

Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel

A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

Joseph Owen Roberts and Gail Mosey

Produced under direction of the U.S. Environmental Protection Agency (EPA) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-09-1719 and Task No WFD3.1000.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-7A30-51321 February 2013 Contract No. DE-AC36-08GO28308

Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel

A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

Joseph Owen Roberts and Gail Mosey

Prepared under Task No. WFD3.1000

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov

Technical Report NREL/TP-7A30-51321 February 2013 Contract No. DE-AC36-08GO28308

NOTICE

This manuscript has been authored by employees of the Alliance for Sustainable Energy, LLC ("Alliance") under Contract No. DE-AC36-08GO28308 with the U.S. Department of Energy ("DOE").

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Executive Summary

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential.¹ The Jeddo Tunnel is a manmade water level drainage tunnel used to drain deep mines in the Eastern Middle Anthracite Field near Hazleton, Pennsylvania. Citizens of the area, city planners, and site managers are interested in redevelopment uses for this resource as remediation costs are estimated at \$15 million over the next 20 years² for a passive treatment system. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of such a system.

The site was found to be constructible, and no major construction or maintenance issues were raised from the turbine manufacturer or dam designer. There may be environmental issues associated with the construction of a small water retention dam just below the tunnel outlet, but considering the environmental impacts already affecting the immediate and larger Jeddo basin drainage, it appears the overall relative environmental benefits of this project outweigh the negative environmental impacts.

The economics of the potential systems were analyzed using an electric rate of \$0.10/kWh, assuming the power could be utilized by local off-takers a short distance away, such as the local elementary school and wastewater treatment plant, or be net metered to either facility. Table ES-1 summarizes the system performance, economics, and job potential of modeled systems at the Jeddo discharge. Calculations for this analysis assume the 30% cash grant in lieu of the federal tax credit incentive, per Treasury Bill Section 1603,³ would be captured for the system. This is an important point that merits further investigation, preferably by a legal representative, due to the fact that "new" hydroelectric facilities do not qualify for this cash grant. However, the project appears to meet the intent of Section 1603 under the definition of a "hydrokinetic facility." At the time of publication of this report, the 1603 incentive had expired but had the possibility of being reinstated.

The results in Table ES-1 show the impacts on the simple payback with and without the Treasury bill cash grant. As shown, the upfront savings afforded by the cash grant positively impact simple payback of the project.

Next steps should include the clarification of whether or not this facility can meet the definition of "hydrokinetic facility"⁴ as well as the exploration of a virtual net-metering policy in the area.

http://www.treasury.gov/initiatives/recovery/Documents/guidance.pdf. Accessed April 14, 2011.

¹ EPA. "RE Powering America's Land: Evaluating the Feasibility of Siting Renewable Energy Production on Potentially Contaminated Land." <u>http://www.epa.gov/renewableenergyland/docs/develop_potential/drums.pdf</u>. Accessed April 14, 2011.

² Hewitt, M. "Jeddo Tunnel Abandoned Mine Drainage Passive vs. Active Treatment Cost Estimates." Ashley, PA: Eastern Pennsylvania Coalition of for Abandoned Mine Reclamation (EPCAMR), October 2006.

³ U.S. Treasury Department. "Payments for Specified Energy Property in Lieu of Tax Credits Under the American Recovery and Reinvestment Act of 2009." <u>http://www.treasury.gov/initiatives/recovery/Documents/guidance.pdf</u>. Accessed April 14, 2011.

⁴ U.S. Treasury Department. "Payments for Specified Energy Property in Lieu of Tax Credits Under the American Recovery and Reinvestment Act of 2009," pp. 13–14.

Given the nature of the project and its benefits to both the community and the environment, efforts could be made to pursue other grants and low interest loans that could increase the financial viability of the project. Also, further investigation of the height optimization of the dam and verification of the annual flow characteristics (which are contingent upon planned remediation within the drainage basin) should be undertaken.

System Size (kW)	Turbine Type	Annual Output (kWh/yr)	System Cost	Energy Production Cost (\$/kWh)	Simple Payback Period (years)	Construction Jobs	Long- Term Jobs
247	Kaplan	1,162,453	\$2,014,233	0.0796	17.3	22.4	19.4
405	Crossflow	1,029,433	\$2,063,516	0.0913	21.3	22.9	19.4

Table ES-1. Hydro System Performance and Job Estimates⁵

⁵ Estimates assume an inflation rate of 1.2%, discount rate of 3%, utilization of the 30% cash grant in lieu of the tax credit, 80% debt ratio, 50-year project life, 6% interest rate and 30-year note term, 1.2% energy escalation rate, and an O&M cost of \$35,000/year. Long-term job-years are total jobs for the 50-year design life of the project at the aforementioned O&M cost, which averages 0.39 jobs per year.

Table of Contents

1	Introduction	.1
	1.1 Study Location and Background	. 1
	1.2 Proposed Location	
2	Hydroelectric Systems	
3	Hydroelectric Resource Definition	
	3.1 Hydro Resource Verification Through Correlation	
4	Hydroelectric Design Parameters	11
5	Economics and Performance of a Hydroelectric System	
	5.1 Electricity Generation	14
	5.2 Applicable Policy	
	5.3 Model Assumptions	
	5.4 Applicable State and Local Grants and Incentives	17
6	Ground and Water Source Heat Pump System Design Considerations	
7	Geothermal Heat Pump System Economics	
8	Summary and Conclusions	21
Ap	pendix A. Conceptual Dam Design	
	pendix B. Tabular Flow Duration Curve	
Ap	pendix C. Project Cost Sheet	53
Ap	pendix D. RETScreen Results	55
Ap	pendix E. Geothermal Heat Pump RETScreen Model Results	57

List of Figures

Figure 1. Locations of data collection points	
Figure 2. Area precipitation data comparison	
Figure 3. Flow duration curve for water year 19977	
Figure 4. Wapwallopen historical stream flow annual averages	
Figure 5. Scatterplot and trend line analysis of Jeddo Tunnel versus Wapwallopen stream flow9	
Figure 6. Proposed dam plan view	
Figure 7. Possible off-taker locations	
Figure 8. Potential ground source energy off-takers	
Figure D-1. RETScreen results Kaplan turbine	
Figure D-2. Hydroelectric cash flow plots	
Figure E-1. Geothermal heat pump cash flow plots	

List of Tables

Table ES-1. Hydro System Performance and Job Estimates	iv
Table 1. MCP Methods and Results	10
Table 2. Hydroelectric Losses	
Table 3. Hydroelectric Turbine Performance Comparison	
Table 4. Potential Ground Source Off-Takers	
Table 5. Hydro System Performance Including Job Estimates	21
Table B-1. Tabular Flow Duration Curve	
Table C-1. Kaplan Hydroelectric Project Costs	53
Table C-2. Crossflow Hydroelectric Project Costs	

1 Introduction

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative in September 2008. EPA and the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) are collaborating on a number of projects to evaluate the feasibility of siting renewable energy projects on these potentially contaminated sites.

The EPA selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. Citizens of the area, city planners, and site managers are interested in redevelopment uses for this site as remediation costs are estimated at \$15 million over the next 20 years for a passive treatment system. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

1.1 Study Location and Background

The Jeddo Tunnel is a manmade water level drainage tunnel used to drain deep mines in the Eastern Middle Anthracite Field near Hazleton, Pennsylvania. Jeddo Tunnel A was completed in 1895, and this tunnel discharges into the Little Nescopeck Creek and drains four major coal basins: Big Black Creek, Little Black Creek, Cross Creek, and Hazleton. The tunnel was abandoned in 1955 following the collapse of the deep mining industry in the United States. The Jeddo Tunnel drains 32.24 mi² of hilly/mountainous terrain consisting of both active and abandoned mining sites, farmland, grazing land, forest land, rural residential homesteads, and the City of Hazleton. Historical records⁶ indicate discharges of an average of 134 cubic meters per minute (cmm) into Little Nescopeck Creek, a high-quality cold water fishery.

As precipitation filters through the active and abandoned mining sites, it picks up large quantities of aluminum, manganese, and iron. The combination of the high levels of metals with the low pH of the water eliminates all animal life downstream of the confluence of the Jeddo discharge and the Little Nescopeck Creek and severely impairs the water quality in the Nescopeck River.⁷ The levels of aluminum, manganese, and iron are 9.9, 1.7, and 3.4 times higher than allowable levels of these metals in streams affected by acid mine drainage (AMD) in the State of Pennsylvania.⁸ The Little Nescopeck Creek receives all the flow from the Jeddo Tunnel discharge, and the discharge from the tunnel is the primary source of pollution in the Little Nescopeck Creek, which subsequently flows into the Susquehanna River around Berwick, Pennsylvania.

There have been many studies aimed at mitigating the AMD pollution from the Jeddo discharge, but the least expensive proposed measures cost more than \$15 million for 20 years of treatment.⁹ The aim of this study is to explore the potential not to treat the AMD but to utilize the potential

⁶ Ballaron, P. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208,* August 1999.

⁷ Pennsylvania Department of Environmental Protection. "Black Creek, Little Nescopeck Creek, and UNT Little Nescopeck Creek Watershed TMDL," p. 28.

http://www.epa.gov/reg3wapd/tmdl/pa_tmdl/LittleNescopeck/LittleNescopeckReport.pdf. Accessed April 14, 2011. ⁸ Dempsey, B.; Mendinsky, J. *DEP GG EMARR (10/1/03 to 6/30/04);* August 2004, p. 6.

⁹ Hewitt, M. "Jeddo Tunnel Abandoned Mine Drainage Passive vs. Active Treatment Cost Estimates." Ashley, PA: Eastern Pennsylvania Coalition of for Abandoned Mine Reclamation (EPCAMR), October 2006.

energy in the water flow to generate electricity. This project does not have the revenue generation capacity to pay for a complete AMD treatment measure, but the revenue generated could be used to offset mitigation costs

1.2 Proposed Location

The Jeddo Tunnel discharge is located near Drums, Pennsylvania. All of the precipitation in this area is either transpired, evaporated, or exits at the Jeddo Tunnel A discharge. There are still active surface anthracite mining operations in several of the smaller areas, and much of the area has been remediated to different extents. The basin contains many infiltration points created from mining operations and cave-ins, which proportionally increase the fraction of precipitation that directly infiltrates the ground as opposed to being collected in streams, natural ponds, and basins. Remediation measures have been proposed that would reduce this fraction of direct infiltration, and some of these measures are expected to be carried out in the near future. This will have some impact on the amount of water that will be transpired by plants or that will evaporate, but the current estimates from the Pennsylvania Department of Environmental Protection (PADEP) show that this may possibly decrease the average tunnel discharge by several percent.¹⁰ Peter Haentiens of the Eastern Middle Anthracite Region for Recovery (EMARR) later clarified this point and gathered the following information from PADEP:

Hawbaker has an application to mine coal and aggregate out of the Monmouth Vane Mine east of the Hazleton Shaft that would involve about 150 acres. The reclamation plan would include catch basins and wetlands that would capture water that will percolate into the ground and the tunnel drainage. This would have little impact on tunnel discharge except for evaporation. There are other plans to restore surface flow to Black Creek and Hazel Creek after mining activities cease. There are significant problems associated with restoration of both of these creeks especially with blocking off existing sink holes. It will be our intention to convince DEP that using those sink holes to raise alkalinity makes more sense than plugging them. Even if DEP does proceed with current plans, the impact on Jeddo discharge would be fairly small. To reduce the discharge by 20% to 30% would require plugging all of the 22 sinks...¹¹

The land surrounding the tunnel discharge is currently owned by Pagnotti Enterprises, Inc. Pagnotti currently mines anthracite in the Jeddo basin. The land use lease terms or long-term land ownership have not been determined. It is recommended that land ownership and use issues be resolved before committing financial resources to a large project.

 ¹⁰ Menghini, M. Telephone conversation. PADEP, Harrisburg, PA, 22 October 2010.
 ¹¹ Haentjens, P. Email. EMARR, Hazleton, PA, 18 February 2011.

2 Hydroelectric Systems

Hydroelectric turbines convert the potential and kinetic energy from water to electrical energy through a generator. The power potential of a turbine can be computed from Equation 1 where *P* is the power in watts, η is the turbine efficiency (unit less ratio), ρ is the density of water (kg/m³), *g* is the acceleration of gravity (9.81 m/s²), *h* is head (m), and \dot{q} is flow rate (m³/s).

