for the 
local climate and the topography information. In the original 
hybrid MCP method, all component MCP estimations between 
the targeted wind plant site and each reference station use a 
single MCP method (e.g., linear regression, variance ratio, 
Weibull scale, or neural networks). 

The weight of each reference station in the hybrid strategy 
is determined based on: (i) the distance and (ii) the elevation 
differences between the target wind plant site and each 
reference station. The hypothesis here is that the weight of a 
reference station is larger when the reference station is closer 
(shorter distance and smaller elevation difference) to the target 
wind plant site. The weight of each reference station, 𝑤𝑖, is 
determined by 

𝑤𝑖 =
1

2(𝑛𝑟𝑟𝑟 − 1)
�
∑ ∆𝑑𝑗
𝑛𝑟𝑒𝑓
𝑗=1,𝑗≠𝑖

∑ ∆𝑑𝑗
𝑛𝑟𝑒𝑓
𝑗=1

+
∑ ∆ℎ𝑗
𝑛𝑟𝑒𝑓
𝑗=1,𝑗≠𝑖

∑ ∆ℎ𝑗
𝑛𝑟𝑒𝑓
𝑗=1

� (1) 

 
where 𝑛𝑟𝑟𝑟 is the number of reference stations; and  ∆𝑑𝑗 and 
∆ℎ𝑗 represent the distance and the elevation difference between 
the target plant site and 𝑗𝑡ℎ reference station, respectively. 

In the following subsections, we briefly discuss how this 
paper advances the key components of the original hybrid MCP 
method. These advanced features provide helpful flexibility to 
the hybrid MCP method, and extends its applicability to 
designing full-scale commercial wind plants. 

Modeling the Impact of Wind Direction on the Hybrid 
MCP Performance 

Each wind data point was allocated to a bin according to 
the wind direction sector measurement at the target wind plant 
site. In this paper, we investigated four cases by choosing to bin 
into different number of sectors: (i) 4 sectors; (ii) 8 sectors; (iii) 
16 sectors; and (iv) 32 sectors. At the multiple reference 
stations, the concurrent wind speed and direction measurement 
was allocated to the corresponding bin. Within each sector, the 
long-term wind speed was predicted by applying the hybrid 
MCP strategy based on the concurrent short-term wind speed 
data within that sector. A wind rose is a graphical tool used by 
meteorologists to provide a succinct illustration of how wind 
speed and wind direction are distributed at a location. Figure 1 
shows a wind rose diagram with 16 direction sectors. 

By putting the wind speed data in each sector together, we 
obtained the set of long-term wind data at the target wind plant 
site. The quality of the predicted long-term wind data was 
evaluated using the performance metrics described in the 
following subsection. 

 
Figure 1. WIND ROSE DIAGRAM WITH 16 SECTORS 
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Performance Metrics for Evaluating the MCP Method 
Three sets of performance metrics were proposed to 

evaluate the performance of the MCP methods: (i) statistical 
metrics; (ii) wind distribution metrics; and (iii) wind plant 
performance: power generation and capacity factor metrics. 

 
Statistical Metrics Mean long-term wind speed is often 

used to characterize the potential of a wind plant site. It is an 
important measure of wind power potential. Four metrics were 
evaluated based on the estimated wind speeds by MCP methods 
and the reference wind speeds: (i) the ratio of mean wind 
speeds [14]; (ii) the ratio of wind speed variances; (iii) root 
mean squared error (RMSE); and (iv) maximum absolute error 
(MAE). 

The ratio of mean wind speeds, Rµ, is expressed as 

𝑅𝜇 =
1/𝑛𝑡 ∑ 𝑣�(𝑡𝑘)𝑛𝑡

𝑖=1

1/𝑛𝑡 ∑ 𝑣(𝑡𝑘)𝑛𝑡
𝑖=1

 (2) 

where v(tk) represents the measured hourly averaged wind 
speed at time tk at the targeted wind plant site, v�(tk) is the 
corresponding estimated wind speed value, and nt is the total 
number of paired data points used in the analysis. 