Equation 1: Power Potential from a Hydroelectric Turbine

 $P = \eta \cdot \rho \cdot g \cdot h \cdot \dot{q}$

Selection of a hydroelectric turbine should take into account applicable head pressures and flow rates. For the Jeddo site, which has a head of approximately 6.4 m and a design flow of $5.1 \text{m}^3/\text{s}$, Kaplan and Crossflow turbines are applicable technologies. The Crossflow turbine offers a simple design with lower peak efficiency than a Kaplan turbine but a much broader efficiency curve due to the sequential deployment of high velocity water onto varying areas of the turbine.

Kaplan turbines considered for this application change the pitch or angle of the turbine blades to vary the amount of power extracted. Other Kaplan turbines have movable wicket gates surrounding the turbine, which further increase the efficiency but add more cost and complexity and are typically not used for small hydro projects as the added cost cannot be recouped from increased output. These turbines can have a fairly wide range of flows that produce power, but the efficiency drops at low flows.

While the lifetime of this project was modeled at 50 years, which is a typical design life for a hydroelectric project of this scale, historically hydroelectric projects have usable lives up to twice the design life.

Crossflow and single-regulated Kaplan turbines were considered for this application. Crossflow turbines require a gearbox and other moving parts to regulate the flow of the water through the turbine, whereas the Kaplan designs do not require a gearbox and have only limited moving parts in the turbine. Crossflow turbines also require much finer trash filtering systems as their runners are spaced much closer together and require more frequent cleanings of the intake and turbine runners. Kaplan turbines are also more efficient at their peak but have a slightly higher capital cost. Since project size and economics speak to the facility being unmanned on a daily basis, a higher reliability, lower maintenance turbine, such as the Kaplan, is recommended.

The economic models assume that a cash grant in lieu of the investment tax credit (ITC) will be utilized to put some capital down to secure lower loan rates. The model assumes a 30-year loan at a 6% interest rate with the full amount of the remainder of the cost of the project after the cash grant to be financed. Appendix C details the various costs for both a Kaplan and Crossflow turbine utilizing the proposed dam design.

3 Hydroelectric Resource Definition

Several long-term stream gauges and precipitation gauges were used to extrapolate the long-term tunnel discharge flow. Figure 1 shows the Jeddo basin as well as the United States Geological Services (USGS) precipitation and stream gauges used to determine the average annual tunnel discharge.

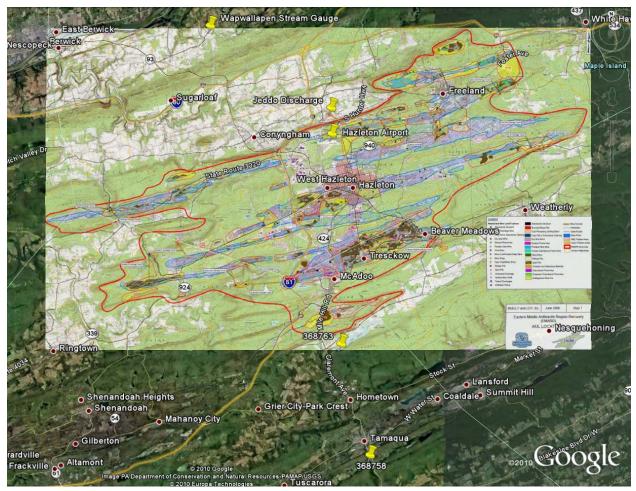


Figure 1. Locations of data collection points¹²

In water year 1999, the Susquehanna River Basin Commission (SRBC) studied the water balance in the Jeddo basin to evaluate possible remediation measures to reduce the tunnel discharge. A water year is defined as the period of October 1 to September 30, with the year being defined by the year that September 30 falls in. Thus, if the period ends September 30, 1998, then this would be referred to as water year 1998. This section of the paper reports dates in water years.

The SRBC study found the base flow is 30-33 ft³/s for natural groundwater drainage during drought and summer months.¹³

¹² Google Earth. <u>http://www.google.com/earth/index.html</u>. Accessed October 12, 2011.

¹³ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208*, p. 19, August 1999.

Precipitation averaged about 49 inches per year in the area (based on data from Tamaqua reservoir) for the 66-year period from 1932 to 1998. A comparison of this average with precipitation in 1996, 1997, and 1998 indicates that, in 1996, precipitation in Hazleton exceeded the average by 11 percent. Precipitation was about average in 1997. For 1998, precipitation was 13 percent below average in the Jeddo Tunnel Basin.¹⁴

Selection of a hydroelectric turbine that still produces electrical energy at this low flow is critical as flows during the summer months can typically reach these levels and there seems to be no cost-effective advantage to using a significantly larger turbine to capture more energy from the high flow periods.

Based on the historical data available to Ballaron, it appears that 1997 was an average precipitation year for the Jeddo basin area. Thus, stream flow data from 1997 was assumed to be approximately average. There is some uncertainty in this assumption due to the frequency distribution of rain events, and further investigation into quantifying this uncertainty is recommended.

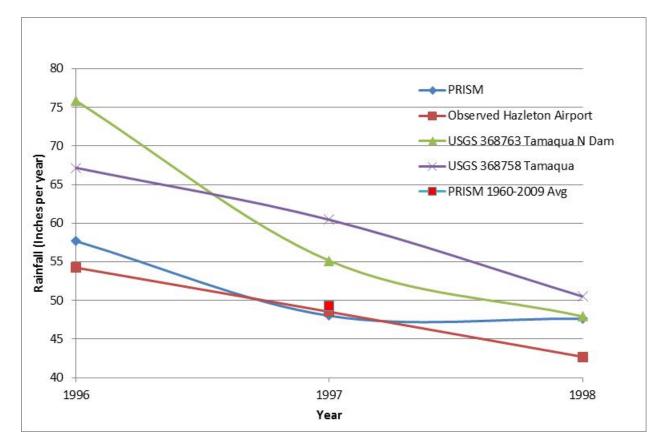


Figure 2. Area precipitation data comparison

¹⁴ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208*, p. 11, August 1999.

Figure 2 shows the four main precipitation data sources for the Jeddo area. The observed data comes from the 1999 Ballaron report, and all years are water years.¹⁵ Ballaron used USGS site 368758 Tamaqua for long-term precipitation estimation, but this dataset contains records from 1932 to 1998.

These assumptions were then validated using the PRISM dataset, which is the most extensive compilation of precipitation data in the United States.

PRISM is a unique knowledge-based system that uses point measurements of precipitation, temperature, and other climatic factors to produce continuous, digital grid estimates of monthly, yearly, and event-based climatic parameters. Continuously updated, this unique analytical tool incorporates point data, a digital elevation model, and expert knowledge of complex climatic extremes, including rain shadows, coastal effects, and temperature inversions. PRISM data sets are recognized world-wide as the highest-quality spatial climate datasets currently available. PRISM is the USDA's official climatological data.¹⁶

The PRISM dataset estimates the annual average rainfall within the Jeddo basin to be 49.28 in/yr between 1960 and 2009.¹⁷ This estimate is consistent with Ballaron's suggestion that 1997 was approximately an average precipitation year.

Figure 3 shows the flow duration curve for the Jeddo Tunnel discharge for the 1997 water year (October 1, 1996–September 30, 1997). This illustrates the base flow with no records in 1997 being lower than 37 m³/min and a 5% exceeded flow of 45 m³/min. Appendix B has this data in a tabular format for future use.

¹⁵ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208,* August 1999.

 ¹⁶ Prism Climate Group. <u>http://www.prism.oregonstate.edu/</u>. Accessed April 14, 2011.
 ¹⁷ Prism Climate Group. "Prism Data Explorer."

http://prismmap.nacse.org/nn/index.phtml?vartype=ppt&month=14&year0=1971_2000&year1=1971_2000. Accessed April 14, 2011.

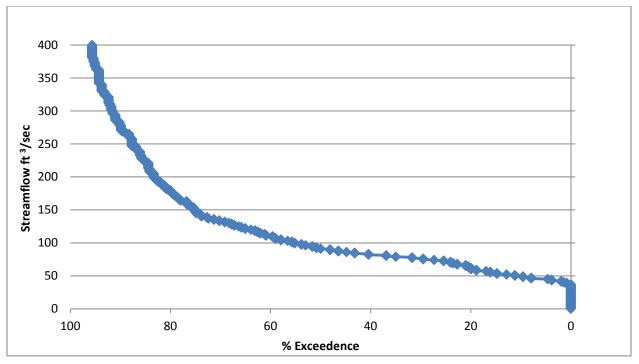


Figure 3. Flow duration curve for water year 1997

Ballaron and others at PADEP recommended using USGS 01538000 Wapwallopen Creek stream gauge to attempt to correlate the historical stream flow data with tunnel outflow. Reportedly this is one of the most consistent and longest stream flow datasets available within the immediate Jeddo area.¹⁸ Figure 4 shows that the annual average flow for the 1997 hydrological year was 4.3% above the annual average from 1970 through 2009. This is fairly consistent with Ballaron's findings that 1997 was an average precipitation year for the Jeddo basin, but this data is not within the Jeddo basin so there is some uncertainty in the degree of correlation.

¹⁸ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208,* August 1999.

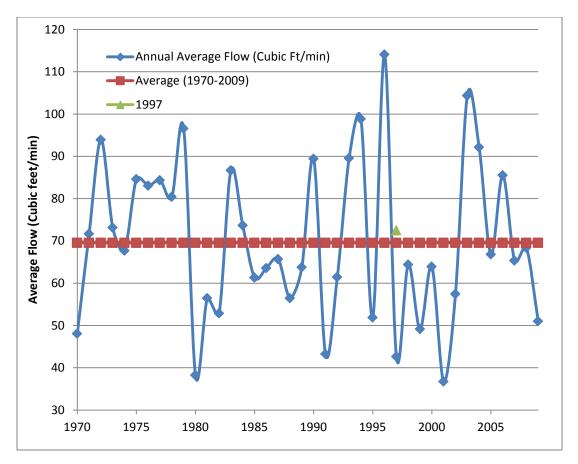
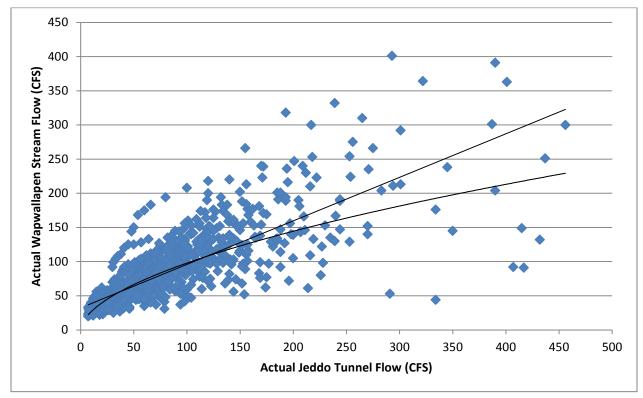


Figure 4. Wapwallopen historical stream flow annual averages

Linear scaling of the resource with correlated precipitation data is not possible because some groundwater base flow exists, surface runoff fraction changes, and evapotranspiration changes. Surface runoff data taken for the 1999 Jeddo water balance showed 5%–11% of total annual precipitation was recorded as direct runoff.¹⁹ Thus, the fraction of precipitation that passes through the basin is not constant and the 3-year study of the water balance in the Jeddo basin averages 66.3% of the long-term annual average.


Surface remediation in the Jeddo basin is planned. The PADEP currently plans to reshape most of the basin and install shallow catchment basins, but this work will not change the basin drainage area. The shallow catchment basins will have two effects: they will increase evaporation, and they will act as a storage medium that will help regulate tunnel discharge. This storage of water on the surface should be minimal, which minimizes evapotranspiration; however, there are plans to vegetate these basins, which will increase evapotranspiration. Thus, if the effective storage of the basin increases, the overall output from the hydroelectric facility could be significantly increased as the current modeling approach for the Jeddo drainage system ignores the storage that is present in mine pools. Further plans have been discussed to place a low-permeability material just below the surface, which would reduce infiltration and tunnel

¹⁹ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208,* August 1999.

output by 10%–25%.²⁰ This decrease in tunnel output flow would be highly dependent on which drainage area the material is placed in and how extensive the material placement is.

3.1 Hydro Resource Verification Through Correlation

The stream flow data from the Wapwallopen Creek and Jeddo discharge were compared via scatterplot, as shown in Figure 5, to determine the extent of their correlation given that they are in different watershed basins. An analysis technique known as measure–correlate–predict (MCP) was undertaken with three different statistical approaches. Both linear and exponential regression analysis techniques were applied to the scatterplot with the resultant equations and correlation factors (\mathbb{R}^2) shown in Table 1.

Figure 5. Scatterplot and trend line analysis of Jeddo Tunnel versus Wapwallopen stream flow

A third MCP technique, known as variance ratio analysis was also investigated. The results of all three methods are shown in Table 1.

²⁰ Ballaron. "Water Balance for the Jeddo Tunnel Basin." *Publication No. 208,* August 1999.

Table 1. MCP Methods and Results

Method	Prediction Equation	Correlation Equation	R²
Linear	(0.637 * Wap flow) + 32.35	y = 0.637x + 32.35	R ² = 0.6505
Exponential	(2.9757 * Wap flow) ^{0.7371}	y = 7.3975x ^{0.5609}	R ² = 0.7649
	[(Jeddo avg - (Jeddo stdev/Wap stdev)] *		
Variance	(Wap avg) + [(Jeddo stdev/Wap stdev) *		
Ratio	Wap flow)]	y = 0.8065x + 15.098	R ² = 0.6505

Table 1 shows the prediction equations and R^2 values for these three MCP methods. The R^2 correlation factor provides an indication of the relative "goodness of fit" of the regression line to the data. The exponential regression equation results in the highest R^2 value and is used as the basis for Jeddo Tunnel flow predictions in subsequent economic modeling. This data was filtered for all values greater than 500 ft³/sec because the turbine outputs are constant above this flow rate.

All datasets within the site-specific study period of 1996–1998 show the same trend with differing magnitudes of change. These methods do not accurately predict the tunnel outflow that occurs during and after significant precipitation events, and their use for daily stream flow estimates is not recommended. However, the models perform reasonably well for longer time frames, such as annual stream flow quantities, and this is the basis of the economic modeling. If a hydroelectric project is deemed feasible, it is advised that further study into the number of rain events per year and the magnitude of these events be undertaken to ensure optimization of the equipment to be used in the hydroelectric system. A true hydrologic study comparing these two drainage basins may improve the prediction reliability for the Jeddo Tunnel, though the current analysis may be sufficient for the type of hydroelectric project proposed.

4 Hydroelectric Design Parameters

The Jeddo basin was and continues to be mined for coal. The original coal mines were deep vertical shafts that followed seams of coal rich ore. The vertical orientation of these shafts required that precipitation and ground water to be removed or drained from the mine shafts in order for mining work to take place. Many mines of this configuration used electric or mechanical pumps to raise water at the bottom of the mine to the surface in order to facilitate mining work at the deepest part of the mines. In the case of the Jeddo basin, the mining companies determined that the cost of digging near horizontal shafts from the sides of the plateau that would intersect the vertical mine shafts would reduce or eliminate the cost of pumping water to the surface. Now that the horizontal drainage shafts are in place and the vertical shafts allow groundwater and precipitation to be concentrated in the vertical shafts; nearly the entire 32-mi² Jeddo basin is drained by the Jeddo Tunnel. The potential energy stored in the water of this report will examine the potential for hydroelectric energy production. The following sections of this report will examine the potential for hydroelectricity in the Jeddo Tunnel area.

The horizontal tunnel on the northern side of the plateau drains the majority of the Jeddo Basin. This tunnel could potentially be harnessed for hydroelectric power production. To achieve usable kinetic energy from this unique arrangement, a small dam would need to be constructed to increase the vertical distance between the upstream and downstream bodies of water, which is referred to as 'head.' Figure 6 shows the location of the proposed dam, topography near the Jeddo basin discharge, and relative sizes of the dam and streambed. Further detail is in Appendix A.

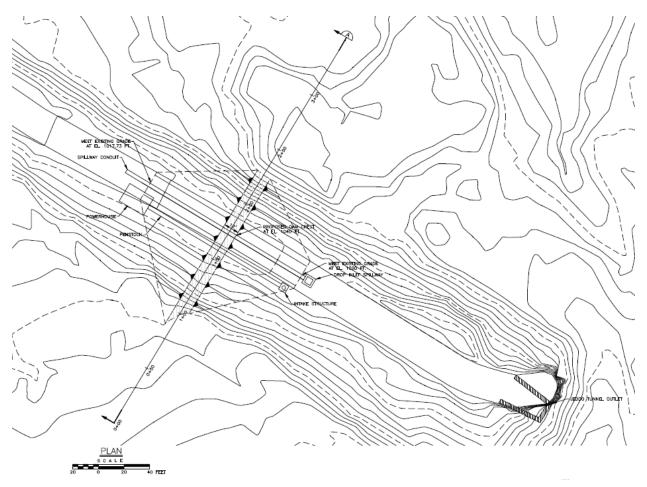


Figure 6. Proposed dam plan view

There were several proposed solutions to generate electricity at the Jeddo discharge. The proposed dam design is an earthen dam, and the largest contingencies are based on the geology and geography of the dam. Appendix A details the approximate costs and technical feasibility of construction at the Jeddo discharge. These cost estimates were used to model the life cycle cost of the project.

The intake structure for the dam was recommended to be changed to one more easily cleaned by workers; the structure is approximately 1 m below the surface of the water and closer to the peak of the dam.²¹

The dam design suggests that the top of the dam will be at an elevation of 1,040 ft, and the lower existing grade is at an elevation of 1,017.7 ft. This gives a total potential of 22 ft of head. For turbine power output calculations, an assumed head of 21 ft was used due to water control level requirements. This is still a somewhat conservative number as an additional foot of head would result in approximately 4.6% more average energy output. To achieve this increase in annual energy production, much higher precision control (at an additional cost) is necessary. The topographic features suggest that moving the dam closer to the tunnel or simply increasing the

²¹ Dupuis, M. Email. Canadian Hydro Components, Almonte, ON, Canada, October 2010.

height of the dam would allow an additional 2 ft of head with minimal cost increases. It is possible to increase the net head up to an additional 10 ft with additional earth movement and additional cost. This may need to be investigated further because the capital costs of the turbine, site access, and electrical components will not change. This 2–10 ft increase in head would produce a 9%–45% increase in annual energy production; however, due to the geography of the site, the increase in cost will not be linear.

Other options include eliminating the dam and capping the tunnel to increase head pressure. However, this approach has a number of unknowns, such as the stability of the geotechnical conditions upstream of the tunnel, which make it a much riskier approach. For instance, capping the tunnel may result in leaching accumulated contaminated water into the ground and spreading the flow of contaminants that had only been in the tunnel. Significant amounts of "standing water" in the tunnel for long periods of time may actually strengthen tunnel walls, but considerable pressure on the walls may cause structural or water seepage issues. At this stage, capping the tunnel is not recommended.

5 Economics and Performance of a Hydroelectric System

5.1 Electricity Generation

The losses for all hydroelectric systems were modeled as they appear in Table 2. Each turbine efficiency was accounted for in the power curve calculation; losses for annual scheduled maintenance as well as turbine degradation, hydraulic losses, and electrical distribution were modeled as per Table 2.

Turbine Hydraulic Losses (Included in power curves)	NA
Regular Maintenance (1.5 weeks a year)	3%
Electrical and Distribution	3%
Turbine Degradation and Other Hydraulic Losses	4%

Table 2.	Hydroelectric	Losses
----------	---------------	--------

Table 3 shows the energy production and associated economic results. Further details can be seen in Appendix D.

System Size (kW)	Turbine Type	Turbine Design Flow (m ³ /sec)	Annual Output (kWh/yr)	System Cost	Energy Production Cost (\$/kWh)	Simple Payback Period (years)	Potential Jobs (construction)	Cash Grant Utilization
247	Kaplan	4.7	1,162,453	\$2,014,233	\$0.0796	21.5	22.4	No
247	Kaplan	4.7	1,162,453	\$2,014,233	\$0.0796	17.4	22.4	Yes
405	Crossflow	5.8	1,029,433	\$2,063,516	\$0.0913	21.3	22.9	Yes

Table 3. Hydroelectric Turbine Performance Comparison²²

5.2 Applicable Policy

As of this writing, Pennsylvania policy²³ allows virtual meter aggregation, which enables a single account holder to essentially sum the meters within 2 miles of a generation source. This is a product of agricultural applications where farmers may have had multiple plots of land but wished to use a single source of generation for electricity or other form of energy for irrigation or other purposes. Depending on how one reads the policy for net metering, it is unclear if the account holder must lease or own the land that the generation source is installed upon, but the electrical account holder name must be the same. There have been examples of third parties installing PV systems at little or no cost to owners who have qualified for net metering because the contract with the PV equipment supplier requires the land owner to "operate" or "maintain"

²² Estimates assume an inflation rate of 1.2%, discount rate of 3%, utilization of the 30% cash grant in lieu of the tax credit, 80% debt ratio, 50-year project life, 6% interest rate and 30-year note term, 1.2% energy escalation rate, and an O&M cost of \$35,000/year. Long-term job-years are total jobs for the 50-year design life of the project at the aforementioned O&M cost, which averages 0.39 jobs per year.

 ²³ DSIRE. "Pennsylvania." <u>http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=PA03R&re=1&ee=1</u>.
 Accessed April 14, 2011.

the PV system by cleaning the PV panels with some frequency. Thus, this suggests that the equipment owner does not need to be the land owner, but the account holder must be the entity that has a load and generates the electricity as well as operates or maintains the system, which could be as simple as writing an operations and maintenance (O&M) contract with a third party. There would be excess generation with the current scenario because the school load average is approximately 90 kW and the average hydro generation is 150 kW.

More conventional options for developing a project include having a third party lease the land, own and maintain the equipment, and sell the power and renewable energy certificates (RECs). This would allow that third party to take advantage of the production tax credit (PTC) or ITC. The PTC is currently \$0.011/kWh for the first 10 years of a qualified hydroelectric project, which would amount to \$152,264 total over the first 10 years of the project, whereas the cash grant in lieu of the tax credits²⁴ would provide an upfront cash grant of 30% of the installed cost of the project, amounting to slightly more than \$600,000.

While this project would not qualify as a hydroelectric facility for this cash grant (only incremental hydropower production projects to existing hydroelectric facilities are allowed), the the Jeddo Tunnel would possibly qualify as a hydrokinetic facility due to the fact that it was manmade.²⁵ However, there is specific language within this document explicitly prohibiting a dam or any impoundment for electrical production purposes. There is language that allows electrical production from diversionary structures with the specific exception of manmade structures. It seems that the intent of the bill is to discourage the further damming of streams and rivers but to encourage energy capture from irrigation and other manmade sources of water flow. Project advocates should seek legal guidance and EPA feedback as to whether the Jeddo Tunnel project appropriately aligns with the intent and letter of the law.

The local REC prices on average are at \$0.00365/kWh for Tier 1 RECs,²⁶ but this value may increase in the near future due to the aforementioned increase in Pennsylvania state REC requirements. The price of energy that this third party would be able to sell at would be significantly less than the assumed \$0.10/kWh used in the modeling.

http://www.treasury.gov/initiatives/recovery/Documents/guidance.pdf. Accessed April 14, 2011. ²⁶ Tier 1 includes low impact hydroelectric generation, wind, and biomass. The prices for Tier 1 RECs from 2008– 2009 ranged from \$0.50/MWh to \$23.00/MWh. The demand for Tier 1 RECs is unknown with more energy suppliers joining the Pennsylvania-New Jersey-Maryland (PJM) interconnection [any supplier in the PJM interconnection can sell RECs towards the Pennsylvania State renewable portfolio standard (RPS)]. The Pennsylvania State RPS requirements for Tier 1 generation increase at a rate of 0.5% per year for the next 10 years, which represents a tripling of demand for Tier1 RECs in 10 years. Historical averages for REC costs have been higher than the most recent data, but due to the short history of the Pennsylvania RPS and the fact that generators have 3 years to retain or sell their RECs, it is very hard to judge the future prices of RECS based on historical data. The compliance charge is currently \$45/MWh, but this does not seem to be a large driver currently for REC prices. The hydro installation must also qualify as "low impact" (http://www.lowimpacthydro.org/) due to the current environmental damage.