The ratio of wind speed variances, Rσ2, is expressed as 

𝑅𝜎2 =
1/𝑛𝑡 ∑ [𝑣�(𝑡𝑘) − 𝜇�]2𝑛𝑡

𝑖=1

1/𝑛𝑡 ∑ [𝑣(𝑡𝑘) − 𝜇]2𝑛𝑡
𝑖=1

 (3) 

where µ�  and µ represent the mean of the estimated and 
measured wind speeds of all test paired data points. 

The RMSE is given by 

𝑅𝑀𝑆𝐸 = �1
𝑛𝑡
�[𝑣(𝑡𝑘) − 𝑣�(𝑡𝑘)]2
𝑛𝑡

𝑘=1

 (4) 

The MAE is expressed as 

𝑀𝐴𝐸 = max
𝑘

|𝑣(𝑡𝑘) − 𝑣�(𝑡𝑘)| (5) 

Wind Distribution Metrics Wind speed distributions are 
necessary to quantify the available energy (power density) at a 
site and to design optimal wind plant configurations. The 
Multivariate and Multimodal Wind Distribution (MMWD) 
model [19, 20] can capture the joint variation of wind speed, 
wind direction, and air density, and also allows representation 
of multimodally distributed data. 

The MMWD model was developed based on kernel density 
estimation (KDE) [19, 20]. For a d-variate random sample 

nUUU ,,, 21   drawn from a density 𝑓, the multivariate KDE is 

defined as 

∑
=

−=
n

i
iH UuK

n
Hxf

1
)(1);(ˆ  (6) 

where T
duuuu ),,,( 21 =  and T

idiii UUUU ),,,( 21 = ,  
ni ,,2,1 = . Here, 𝐾(𝑢) is the kernel that is a symmetric 

probability density function; 𝐻 is the bandwidth matrix, which 
is symmetric and positive-definite; and 

)()( 2/12/1 uHKHuKH
−−= . The choice of 𝐾 is not crucial to the 

accuracy of kernel density estimators [21]. In this paper, 
( )uuuK Td 2/1exp)2()( 2/ −= −p  is considered the standard normal 

throughout. In contrast, the choice of 𝐻 is crucial in 
determining the performance of f̂  [22]. In the MMWD model, 
an optimality criterion, the asymptotic mean integrated squared 
error [22], is used to select the bandwidth matrix. The details of 
the MMWD model can be found in Ref. [19]. 
 

Wind Plant Performance Metrics This power 
generation model was adopted from Chowdhury et al. [23, 24]. 
The power generated by a wind plant is an intricate function of 
the configuration and location of the individual wind turbines. 
The flow pattern inside a wind plant is complex, primarily 
because of the wake effects and the highly turbulent flow. The 
power generated by a wind plant (𝑃𝑝𝑙𝑎𝑛𝑡) consisting of 𝑁 wind 
turbines is evaluated as a sum of the powers generated by the 
individual turbines, which is expressed as [23] 

 

𝑃𝑝𝑙𝑎𝑛𝑡 = �𝑃𝑗

𝑁

𝑗=1

 (7) 

Accordingly, the wind plant efficiency can be expressed as 

𝜂𝑝𝑙𝑎𝑛𝑡 =
𝑃𝑝𝑙𝑎𝑛𝑡
∑ 𝑃0𝑗𝑁
𝑗=1

 (8) 

where 𝑃0𝑗 is the power that turbine-j would generate if 
operating as a stand-alone entity for the given incoming wind 
velocity. Detailed formulation of the power generation model 
can be found in the papers [23, 24]. 

The power generated by a wind plant with nine turbines 
was evaluated in this paper. Two types of wind turbines were 
selected: (i) the GE 1.5-MW XLE [25] and (ii) the GE 2.5-MW 
XL [26]. 

CASE STUDY: ASSESSING THE WIND RESOURCE 
POTENTIAL AT A WIND PLANT SITE 
To implement the advanced hybrid MCP methodology, we used 
the hourly averaged wind data recorded at six stations in North 
Dakota between 2008 and 2010. The station Pillsbury was 
selected as the target wind plant site. The recorded data at the 
other five stations (Dazey, Galesbury, Hillsboro, Mayville, and 
Prosper) was used as reference station data. The station 
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locations were shown in Fig. 2; the six stations inside the outer 
rectangle were used in this paper. 