²⁴ U.S. Treasury Department. "Payments for Specified Energy Property in Lieu of Tax Credits Under the American Recovery and Reinvestment Act of 2009." http://www.treasury.gov/initiatives/recovery/Documents/guidance.pdf. Accessed April 14, 2011. ²⁵ U.S. Treasury Department. "Payments for Specified Energy Property in Lieu of Tax Credits Under the American

Recovery and Reinvestment Act of 2009," pp. 13-14.

Pennsylvania Public Utility Commission. "2008 and 2009 Annual Reports." http://www.puc.state.pa.us/electric/pdf/AEPS/AEPS Ann Rpt 2008-09.pdf. Accessed April 14, 2011.

5.3 Model Assumptions

The project was modeled assuming that the electricity produced by the Jeddo Tunnel project could be delivered at competitive rates to local high-use consumers, such as schools and the wastewater treatment plant. This would need to be a negotiated arrangement between these customers and local utilities, and the utility may want to charge a fee for "wheeling" the electricity from the point of interconnection to the respective loads. The project owner would need to register as a qualifying facility, per the Public Utility Regulatory Policies Act of 1978 (PURPA),²⁷ to be an electricity generator with the Pennsylvania Public Utility Commission. The average output from the turbine is modeled at 158 kW, which exceeds the school's annual average usage by approximately 89 kW. The wastewater treatment plant's load has been quoted at 100 kW or greater, but no documentation has been available to support this.

The project will require the upgrade or new installation of distribution-level voltage lines (possibly between 10 kV and 14 kV depending on the local utility voltage) for approximately 1,850 ft where it could interconnect with existing three-phase distribution lines. The power would then need to be wheeled 2,200 ft to the wastewater treatment plant or 2,500 feet to the elementary school. Figure 7 shows the relative locations of the possible off-takers to the Jeddo discharge.

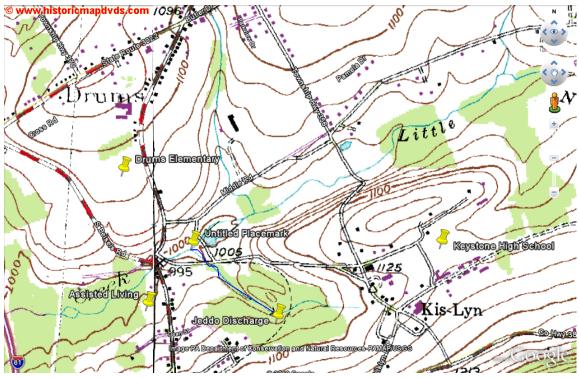


Figure 7. Possible off-taker locations²⁸

²⁷ Warwick, W.M. "A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets." U.S. Department of Energy, May 2002. http://www1.eere.energy.gov/femp/pdfs/primer.pdf. Accessed April 14, 2011. ²⁸ Google Earth. <u>http://www.google.com/earth/index.html</u>. Accessed October 15, 2011.

Electrical energy costs are projected to increase at a rate of 1.19% annually, averaged from 2010 to 2039 by EIA,²⁹ and this assumption was used in the economic modeling of the project. The discount rate and inflation were taken to be 3.0% and 0.9%, respectively, which are specified by the National Institute for Standards and Technology (NIST).³⁰

The estimated cost from Rizzo and Associates³¹ was used to model the construction and engineering cost of the dam and installation of the turbine and powerhouse. The turbine cost and choice is still a major variable since the resource is not well defined in the Rizzo study.

O&M costs were estimated at \$35,000 annually, which includes a service contract for annual maintenance from the turbine supplier and remote monitoring of the system. This cost estimate also includes a portion of revenue, approximately \$10,000 annually, to be set aside in an escrow account to cover possible major repairs needed in the future. An annual land fee of \$10,000 was included in the \$35,000 total. Spare parts were also included at an upfront cost of \$50,000 to have an inventory of maintenance-related parts to be retained to minimize downtime in the instance of a mechanical failure. Though it is expected that the Kaplan turbine will have lower O&M costs due to turbine design advantages for this site, both turbines were modeled with the same O&M costs.

5.4 Applicable State and Local Grants and Incentives

Many state and local grants and incentives could provide some capital or rebates that increase the financial viability of this project. The Database of State Incentives for Renewables and Efficiency (DSIRE) for the State of Pennsylvania³² provides a listing of grants, incentives, and rebate programs available through local utilities and the state. The State of Pennsylvania has a revolving loan program that has the potential to fully fund this project³³ and might offer a lower interest rate than was modeled. The State of Pennsylvania also offers a small grant program that could pay for some of the site investigation³⁴ if a local school was willing to apply to achieve a LEED Silver rating for its building. The Sustainable Energy Fund Loan Program³⁵ applies to the PPL territory and may be utilized if a real educational aspect of the project could be realized.

²⁹ EIA. http://www.eia.doe.gov/. Accessed April 14, 2011.

³⁰ U.S. Department of Energy. "NIST Updates Discounts Rates for Federal Life-Cycle Cost Analyses." Federal Energy Management Program. http://www1.eere.energy.gov/femp/news/news/detail.html?news/id=15859. Accessed April 14, 2011. ³¹ See Appendix A.

³² DSIRE. "Pennsylvania Green Energy Loan Fund." Pennsylvania.

http://www.dsireusa.org/incentives/incentive.cfm?Incentive Code=PA73F&re=1&ee=1. Accessed April 14, 2011. ³³ DSIRE. "Pennsylvania Green Energy Loan Fund." Pennsylvania.

http://www.dsireusa.org/incentives/incentive.cfm?Incentive Code=PA73F&re=1&ee=1. Accessed April 14, 2011. ³⁴ DSIRE. "High Performance Green Schools Planning Grants." Pennsylvania.

http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=PA25F&re=1&ee=1. Accessed April 14, 2011. ³⁵ DSIRE. "Sustainable Energy Fund (SEF) Loan Program (PPL Territory)." Pennsylvania.

http://www.dsireusa.org/incentives/incentive.cfm?Incentive Code=PA08F&re=1&ee=1. Accessed April 14, 2011.

6 Ground and Water Source Heat Pump System **Design Considerations**

Per EPA's request, NREL investigated the potential for water and ground source energy production at this site. Appendix H of the Renewable Energy Optimization Report for Naval Station Newport³⁶ serves as an introduction to how water source heat pumps operate and the factors that affect their performance and economic viability. Most ground or water source heat pump systems become economically viable at larger scales and where more expensive fuel sources for heating are used (such as electricity through air source heat pumps or direct radiation, as opposed to natural gas direct heating). Because the Jeddo discharge has a component of its flow that is not affected by drought, this resource could be suitable for use as a heat sink and heat source for building space heating and cooling. The largest unknown for these possible systems is that the stream temperatures through the seasons are unknown. Discussions with SRBC indicated that the aggregate water temperature would reflect the makeup of the flow. The base component of flow that is made up of groundwater, which constitutes approximately 0.9 m^3 /s, should have a temperature approaching deep ground temperature. However, the shallow depth of the stream will be conducive to solar gain as the water exits the tunnel and makes its way to the point where the heat exchangers would be placed.

The federal government offers incentives for high efficiency furnaces, heat pumps, and other HVAC components.³⁷ The State of Pennsylvania also offers loans for geothermal heat pump installations at \$3/ft² up to \$5 million. The fund was allocated with \$25 million in January 2009, and it is unclear as to how much funding remains.³⁸ The PPL utility area also may have some applicable loan services that would reduce the cost of a geothermal heat pump installation.³⁹

The most feasible geothermal heat pump system for buildings near the Jeddo discharge would be a closed loop system that uses flat plate heat exchangers. The flow rate of the stream is such that heat added from any of the possible buildings will be insignificant relative to the large quantities of cool water continuously flowing by. The heat discharged from the heat exchangers is mixed rapidly with the moving river water so heat build-up in the water stream is relatively minor. Assuming a minimum flow of $0.9 \text{ m}^3/\text{s}$, a 130-ton air-conditioning unit will only raise the temperature of the stream several tenths of one degree Celsius while operating continuously at full cooling output. This temperature increase should be further studied to ensure it will not affect stream life at the confluence of the Little Nescopeck and the Jeddo discharge or downstream of this point.

ENERGY STAR. "2011 Federal Tax Credits for Consumer Energy Efficiency."

http://www.energystar.gov/index.cfm?c=tax_credits.tx_index. Accessed April 14, 2011.

³⁶ Robichaud, R.; Mosey, G.; Olis, D. (February 2012). Renewable Energy Optimization Report for Naval Station *Newport*. NREL/TP-6A20-48852. Golden, CO: National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy12osti/48852.pdf. Accessed October 17, 2012.

³⁸ DSIRE. "DCED – Wind and Geothermal Incentives Program."

http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=PA40F&re=1&ee=1. Accessed April 14, 2011. DSIRE. "Sustainable Energy Fun (SEF) Loan Program (PPL Territory)."

http://www.dsireusa.org/incentives/incentive.cfm?Incentive Code=PA08F&re=1&ee=1. Accessed April 14, 2011.

7 Geothermal Heat Pump System Economics

There are several potential off-takers of this energy, namely an assisted living home, the local elementary school, and Keystone Job Corporation High School.

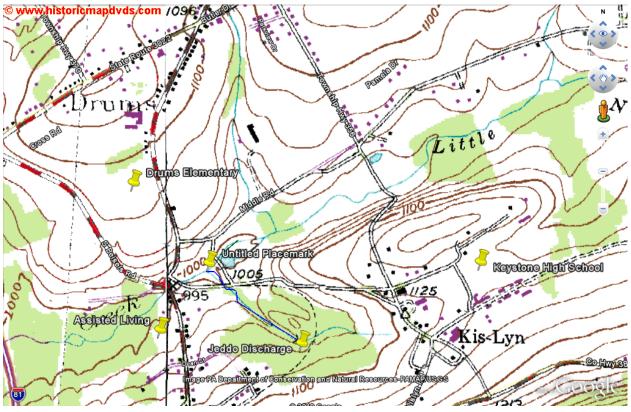


Figure 8. Potential ground source energy off-takers⁴⁰

Figure 8 shows the physical relationship of the Jeddo discharge and each off-taker. Table 4 shows the linear distances and elevation differences from each site to the shortest point to the stream flow. Some systems will be more cost effective than those modeled here if they are allowed to place their heat exchanges in the Little Nescopeck Creek, but these environmental impacts and concerns will need to be specifically reviewed.

⁴⁰ Google Earth. <u>http://www.google.com/earth/index.html</u>. Accessed October 12, 2011.

	Linear Distance (ft)	Elevation Difference (ft)
Keystone High School	2,400	115
Drums Elementary School	1,500	87
Assisted Living Facility	1,100	15

Table 4. Potential Ground Source Off-Takers⁴¹

Some market research showed that installed costs average approximately \$11,000/ton for larger systems in the 100–150 ton range.⁴² These costs were for a full turnkey system with approximately 70 individual (room-specific) heat exchangers, which would be appropriate for a retrofit application such as the three potential off-takers mentioned above. Obviously the final pricing will depend on many other variables, but this cost should be indicative of a current cost for comparable systems in similar climates. Further study of the number of degree heating and cooling days for this area along with the heat loads for each building should be conducted to determine the feasibility of such a ground source heat pump arrangement.

A RETScreen economic model was created assuming a 15,000 ft² building with a heating and cooling load of 40 W/m², which represents an average of the three potential aforementioned buildings. Other assumptions included Energy Information Administration average Pennsylvania pricing for natural gas heat and electricity, assuming a 90% efficient natural gas furnace and a seasonal coefficient of performance of 3.5 for the baseline system. The new system assumed a 17-ton heating and cooling system and closed loop water source heat pumps with water temperatures assumed to follow ground temperatures from the included historical data as well as all assumptions are available in Appendix E. The cost of the system was modeled at \$13,900/ton capacity to reflect the economies of scale of the modeled 17-ton system compared with the 100–150-ton system example.

This system provides a 23.9-year simple payback. As with the hydroelectric project, other grant and loan programs are available that may be used to enhance the financing and overall viability of this project. The DSIRE website⁴³ has the most comprehensive listing of these programs and grants.

⁴¹ These distances are calculated from the closest point of access to the Jeddo discharge stream; some systems may be able to achieve a shorter interconnection with the Little Nescopeck Creek.

⁴² Verbal quoted costs from recommended installers from AWEB Supply <u>http://www.awebgeo.com/</u>, November 2010.