The wind data is obtained from the North Dakota 
Agricultural Weather Network (NDAWN) [27]. Table 1 shows 
the geographical coordinates and elevation of each station. The 
measurement information is listed as follows. 

1. Wind speed is measured at 3 meters above the soil surface 
with an anemometer. 

2. Wind direction is the direction from which wind is blowing 
(degrees clockwise from north) measured at 3 m above the 
soil surface (N = 0o; NE = 45o; E = 90o; SE = 135o; S = 
180o; SW = 225o; W = 270o; NW = 315o; etc.) with a wind 
vane. The value is the average of all measured wind 
directions for a 24-hour period from midnight to midnight. 

 
Figure 2. NDAWN STATION LOCATIONS [27] 

Table 1. DETAILS OF NDAWN STATIONS [27] 
Station Latitude Longitude Elevation (m) 
Dazey 47.183 -98.138 439 

Galesburg 47.210 -97.431 331 

Hillsboro 47.353 -96.922 270 

Mayville 47.498 -97.262 290 

Pillsbury 47.225 -97.791 392 

Prosper 47.002 -97.115 284 

Component MCP Methods 
In this research, four MCP methods were investigated: (i) 

linear regression; (ii) variance ratio; (iii) ANNs; and (iv) SVR. 
It is helpful to note that other MCP methods can also be used in 
conjunction with the hybrid strategy, because the weights 
determination strategy is independent with the MCP method. 

 
The Linear Regression Method Linear regression is a 

common method to characterize the relationship between the 
reference and target site wind speeds. The prediction equation 
is given as 

 
𝑦� = 𝑎𝑥 + 𝑏 (9) 

where 𝑦� is the predicted wind speed at the target site; 𝑥 is the 
observed wind speed at the reference site; and 𝑎 and 𝑏 are the 
estimated intercept and slope of the linear relationship, 
respectively. 
 

The Variance Ratio Method When using linear 
regression, the predicted mean wind speed at the target site will 
be close in value to the measured mean during the training 
interval. However, the predicted variance at the target site will 
be less than the measured variance. This can result in biased 
predictions of wind speed distributions. 

The variance ratio method was proposed in response to the 
above limitations of linear regression. It involves forcing the 
variance of the predicted wind speed at the target site to be 
equal to the measured variance at the target site. The prediction 
equation is express as 

 
𝑦� = 𝜇𝑦 −

𝜎𝑦
𝜎𝑥
𝜇𝑥 +

𝜎𝑦
𝜎𝑥
𝑥 (10) 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 are the means and standard deviations 
of the two concurrent data sets. 
 

The ANNs Method ANNs have been used to correlate 
and predict wind conditions because of their ability to 
recognize patterns in noisy or otherwise complex data. A neural 
network generally contains an input layer, one or more hidden 
layers, and an output layer. An ANN is developed by defining 
the following parameters: 
1. The interconnection pattern between different layers of 

neurons; 
2. The learning process for updating the weights of the 

interconnections; and 
3. The activation function that converts a neuron’s weighted 

input to its output activation. 
 

The SVR Method SVR has gained popularity both within 
the statistical learning community [28, 29] and within the 
engineering optimization community [30-32]. The SVR 
approach provides a unique way to construct smooth, nonlinear, 
regression approximations by formulating the surrogate model 
construction problem as a quadratic programming problem. The 
SVR approach can be expressed as [33] 
 

𝑓(𝑥) = 〈𝑤,∅(𝑥)〉 + 𝑏 (11) 

where 〈∙,∙〉 denotes the dot product; 𝑤 is a set of coefficients to 
be determined; and ∅(𝑥) is a map from the input space to the 
feature space. To solve the coefficients, we can allow a 
predefined maximum tolerated error 𝜀 (with respect to the 
actual function value) at each data point, given by [33] 
 

�𝑓(𝑥𝑖) − 𝑓(𝑥𝑖)� ≤ 𝜀 (12) 

where 𝑓(𝑥) is the actual function to be approximated. The 
flatness of the approximated function can be characterized by 
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𝑤. By including slack variables ξ to the constraint and a cost 
function, the coefficient 𝑤 can be obtained by solving a 
quadratic programming problem given by [33] 
 

min 
𝑤,ξ,ξ∗

              
1
2
‖𝑤‖2 + 𝐶�(ξ𝑖 + ξ𝑖∗)

𝑛𝑝

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           𝑓(𝑥𝑖) − 𝑓(𝑥𝑖) ≤ 𝜀 + ξ𝑖 
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖) ≤ 𝜀 + ξ𝑖∗ 

ξ𝑖, ξ𝑖∗ ≥ 0 

(13) 

where 𝑛𝑝 is the number of sample points. The parameter C > 0 
is user-specified and represents the trade-off between flatness 
and the amount up to which errors larger than 𝜀 are tolerated. 
The above formulation is the primal form of the quadratic 
programming problem. In most cases, the dual form with fewer 
constraints is easier to solve, and is widely used to define the 
final form of the approximation. It can be shown that the dual 
form is convex and therefore has a unique minimum. Typical 
allowed mapping functions are radial basis functions, such as 
the Gaussian function. 

Selection of Parameters 
The MATLAB Neural Network Toolbox [34] was used in 

this paper. The Levenberg-Marquardt algorithm was selected 
for neural network training. Eighty percent data points were 
randomly selected as training points; and 20 percent points 
were used to validate the network. The MSE metric was used to 
evaluate the performance of the developed neural network. For 
the SVR method, we used an efficient SVM package, LIBSVM 
(A Library for Support Vector Machines), developed by Chang 
and Lin [35]. 

Results and Discussion 
Two scenarios were analyzed in the case study. In the first, 

the hybrid MCP strategy was implemented without binning 
wind data points to different sectors. The objective of the first 
scenario was to investigate the performance of the hybrid MCP 
method with mixing combinations of MCP algorithms and 
reference stations. In the second scenario, we evaluated the 
hybrid MCP performance, including consideration of both wind 
speed and direction. However, this paper discussed wind 
direction primarily related to the prediction of wind speed. The 
prediction of the long-term wind direction at the target wind 
plant site was not within the scope of this paper. 

Scenario I: Hybrid MCP Methods with Mixing 
Combinations A preliminary comparison of the hybrid MCP 
method (using multiple reference stations) with the individual 
MCP method (using one reference station) was investigated in 
the paper by Zhang et al. [17]. However, the hybrid MCP 
methods discussed in Ref. [17] used a single MCP technique 
for all five reference stations, which might not be optimal. Each 
reference station has the flexibility to use any of the available 
MCP techniques. In this case study, the same five stations were 

selected as reference stations. In addition, each station can be 
combined into the hybrid MCP method with one of the four 
following MCP algorithms: (i) linear regression; (ii) variance 
ratio; (iii) neural network; and (iv) SVR. Therefore, a total of 
1,024 (which is equal to 45) combinations were investigated to 
formulate the hybrid MCP strategy. 

Figs. 3-5 illustrate the three sets of performance metrics. 
Each line in the figures represents one specific combination of 
stations and MCP algorithms. It was observed that the 
performance of the hybrid MCP technique varied significantly. 
For instance, the average value of RMSE during the length of 
correlation period (Fig. 3(c)) varied 4.91% during the 1,024 
hybrid MCP models. 

The smaller the RMSE value, the more accurate the 
estimated wind pattern. Based on the RMSE values, we found 
the best combination of MCP algorithms and reference stations, 
shown in Table 2. In the table, “Ratio,” “Linear,” “ANN,” and 
“SVR” represent variance ratio, linear regression, artificial 
neural networks, and support vector regression, respectively. 
Four combinations were observed based on the length of the 
correlation period. It was shown from Table 2 that: (i) the 
variance ratio algorithm was chosen at the Dazey, Mayville, 
and Prosper reference stations for all four correlation periods; 
(ii) the SVR algorithm was selected at the Galesbury reference 
station when the correlation period was between 3,500-11,500 
hours; and (iii) at the Hillsboro reference station, different MCP 
algorithms were selected based on the length of the correlation 
period. 