⁴³ DSIRE. "Financial Incentives." Pennsylvania.

http://dsireusa.org/incentives/index.cfm?re=1&ee=1&spv=0&st=0&srp=1&state=PA. Accessed April 14, 2011.

8 Summary and Conclusions

This report has assessed the technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of such a system.

Economically, the hydroelectric project appears feasible under the stated assumptions. Table 5 outlines the basic economic performance of the system.

System Size (kW)	Turbine Type	Turbine Design Flow (m ³ /sec)	Annual Output (kWh/yr)	System Cost	Energy ^{Production} Cost (\$/kWh)	Simple Payback Period (years)	Construction Jobs	Cash Grant
247	Kaplan	4.7	1,162,453	\$2,014,233	0.0796	21.5	22.4	No
247	Kaplan	4.7	1,162,453	\$2,014,233	0.0796	17.4	22.4	Yes
405	Cross- flow	5.8	1,029,433	\$2,063,516	0.0913	21.3	22.9	Yes

Table 5. Hydro System Performance Including Job Estimates

Next steps should include the clarification of whether or not this facility can meet the definition of "hydrokinetic facility"⁴⁴ as well as the exploration of virtual net-metering policy in the area. Efforts should be made to pursue other grants and low-interest loans that could increase the financial viability of the project. Also, further investigation of the optimal height of the dam and verification of the annual flow characteristics, which are contingent upon planned remediation within the drainage basin, should be undertaken.

The assumption of wheeling the power at current electricity costs is contingent upon the utility agreeing to this proposition. If this proves impossible, selling the electricity to an off-taker would result in a substantially lower sale price of energy. Wheeling charges imposed by the utility would also drive the effective sale price of electricity down. The possibility of virtually net metering this facility is quite realistic, as it may be as simple as placing an off-taker's name on the electricity bill for the production facility.

The possibility of increasing the height of the dam an additional 2–10 ft for additional head pressure could improve the life cycle cost of the project and should be investigated further. The hydroelectric turbine was modeled as a single-regulated Kaplan-type machine because of the low head of the site and because there are many commercially available units for this design flow. Crossflow turbines are also a good option as they are cost competitive and may offer benefits in reduced civil scopes and reduced maintenance. Selection of a hydroelectric turbine that still produces electrical energy at low flows (approximately $0.85-1.00 \text{ m}^3/\text{s}$) is critical as flows during the summer months and drought can typically reach these levels and there seems to be no cost advantage to using a significantly larger turbine to capture more energy from the high-flow periods.

⁴⁴ U.S. Treasury Department. "Payments for Specified Energy Property in Lieu of Tax Credits Under the American Recovery and Reinvestment Act of 2009," pp.13–14. http://www.treasury.gov/initiatives/recovery/Documents/guidance.pdf. Accessed April 14, 2011.

Geothermal heat pumps may be able to provide paybacks of 25 years or even less when combined with state and federal loans and incentives. Further study into the environmental impacts as well as seasonal water temperatures and land use issues are needed.

Overall the hydroelectric project looks viable economically and technically. The project would offset approximately 63,497 metric tons of carbon dioxide, 316 metric tons of sulfur dioxide, and 138 metric tons of nitrous oxide emissions and generate 69 TWh of electricity in its design life. Additionally, it would create approximately 28 jobs in construction and 19 job-years, or 0.39 jobs/year for O&M, over the life of the project.

Appendix A. Conceptual Dam Design

ENGINEERS / CONSULTANTS / CM

Paul C. Rizzo Associates, Inc.

500 Penn Center Boulevard • Penn Center East, Building 5, Suite 100 • Pittsburgh, PA 15235 Phone (412) 856-9700 • Fax (412) 856-9749

www.rizzoassoc.com

Mr. Joseph Owen Roberts National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 August 27, 2010 Project No. 10-4414

TRANSMITTAL DRAFT CONCEPTUAL DESIGN JEDDO TUNNEL DAM & HYDROELECTRIC FACILITY

Dear Mr. Roberts:

This letter presents Paul C. Rizzo Associates' (RIZZO) conceptual design for the construction of an embankment Dam and hydroelectric facility at the outflow of the Jeddo Mine Drainage Tunnel. It has been prepared for the National Renewable Energy Laboratory (NREL) in accordance with our June 25, 2010 Proposal.

INTRODUCTION

The Jeddo Tunnel is a man-made water level drainage tunnel constructed approximately 100 years ago to dewater deep mined coal measures in the Eastern Middle Anthracite Field. The tunnel drainage system drains water from four major coal basins: Big Black Creek, Little Black Creek, Cross Creek, and Hazelton. The tunnel has continued to drain the abandoned mine workings after the collapse of the deep industry in the 1950s. The tunnel currently drains over 30 square mi miles (mi²) with an average discharge of 80 cubic feet per second (cfs) into the Little Nescopeck Creek.

The Little Nescopeck Creek, a tributary to Nescopeck Creek, is severely impacted by the poor quality of the water discharged from the tunnel. The water discharged through the tunnel is characterized as Acid Mine Drainage (AMD).

L1 104414/10

U.S. OFFICE LOCATIONS •Pittsburgh PA (Corp.HQ)•Oakland CA•St.Louis MO•Tarrytown NY•Columbia SC• INTERNATIONAL OFFICE LOCATIONS •Buenos Aires Argentina•Mendoza Argentina•Santiago Chile•Lima Peru• •Abu Dhabi UAE•Brisbane Australia•Plzen Czech Republic•St. Petersburg Russia•

PROJECT DESCRIPTION

The conceptual design for the construction of a low head hydroelectric facility at the Site will consist of an earth embankment dam approximately 22 feet (ft) high and a small powerhouse that will house the hydroelectric equipment. The geography and geology around the Tunnel Outlet play a significant role in the siting of the proposed Dam. They determine the optimum location for the Dam, what materials are available for construction, and the foundation conditions for the Dam.

SITE LOCATION AND DESCRIPTION

The Site for the proposed Jeddo Tunnel Dam system is located approximately 1.0 mi south of Drums and 3.4 mi northeast of Conyngham, Luzerne County. From Conyngham, take County Highway 38 3.0 mi east, turn left onto South Old Turnpike Road, and make a right onto Dean Street. At the end of Dean Street, stop and walk southeast to the old service road that runs behind several private residences. Approximately 600 ft after passing under the tree line, turn left and the Jeddo Tunnel Outlet is located approximately 150 ft northwest of the service road. There is an elevation drop of roughly 42 ft from the service road at Elevation (El.) 1062 ft to the outlet of the Jeddo Tunnel at approximately El. 1020 ft. A Site Location Plan is provided on *Figure 1*.

The location is heavily wooded with a mixture of deciduous and evergreen trees (average 12 to 18 inch in diameter). The undergrowth varies from light (dead leaves and ferns) to heavy (bushes, thorns, and small trees). From the site visit, the ground surface appears to be made of a thin layer of heavily organic soil overlaying much harder glacial till and alluvial soil. The run of the creek from the Tunnel Outlet (El. 1020 ft) to the confluence with Little Nescopeck Creek (El. 995 ft) is approximately 1,600 to 1,700 ft. The stream bank slopes are generally less than 1H:1V at the tunnel outlet. The left (looking downstream) stream bank slope begins to top off at approximately El. 1052 ft and the right stream bank slope begins to top off at approximately El. 1045 ft. The stream bank slopes are generally 2H:1V to 1.5H:1V. At approximately 600 ft downstream, the bank is only 7 to 10 ft above the streambed elevation. The ground surface above the left stream bank slopes downward towards the northwest with a difference in elevation of 22 ft over a horizontal distance of 320 ft. The ground surface above the right stream bank slopes upwards from the Jeddo Tunnel for a total difference in elevation of 6 ft over a horizontal

distance of 220 ft, then downwards for difference in elevation of 16 ft over a horizontal distance of 160 ft.

The existing Tunnel Outlet is of masonry construction, some concrete repair work has been performed on the structure in the past. The only other structure in the vicinity is an old abandoned United States Geological Survey (USGS) Stream Gage. There were no above ground utilities observed during the site visit, nor were there any signs of the presence of underground utilities. The area immediately around the tunnel outlet may have been built up with mine cuttings and spoil, but has since been overgrown with vegetation.

Based on field observations and topographical data, a site well suited for the Dam is located approximately 250 ft downstream of the Jeddo Tunnel Outlet. At this location, the stream bed is estimated to be at El. 1018 ft. The tops of the side slopes at this location downstream of the Tunnel Outlet are between El. 1040 and El. 1045 ft. The streambed at this location is approximately 25 ft wide and the span across the valley from the top of the one side slope to the other is approximately 130 ft. Further information on the Site location and sketches are included in the field log provided in *Attachment A*. Photographs of the Site are provided in *Attachment B*.

SITE GEOLOGIC CONDITIONS

The Jeddo Tunnel Site lies in a stable geologic region that has experienced only minor earthquake activity, with no measured historical epicenter located within 50 mi of the Site.

The Site lies within the Appalachian Mountain Section of the Ridge and Valley Province that consists of long, narrow ridges and broad to narrow valleys exhibiting moderate to very high relief. These ridges and valleys are a direct result of lithologic disparities in erosional resistance and the folded and faulted structures developed in the geologic past, when the mountains were built, during the Alleghanian Orogeny.

This Province is primarily a zone containing Cambrian to Pennsylvanian rocks that were folded and faulted during the Alleghanian Orogeny that occurred during late Pennsylvanian through Permian times, nearly 300 million years ago. In addition to the geologic events that affected the entire Ridge and Valley Physiographic Province, three glacial advances affected the site-vicinity during the Pleistocene Epoch.

The Jeddo Tunnel Site region is located in a stable continental region (SCR) characterized by low rates of crustal deformation with no active plate boundary conditions. There is no evidence for late Cenozoic seismogenic activity of any tectonic feature or structure within the Site region (within 200 mi, 322 kilometer (km)).

The Site is within 10 mi of the Susquehanna River near the southern edge of glaciation in Pennsylvania. The Jeddo Tunnel Site area is located within the Anthracite Upland Section of the Ridge and Valley Physiographic Province, and is bordered by the Susquehanna Lowland Section to the north and the Blue Mountain Section to the south. The Site area is underlain by the Lower Mississippian formations, with the Mauch Chunk Formation bedrock directly beneath the Site. The Mauch Chunk Formation generally consists of a lower unit of interbedded grayish-red shale, siltstone, sandstone, and some conglomerate, and an upper unit consisting of light-gray calcareous quartz sandstone. Some non-red zones exist including Loyalhanna Member, which along the Allegheny Front (Blair County to Sullivan County) is greenish-gray, calcareous crossbedded sandstone. Also includes Greenbrier Limestone Member, and Wymps Gap and Deer Valley Limestone, which are tongues of the Greenbrier.

The most recent geologic influence on the Site was the Late Illinoian and Pre-Illinoian glaciations that deposited glacial materials (thin, clayey to sandy till covering 10 to 25 percent of the ground) on the bedrock surface. The topography within 5 mi (8 km) of the Site consists of low to moderately high, linear ridges and valleys that primarily follow structural trends of the local geologic formations.

The local geologic formations have been subjected to a series of mountain-building episodes, including the Grenville, Taconic, and Alleghanian orogenies. The local structure of the Ridge and Valley Province was imparted to the area during the Alleghanian Orogeny at the end of the Permian Period, nearly 250 million years ago. The Site geologic history has been quiet since the end of the Permian; at that time, the local portion of the crust became more stable and tensional stresses predominated through the Cretaceous Period. The only disturbance of this quiet state was the advance of several ice sheets in the Pleistocene; however, since the Site is located at the extreme southern limit of the glaciated area, the ice sheets were at their thinnest and any crustal depression or subsequent rebound from the ice load has been minimal.

PROBABLE SUBSURFACE CONDITIONS

Based on the regional geology of the Site, RIZZO is assuming the following subsurface conditions to provide a basis for our conceptual design of the facility. The thin organic topsoil layer is underlain with glacial till of an unknown depth, and the glacial till is likely comprised of silty sand and coarse grained material with little or no cohesive properties. Beneath the glacial till overburden layer lays the bedrock. The bedrock is likely comprised primarily of interbedded shale and sandstone. The foundation of the proposed embankment Dam will be located within the overburden layer, so excavation down to bedrock is unlikely.