The two-parameter Weibull distribution was the most 
widely accepted distribution for wind speed. The shape 
parameter (𝑘) and the scale parameter (𝑐) determine the 
probability distribution. In this research, the ratios of 𝑘�  (and 𝑐̃)  
for the predicted wind speeds to 𝑘 (and 𝑐) for the observed 
targeted wind speeds, 𝑅𝑘 and 𝑅𝑐, were evaluated. The values of 
𝑅𝑘 and 𝑅𝑐 are given by 

 

𝑅𝑘 =
𝑘�
𝑘

,   𝑎𝑎𝑎  𝑅𝑐 =
𝑐̃
𝑐
 (14) 

Figure 4 shows the normalized Weibull 𝑘 and 𝑐  
parameters for the total 1,024 combinations. The closer the 
value of the ratio is to one, the more accurate the estimated 
long-term wind condition. The average values of 𝑅𝑘 and 𝑅𝑐 
varied 1.94% and 15.82%, respectively, throughout the 1,024 
different combinations. The above observation indicates that 
the scale parameter (𝑐) is more sensitive to the MCP strategies 
than the shape parameter (𝑘). 

The power generation of the nine-turbine wind plant is 
shown in Fig. 5. Figs. 5(a) and 5(b) show the 1,024 wind power 
generations of wind plants with 1.5-MW and 2.5-MW turbines, 
respectively. It was observed that: (i) the average value of the 
power generation with GE 1.5MW-XLE turbines during the 
length of correlation period (Fig. 5(a)) varied 5.57% during the 
1,024 hybrid MCP models; and (ii) the average value of the 
power generation with GE 2.5MW-XL turbines during the 
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length of correlation period (Fig. 5(b)) varied 4.81% during the 
1,024 hybrid MCP models. 

Scenario II: Hybrid MCP Methods Considering 
Wind Speed and Direction Each wind data point was 
allocated to a bin according to the wind direction sector 
measurement at the target plant site (Pillsbury station). In the 
case study, four cases were investigated: (i) 4 sectors; (ii) 8 
sectors; (iii) 16 sectors; and (iv) 32 sectors. For the five 
reference stations (Dazey, Galesbury, Hillsboro, Mayville, and 
Prosper), the concurrent wind speed and direction measurement 
was allocated to the corresponding bin. Within each sector, the 
long-term wind speed was predicted by applying the hybrid 
MCP strategy based on concurrent short-term wind speed data 
within that sector. In Scenario II, the hybrid MCP strategy used 
a single MCP technique for all five reference stations. 

Figure 6 shows the ratio of mean wind speeds with the four 
different direction sectors. The closer the value of the ratio is to 
one, the more accurate the estimated wind pattern. It was 
observed that: (i) the hybrid MCP methods performed relatively 
better than the individual MCP algorithms; (ii) the hybrid SVR 
algorithm performed relatively worse than the other three 
hybrid MCP methods; (iii) the hybrid linear regression, the 
hybrid variance ratio, and the hybrid neural network methods 
performed best when the correlation period was between 5,500-
8,500 hours (approx. 8 to 12 months). 

Figure 7 shows the wind speed distributions with the four 
different direction sectors. The closer the predicted distribution 

curve is to the actual distribution curve (the black line in the 
figure), the more accurate the estimated wind pattern. It was 
observed that: (i) for 8, 16, and 32 direction sectors, the hybrid 
variance ratio method (solid blue line) agreed more with the 
actual distribution curve (solid black line) than other MCP 
methods; (ii) for 4 direction sectors, the individual variance 
ratio method (dashed blue line) agreed more with the actual 
distribution curve. 

Figure 8 shows the wind power generation of the wind 
plant with nine GE 1.5MW-XLE turbines. The closer the 
predicted power generation curve to the actual power 
generation curve (the black line in the figure), the more 
accurate the estimated wind pattern. The predicted power 
generation of the wind plant was estimated using the long-term 
wind data predicted by the hybrid MCP method; the actual 
wind plant power generation was estimated using the measured 
long-term wind data. We observed that: (i) the hybrid variance 
ratio method performed best when the correlation period was 
between 2,000-3,500 hours (approximately 2.5 to 5 months) for 
all four direction sectors; (ii) the linear regression and the 
neural network methods had relatively better power generation 
estimations when the correlation period was between 6,000-
9,000 hours (approximately 8.5 to 12.5 months); (iii) the power 
generation was generally overestimated by the neural network, 
hybrid neural network, linear regression, hybrid linear 
regression, and hybrid variance ratio methods; and (iv) the 
power generation was generally under-estimated by the SVR, 
hybrid SVR, and variance ratio methods.  

Table 2. BEST COMBINATION OF MCP ALGORITHMS AND REFERENCE STATIONS 
Station 2,000–3,500 (hours) 3,500–5,500 (hours) 5,500–8,500 (hours) 8,500–11,500 (hours) 
Dazey Ratio Ratio Ratio Ratio 
Galesburg Ratio SVR SVR SVR 
Hillsboro Linear Linear ANNs SVR 
Mayville Ratio Ratio Ratio Ratio 
Prosper Ratio Ratio Ratio Ratio 

 

  
(a) Mean ratio (b) Variance ratio 
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(c) RMSE (d) MAE 

FIGURE 3. STATISTICAL PERFORMANCE METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS 

  
(a) Normalized Weibull k parameter (b) Normalized Weibull c parameter 

Figure 4. WIND DISTRIBUTION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS 

  
(a) Power generation with GE 1.5-MW XLE turbines (b) Power generation with GE 2.5-MW XL turbines 

Figure 5. POWER GENERATION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS 



8 
 

This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

  
(a) 4 direction sectors (b) 8 direction sectors 

  
(c) 16 direction sectors (d) 32 direction sectors 

Figure 6. THE RATIO OF MEAN WIND SPEEDS WITH DIFFERENT DIRECTION SECTORS 

CONCLUSION 
This paper developed an advanced hybrid MCP 

methodology that accounts for the variations of both wind 
speed and direction. The advanced hybrid MCP method uses 
the recorded data of multiple reference stations to estimate the 
long-term wind condition at a target plant site. Two scenarios 
were analyzed using the hybrid MCP methodology, and 
interesting results were observed and discussed. 

Because each reference station has the flexibility to use 
any of the available MCP techniques, the multiple reference 
weather stations were combined into the hybrid MCP strategy 
with the best suitable MCP algorithm for each reference station. 
In the first scenario, each reference weather station used one of 
the following MCP algorithms: (i) linear regression; (ii) 
variance ratio; (iii) neural network; and (iv) support vector 
regression. Therefore, a total of 1,024 (which is equal to 45) 
combinations were investigated to formulate the hybrid MCP 
strategy. The best hybrid MCP strategy of MCP algorithms and 

reference station combination was determined and analyzed. 
We found that the accuracy of the hybrid MCP method was 
highly sensitive to the combination of individual MCP 
algorithms and reference stations. We also found that the best 
hybrid MCP strategy varied based on the length of the 
correlation period. 

In the second scenario, both wind speed and direction were 
considered in the application of the hybrid MCP strategy. We 
found that the hybrid MCP methodology performed best when 
the correlation period was between 5,500-8,500 hours 
(approximately 8 to 12 months) based on the ratio of mean 
wind speeds. For the nine-turbine wind plant, the power 
generation was generally overestimated by the neural network, 
hybrid neural network, linear regression, hybrid linear 
regression, and hybrid variance ratio methods; it was under 
estimated by the support vector regression, hybrid support 
vector regression, and variance ratio methods. 

Quantifying and modeling the uncertainty in the MCP 
methods would provide more credibility to wind resource 
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assessment and wind plant performance estimation. Modeling 
the propagation of uncertainty through the MCP process would 
allow quantification of the expected uncertainty in on-site wind 
conditions and wind plant power generation. In addition, an 

investigation of how the uncertainties in the annual distribution 
of wind conditions interact with the uncertainties inherent in the 
MCP correlation methodology is also necessary. This 
investigation is an important topic for future research. 

  
(a) 4 direction sectors (b) 8 direction sectors 

  
(c) 16 direction sectors (d) 32 direction sectors 

Figure 7. WIND DISTRIBUTION METRICS WITH DIFFERENT DIRECTION SECTORS 
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(a) 4 direction sectors (b) 8 direction sectors 

  
(c) 16 direction sectors (d) 32 direction sectors 

Figure 8. POWER GENERATION METRICS TO EVALUATE THE HYBRID MCP WITH DIFFERENT DIRECTION SECTORS 
(GE 1.5MW-XLE) 
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