ENGINEERING CHARACTERISTICS OF LOCAL SOILS

Based on our experience with a nearby power plant site located approximately 10 miles to the northwest of the Site, probable values for index properties for the subsurface materials are summarized in *Table 1* below.

Mampaar	UNIT WEIGHT (PCF)			FRICTION	COHESION	WATER Content
MATERIAL	DRY	MOIST	SAT.	ANGLE (DEG)	(PSF)	CONTENT (%)
Glacial Overburden	109	121	144	32	0	11.0
Mauch Chunk Formation	169	170	170	40	7300	0.5

TABLE 1MATERIAL PROPERTIES

The glacial till material, according to the regional geology, is primarily classified as silty sand and coarse grained material. The overburden layer is assumed to have zero cohesion, but a friction angle on the order of 32 degrees. The unit weight of the material at time of excavation will be lower than that of a well-graded engineered fill of the same material.

DAM CONCEPTUAL DESIGN AND BUDGETARY COST ESTIMATE

The conceptual design is to construct a new Earth Fill Dam approximately 250 ft downstream of the Tunnel Outlet. The cost estimate for the dam construction assumes that a source of engineered fill material is locally available at the time of construction. In developing the conceptual design, modern safety standards were considered, as set forth by the U.S. Army

Corps of Engineers, the Pennsylvania Department of Environmental Protection Dam Safety & Encroachments Act (Act 325 of 1978), and Pennsylvania Code Title 25, Chapter 105, Dam Safety and Waterway Management.

Earth Fill Dam

The proposed Dam will be 22 ft high and 150 ft long, with a crest width of 12 ft. The upstream and downstream shells will be comprised of on-site borrow sources. A 3 horizontal to 1 vertical 3H:1V slope will be used for both the upstream and downstream slopes of the embankment dam. The design crest will be at El. 1040 with a slight over-build to account for potential settlement. A minimum 3-foot excavation of the existing surface material is anticipated for the Dam to be founded on glacial till and to reduce the abutment side slopes for safety. The total storage volume of the impoundment area is on the order of 2.7 million gallons of water. Conceptual drawings, including a plan view, cross sections, and details of the proposed Earth Fill Dam, are shown on *Figures 2 and 3* provided in *Attachment C*.

A typical earth fill Dam would be constructed with a clay core for seepage protection. However, the existence of a local source of clay fill material is unknown at this time, and given the regional geology, unlikely to exist. In addition, the local soil is most likely comprised of a sandy glacial till, which is fairly free draining. Therefore, RIZZO's conceptual design for the embankment Dam includes a vertical chimney filter attached to a horizontal drain blanket extending to the toe of the Dam to provide seepage control and prevent piping within the Dam. The drainage blanket will extend to fully cover the abutment contacts to reduce the possibility of piping of materials through the abutments. All material for both fill and filter will be placed and compacted in 1 foot lifts.

Upon completion, riprap will be placed on the upstream face, and the downstream face will be mulched and seeded to prevent erosion, which is beneficial from both Dam safety and environmental perspectives. A drainage swale along the downstream toe of the Dam will divert surface water from the Dam.

Spillway

The design of the Dam is subject to guidelines set forth by the Federal Energy Regulatory Commission (FERC). Based on the lack of developed areas downstream from the proposed Dam, we have assumed that the structure will be classified as a low hazard dam. The Dam is

located within a rural area, and has a relatively small storage capacity, the release of which would most likely be confined to the river channel in the event of a failure, and therefore would represent no danger to human life.

The drainage area upstream of the Dam is approximately 0.5 mi². To pass the inflow design flood (IDF) storm event over this drainage area, as well as the mine drainage from the tunnel outlet, a spillway is required. The proposed spillway is a drop inlet structure located upstream of the Dam. The spillway inlet structure will be a concrete box culvert located at the upstream base of Dam, and rise to the normal operating level of the impoundment.

Powerhouse

The ultimate purpose of the proposed Dam is to impound the mine drainage water for the generation of electricity. The powerhouse structure will be constructed at the downstream toe of the Dam, offset from the centerline to the left (looking downstream). The penstock will run underneath the embankment to an intake structure on the upstream side. The cost of the powerhouse is based on the estimated cost of the turbine unit, the penstock, and the estimated amount of cast-in-place and pre-cast concrete required for the construction of the powerhouse, penstock, and intake structure.

The conceptual design details a general layout for the powerhouse and intake structures. The powerhouse, penstock and intake structure will need to be sized based off of the turbine selected for the Project. RIZZO performed some preliminary calculations, Concluded that a net head of 18 ft and a design flow of 80 cfs, the estimated theoretical power output from the hydro system is 122 kilowatts. The actual power output will be less due to efficiency losses from the hydroelectric system.

Budgetary Cost Estimate

The associated costs for the construction of the Jeddo Tunnel Dam and main supporting structures are summarized in the table provided in *Attachment D*. Cost estimates were developed based on quantity take-offs and RIZZO' experience with similar projects.

The cost to construct the Earth Fill Dam is estimated to be \$2.0 Million. This includes a construction contingency of 20 percent, which is consistent with typical industry practice for

construction cost estimation at this stage of design. As the design progresses, this contingency will reduce.

The costs provided assume that the appropriate permits and authorizations are readily obtainable from state and federal regulatory agencies. Costs associated with wetland mitigation are not regarded as applicable, and thus have not been considered.

Consideration was given to the feasibility of a mass concrete dam in place of an Earth Fill Dam. After review of the quantities and constructability issues, it was determined that a concrete dam would be significantly more expensive (i.e., twice the cost) than the Earth Fill Dam. The additional cost is primarily due to the high cost per unit for the concrete, the increased excavation depth to obtain a suitable foundation, and the necessary foundation improvements required of such a structure.

REPORT LIMITATIONS

The conceptual design presented in this letter has been formulated on the basis of the information provided by NREL and the assumptions stated herein. Any significant changes in this information should be brought to RIZZO's attention for review.

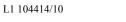
This letter has been prepared for the exclusive use of the NREL for the feasibility evaluation of the construction of a hydroelectric facility at the Jeddo Tunnel Project. Our recommendations are based on the assumed subsurface conditions at the Site based on the regional geology and our experience with other sites in northeastern Pennsylvania. RIZZO is not responsible for the conclusions, opinions, or recommendations of others based on these preliminary data.

SUMMARY

Paul C. Rizzo Associates, Inc. has prepared this conceptual design report based on field observation of the Site and modern engineering practices to assess the feasibility of the design of a Jeddo Tunnel Dam and hydroelectric facility. We have prepared preliminary sketches (*Figures 2 and 3 in Attachment C*) and estimated costs for Dam design and construction. Our evaluation indicates that an Earth Fill Dam can be installed for approximately \$2.0 million.

If you have any questions or concerns please contact me at (412) 825-2008, or by email at john.osterle@rizzoassoc.com.

L1 104414/10

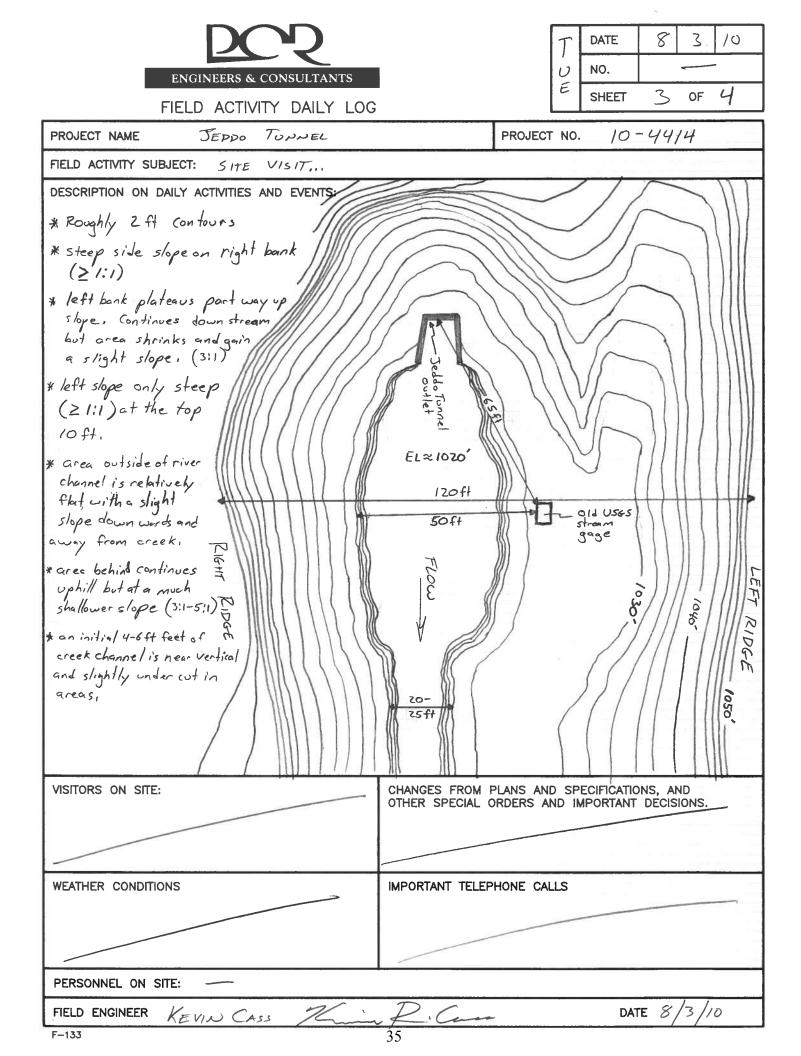

Respectfully submitted, *Paul C. Rizzo Associates, Inc.*

John P. Osterle, P.E. Vice President – Dams & Water Resources Projects

Kevin R. Cass, P.E. Project Engineer

JPO/KRC/sjr/crb

Attachments



ATTACHMENT A FIELD LOG

	PC2	T DATE 8 3 10
	ENGINEERS & CONSULTANTS	U NO
	FIELD ACTIVITY DAILY LOG	SHEET / OF 4
PROJECT	NAME JEPDO TUNNEL	PROJECT NO. 10 -4414
FIELD AC	CTIVITY SUBJECT: SITE VISIT - FEASIBI	LITY OF LOW HEAD DAM
DESCRIP	TION ON DAILY ACTIVITIES AND EVENTS:	
0900	RENEWABLE ENERGY LABORATORY	SEPH OWEN ROBERT (JOR) OF THE NATIONAL (NREL) AND PETER HAENTJENS (PH) OF GOON RECOVERY, INC. (EMARR), AND DROVE TO
0 9 /0	ROAD, WITH TWO GRAVEL DIA WALKED UP THE HILL ALONG TH	ALONG DEAN ST., AT A CORNER BEND IN THE 2T ROADS RUNNING EAST AND SOUTH, KRC HE SOUTH KOAD AND TURNED LEFT. THE DIRT RIVATE RESIDENCES, THEN INTO THE WOODS,
0917	WALK DOWN TO THE JEDDO TUNNE PICTURES, GPS READINGS, AND LASS	ET INTOTHE WOOD, KRL TURNED LEFT TO LOUTLET, KRL PROCEEDED TO TAKE NOTES ER RANGE FINDER READINGS OF THE AREA ATTACHED CHECKLIST FOR FURTHER DETAILINTO
0955	RETAINS A RELATIVELY CONSTANT U	STREAM ALONG THE RIGHT BANK, CREEK NIDTH OF ZO-25ft. STEEP SIDE SLOPES T 40 FT ABOVE CREEK BED AT THE OUTLET WASTREAM.
1005	DAM. THE STREAM BED WIDENS FROM THE RIGHT BANK OUT ABOUT	TO ABOUT 50 FT. THE OLD DAM EXTENDS TO ABOUT 50 FT. THE OLD DAM EXTENDS T 30 FT. THE REMAINING IS BLOCKED UP WITH DOODS OPEN UP TO AFIELD ACROSS ON THE LEFT BANK.
1015		D CROSSED OVER AT AN OLD BRIDGE (ABOUT EL OUTLET). KRL WALKED BACK UP THE LEFT
1030	KRC AND OTHERS STOPPED ABO	DUT 250 ft DOWNSTREAM OF TUNNEL OUTLET, [OVER]
VISITORS	ON SITE:	CHANGES FROM PLANS AND SPECIFICATIONS, AND OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS.
	R CONDITIONS F HAZY AND HUMID, OVERCASTI	IMPORTANT TELEPHONE CALLS
10 27		
	NEL ON SITE: KEVIW (ASS, JOSEPH OWEN	ROBERTS, PETER HAENTJENS
L	NGINEER KEVIN CASS K-R.	DATE 8/3/10
F–133		33

ENGINEERS & CONSULTANTS FIELD ACTIVITY DAILY LOG	T DATE 8 3 /0 U NO. E SHEET 2 OF 4
PROJECT NAME JEPPO TUNNEL	PROJECT NO. 10-4414
FIELD ACTIVITY SUBJECT: SITE VISIT	
DESCRIPTION ON DAILY ACTIVITIES AND EVENTS:	
THIS AREA: TOP OF RIDGETO CREEK 25-30 ft, THE LEFT AND RICHT WITH NEAR OUTLET, THE RIGHT BA 1050 KRC RETURNED TO TUNNEL OUTLET AN DISCUSSED FINDINGS WITH JOR & PH, 1055 LEFT SITE AND RETURNED TO CAR,	$(\geq 1; 1) \qquad 18 \text{ yds} \qquad 23 \text{ yds} \qquad 18 \text{ (}\geq 1:1 \text{)}$
DROVE AROUND AREA, DOWN TO CO CROSSED OVER LITTLE NESCOPECK C TIMES TO LOOK AT IT, 1120 ARRIVED NEAR CONFLUENCE OF L NESCOPECK CREEK WITH NESCOP WALKED OUT TO NESCOPECK CREEK 1135 WALKED TRROUGH WOODS ABOUT / WATER MEETING WITH ACID MINE 1155 RETURNED TO CARS, DISCUSSED	POSSIBLE DAM LOCATION LOCATION LOCATION ZS ft LOCATION ZS ft TO DBSERVE, Y MILE TO CONFLUENCE, OBSERVED CLEAR DRAINAGE,
NOTES:	30 FT FROM TUNNEL OUTLET DOWN TO LITTLE
	WERE BUILT, POSSIBLE IN PROVEMENT TO WATER
VISITORS ON SITE:	CHANGES FROM PLANS AND SPECIFICATIONS, AND OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS.
WEATHER CONDITIONS	MPORTANT TELEPHONE CALLS
PERSONNEL ON SITE:	
FIELD ENGINEER KEVIN CASS	DATE 8/3/10

	Paul C. Rizzo Associat CONSULTANTS	es, Inc. Jeddo Tunnel	\bigcirc
By <u>Крс</u> . Chkd. by <u> — </u>	Date $\frac{8/3/10}{2}$.	Subject Site Reconnaissance Check List	Sheet No. <u>4</u> of <u>4</u> . Proj. No. <u>10 4414</u> .

Surface Vegetation (grass, brush, heavily wooded, lightly wooded):

Area is heavily wooded. A mix of deciduous and evergreen with an Average tree diameter of 12-18 inches. Under growth varies from light (clear, ferns) to heavy (bushes, thorns, small trees)

Topography (level, sloping, river or stream, drainage ditches or swales, ponds):

Sloping downward towards the <u>NW</u>, with an estimated <u>25-30</u> foot difference over <u>1600</u> foot distance, from Tunnel outlet (El 1020 ft) to little Nescopeck Creek (El 995 ft). The creek bed is approximately 30 feet below top of ridge with steap side slopes at the tunnel outlet (= El 1050 ft). The steap side slopes gradually fall off. At approximately 600 ft down stream of the Tunnel outlet, the bank is only 7-10 ft above the creek bed.

Surface Conditions (soft, firm, hard, wet, ponded water, topsoil, fill, disked):

relatively soft undergrowth in vicinity of tunnel outlet. Area immediately surrounding outlet made up of old mine cuttings and spoil (overgrowth over loogr period). Dark reddish brown clay w/ high degree of grovel. 1st 8" of ground is soft and moist is some areas. Further D/s near proposed dam site, soil is dryer. It is made up of a thin layer of organic soil overlopping what appears to be glacial or alkavial soil, and rock. several rock outcroppings were observed. Very hard soil after initial 6-8" of organic soil.

Condition of existing Structures (utilities, buildings, walls, foundations:

Exishing tunnel outlet is constructed of masonry with some concrete repair work visible on the right side. Heavy spalding of concrete for first 2 feet above water surface (4"-5"back). An abandoned USGS stream gage exist just downstream of the tunnel along the left bank, No other structures in vicinity of outlet. Remnant of an old wooded dam block up part of the creek about 750 ft D/S of the outlet.

Utilities (aboveground and/or below ground):

No above ground utilities observed in the vicinity of the site. No known underground utilities apear to exist.

ATTACHMENT B PHOTOGRAPHS OF THE SITE

PHOTO 1: ACCESS ROAD TO SITE

PHOTO 2: PATH TO TUNNEL OUTLET OFF ACCESS ROAD

PHOTO 3: TUNNEL OUTLET FROM TOP OF RIGHT STREAM BANK

PHOTO 5: JEDDO TUNNEL OUTLET FROM LEFT BANK

PHOTO 6: JEDDO TUNNEL OUTLET

PHOTO 7: TUNNEL OUTLET FROM RIGHT BANK

PHOTO 8: LOOKING DOWNSTREAM FROM TUNNEL OUTLET

PHOTO 9: LOOKING AT RIGHT STREAM BANK FROM TUNNEL OUTLET

PHOTO 10: USGS STREAM GAGE WITH OUTLET IN BACKGROUND

PHOTO 11: LOOKING AT LEFT BANK AT TUNNEL OUTLET

PHOTO 12: PROPOSED DAM LOCATION FROM RIGHT BANK

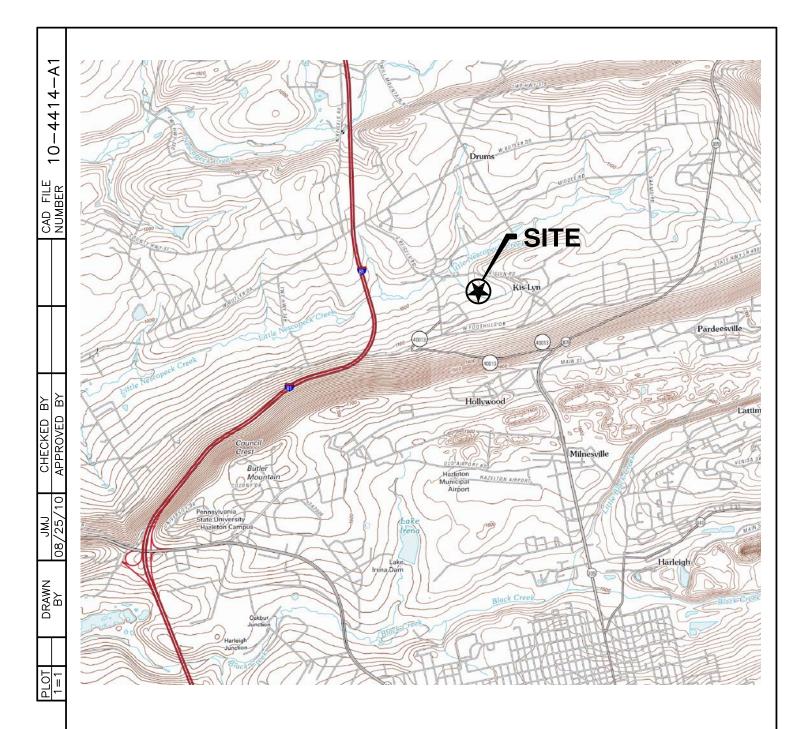
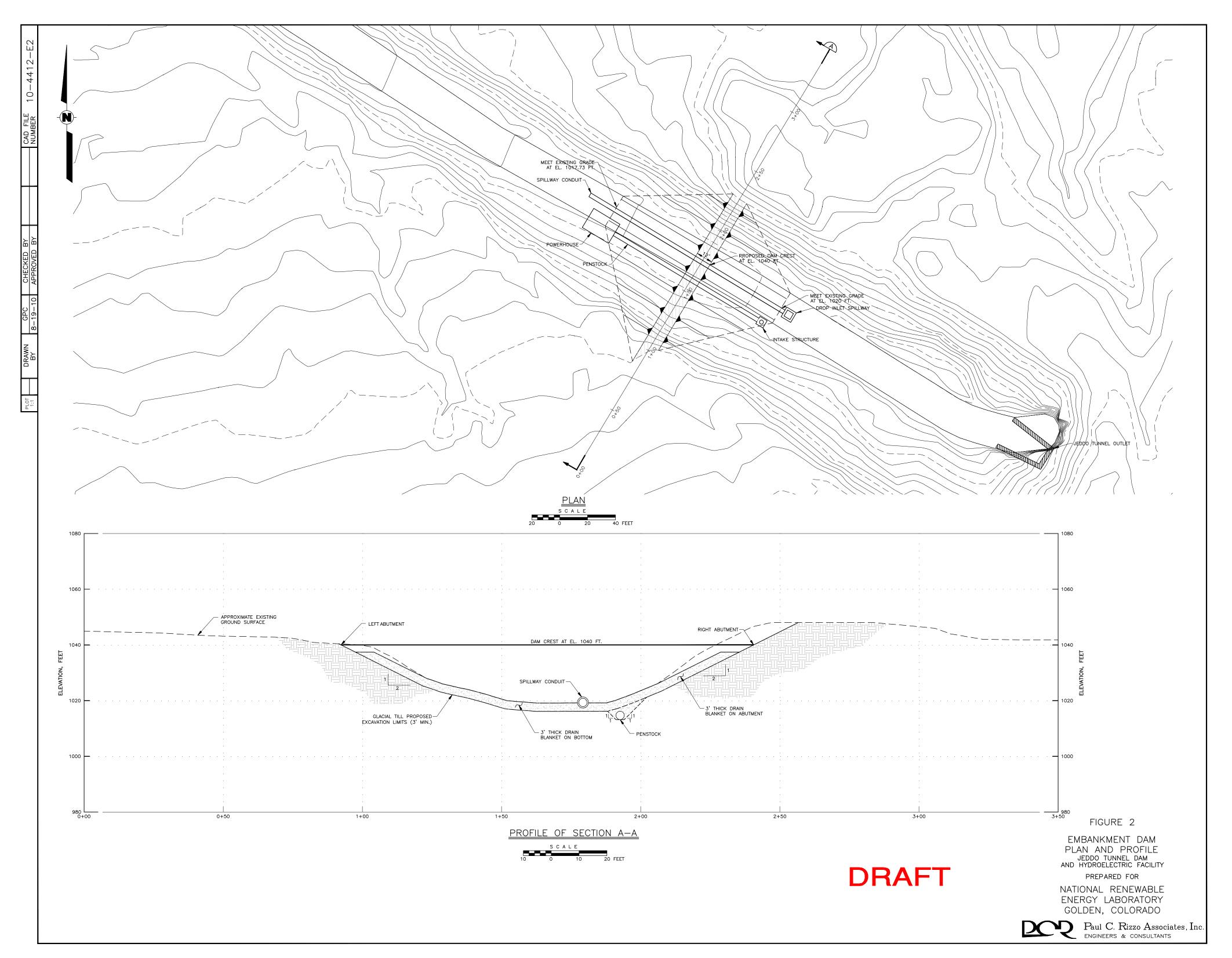


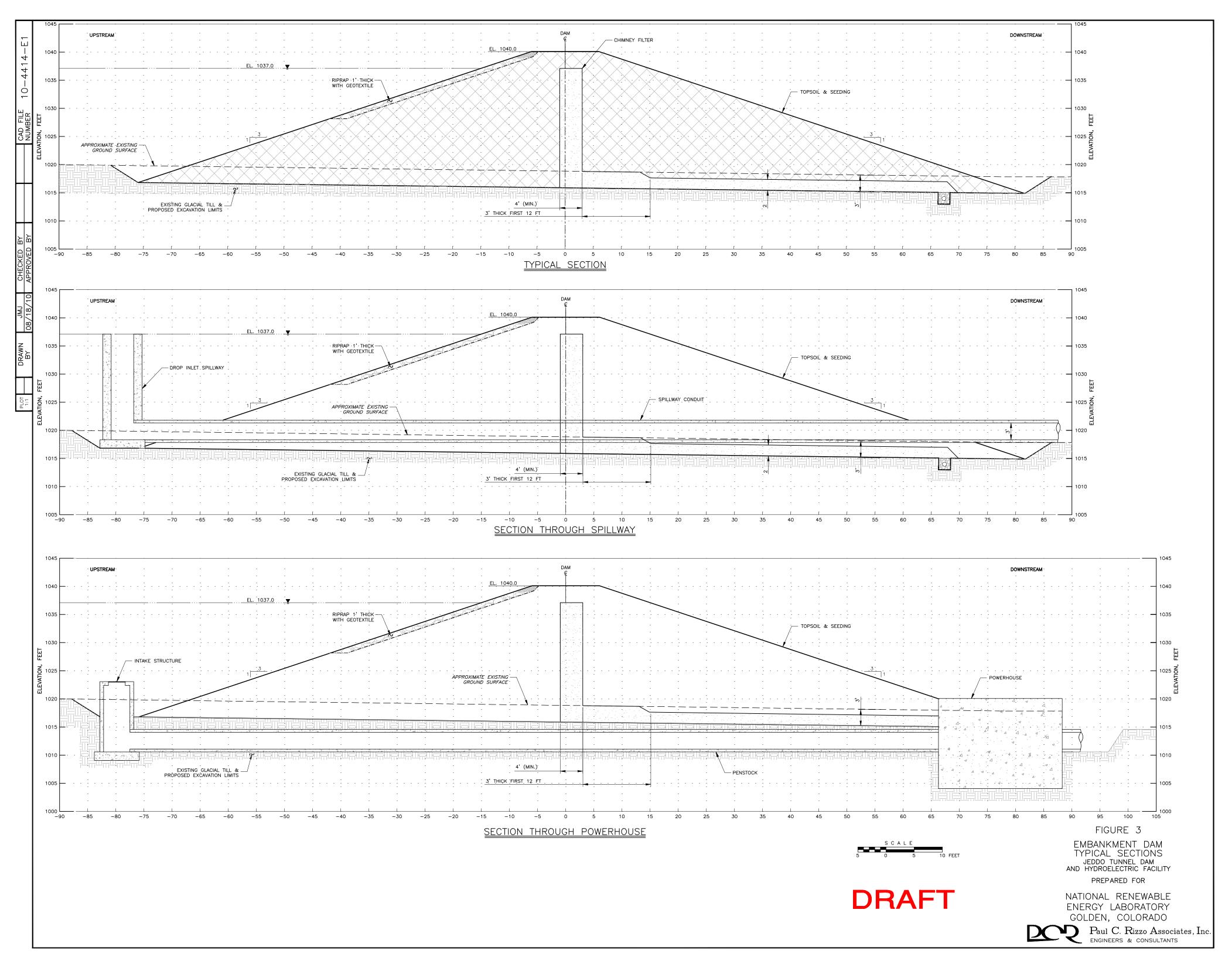
PHOTO 13: PROPOSED DAM LOCATION FROM LEFT BANK

ATTACHMENT C CONCEPTUAL DRAWINGS

DRAFT

REFERENCES:


U.S.G.S. 7.5 MIN. TOPOGRAPHY MAPS, PENNSYLVANIA-FREELAND, CONYNGHAM, HAZELTON, AND SYBERTSVILLE QUADRANGLES, DATED 2010. FIGURE 1


SITE LOCATION MAP JEDDO TUNNEL DAM AND HYDROELECTRIC FACILITY PREPARED FOR

NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO

47

Paul C. Rizzo Associates, Inc. ENGINEERS & CONSULTANTS

ATTACHMENT D COST ESTIMATE

JEDDO TUNNEL DAM AND HYDROELECTRIC FACILITY

			Estimated (Quan	tity & Cost		
ltem	Description	Estimated Quantity	Unit of Measure	Ľ	Jnit Cost	-	Total Cost Value
1	Mobilization & Demobilization	1	Lump Sum	\$	75,000	\$	75,000
2	Site Access and Site Work	1	Lump Sum	\$	25,000	\$	25,000
3	Erosion & Sedimentation Controls	1	Lump Sum	\$	8,000	\$	8,000
4	Clear and Grub	1.5	acre	\$	12,500	\$	18,750
5	Foundation Excavation	2,200	CY	\$	10	\$	22,000
6	Engineered Fill Construction	5,200	CY	\$	19	\$	98,800
7	Chimney Drain Filter Material	280	CY	\$	37	\$	10,360
8	Drainage Blanket Filter Materials	465	CY	\$	37	\$	17,205
9	Riprap	175	CY	\$	35	\$	6,125
10	Turbine	1	Lump Sum	\$	750,000	\$	750,000
11	Concrete (Spillway, Intake, & Powerhouse)	160	CY	\$	750	\$	120,000
12	Conduit (for Spillway Outlet and Penstock)	285	LF	\$	1,000	\$	285,000
				S	UBTOTAL	\$	1,436,240
13	20% Contingency					\$	287,248
				S	UBTOTAL	\$	1,723,488
14	Engineering Design and PADEP Permitting*	1	Lump Sum	\$	172,349	\$	172,349
15	Engineering and Construction Supervision	1	Lump Sum	\$	120,644	\$	120,644
	Total Cost					\$	2,016,481

* FERC Licensing effort not included in cost estimate.

Appendix B. Tabular Flow Duration Curve

Table B-1. Tabular Flow Duration Curve

Jeddo Discharge 1997	Measured Data
	Probability of
Flow (m ³ /min)	Exceedance
15	99.999
30	99.999
45	99.999
60	95.354
75	80.053
90	70.49
105	51.911
120	42.075
135	36.064
150	28.687
165	24.862
180	21.857
195	19.944
210	17.485
225	15.846
240	14.753
255	13.387
570	1.092
585	1.092
600	1.092
615	1.092
630	1.092
645	1.092
660	1.092
675	0.819
690	0.546
705	0.273
720	0.273
735	0.273
750	0.273
765	0
780	0
795	0
810	0

270	12.294
285	10.381
300	9.561
315	8.468
330	7.648
345	6.282
360	5.736
375	5.736
390	4.643
405	4.37
420	4.097
435	3.277
450	2.731
465	2.731
480	2.458
495	2.185
510	2.185
525	1.912
540	1.092
555	1.092

Appendix C. Project Cost Sheet

Feasibility study	
Site investigation and survey	\$10,000
Environmental assessment	\$50,000
Preliminary design	\$30,000
Detailed cost estimate	\$20,000
Project management	\$20,000
Development	
Contract negotiations	\$5,000
Permits and approvals	\$5,000
Land rights	inc O&M
Legal and accounting	\$10,000
Engineering	
Site and building design	inc
Mechanical design	inc
Electrical design	\$50,000
Civil design	\$292,993
Construction supervision	inc
Power system	
Hydro turbine	\$680,000
Road construction	inc
Transmission line	\$40,000
PMT and recloser	\$30,000
Balance of system and miscellaneous	. ,
Clearing	inc
Earth excavation	inc
Rock excavation	inc
Earthfill dam	inc
Dewatering	inc
Spillway	inc
Intake	inc
Tunnel	inc
Penstock	inc
Powerhouse civil	inc
BOP dam proposal	\$686,240
Building and yard construction	inc
Spare parts	\$50,000
Transportation turbine, payment, etc.	\$25,000
Training and turbine commissioning	\$10,000
x	
Total	\$2,014,233

Table C-1. Kaplan Hydroelectric Project Costs

Feasibility study	
Site investigation and survey	\$10,000
Environmental assessment	\$50,000
Preliminary design	\$30,000
Detailed cost estimate	\$20,000
Project management	\$20,000
Development	
Contract negotiations	\$5,000
Permits and approvals	\$5,000
Land rights	inc O&M
Legal and accounting	\$10,000
Engineering	
Site and building design	inc
Mechanical design	inc
Electrical design	\$50,000
Civil design	\$292,993
Construction supervision	inc
Power system	
Hydro turbine	\$ 729,283
Road construction	inc
Transmission line	\$40,000
PMT and recloser	\$30,000
Balance of system and miscellaneous	
Clearing	inc
Earth excavation	inc
Rock excavation	inc
Earthfill dam	inc
Dewatering	inc
Spillway	inc
Intake	inc
Tunnel	inc
Penstock	inc
Powerhouse civil	inc
BOP dam proposal	\$686,240
Building and yard construction	inc
Spare parts	\$50,000
Transportation turbine, payment, etc.	\$25,000
Training and turbine commissioning	\$10,000
Total	\$2,063,516

Appendix D. RETScreen Results

Figure D-1 shows the results for the Kaplan turbine cost data and energy production estimates assuming the 30% cash grant can be achieved.

Financial parameters			Project costs and savings/income s	summary		Yearly	cash flows		
General			Initial costs			Year	Pre-tax	After-tax	Cumulative
Fuel cost escalation rate Inflation rate	%	1.2%				#	-281,960	-281,960	-281.96
Discount rate	%	3.0%				1	206	206	-281,75
Project life	yr	50	Power system 100.0	I% \$	1,409,800	2	1,180	1,180	-280,57
Finance			41			3	2,165 3,162	2,165 3,162	-278,41 -275,24
Incentives and grants	s	(1			5	4,171	4,171	-271,07
Debt ratio	%	80.0%				6	5,192	5,192	-265,88
Debt Equity	S S	1,127,840 281,960			0 1,409,800	7	6,225 7,271	6,225 7,271	-259,65 -252,38
Debt interest rate	%	6.00%		· · ·	1,105,000	9	8,328	8,328	-244,05
Debt term	yr	30				10	9,399	9,399	-234,66
Debt payments	\$/yr	81,936	Annual costs and debt payments			11	10,482 11,577	10,482 11,577	-224,17 -212.60
			0&M	s	35,000	13	12,686	12,686	-199,91
Income tax analysis			Fuel cost - proposed case	s	0	14	13,808	13,808	-186,10
			Debt payments - 30 yrs Total annual costs	\$ \$	81,936 116,936	15 16	14,943 16,092	14,943 16,092	-171,16 -155,07
				•	110,000	17	17,254	17,254	-137,81
			Periodic costs (credits)			18	18,430	18,430	-119,38
						19 20	19,620 20,825	19,620 20,825	-99,76 -78,94
						21	22,043	22,023	-56,90
						22	23,276	23,276	-33,62
			Annual savings and income Fuel cost - base case	s	0	23 24	24,523 25,786	24,523 25,786	-9,10 16,68
Annual income			Electricity export income	s	116,180	25	27,063	27,063	43,74
Electricity export income						26	28,355	28,355	72,10
Electricity exported to grid	MWh S/MWh	1,162 100.00				27 28	29,663 30,986	29,663 30,986	101,76 132,75
Electricity export rate Electricity export income	S/MVVN S	116,180				20	30,900	30,900	165,07
Electricity export escalation rate	%	1.2%		\$	116,180	30	33,680	33,680	198,75
0100 1 (; ;			41			31	116,987	116,987	315,74
GHG reduction income			L			32 33	118,374 119,777	118,374 119,777	434,11 553,89
Net GHG reduction	tCO2/yr	228				34	121,198	121,198	675,09
Net GHG reduction - 50 yrs	tCO2	11,403		%	7.3%	35	122,635	122,635	797,72
			Pre-tax IRR - assets	%	2.2%	36 37	124,089 125,560	124,089 125,560	921,81 1,047,37
			After-tax IRR - equity	%	7.3%	38	127,049	127,049	1,174,42
			After-tax IRR - assets	%	2.2%	39	128,555	128,555	1,302,97
			Simple payback	yr	17.4	40 41	130,079 131,622	130,079 131,622	1,433,05 1,564,67
Customer premium income (rebate)			Equity payback	yr	23.4	42	133,182	133,182	1,697,86
						43	134,761	134,761	1,832,62
			Net Present Value (NPV) Annual life cycle savings	S S/yr	777,636 30,223	44 45	136,359 137,976	136,359 137,976	1,968,98 2,106,95
				Q, y,	00,220	46	139,612	139,612	2,246,56
			Benefit-Cost (B-C) ratio		3.76	47	141,267	141,267	2,387,83
			Debt service coverage Energy production cost	S/MWh	1.00 79.63	48 49	142,942 144,637	142,942 144,637	2,530,77 2,675,41
			GHG reduction cost	\$/tCO2	(133)	50	146,352	146,352	2,821,76
Other income (cost)			Cumulative cash flows graph						
			3,000,000						
Clean Energy (CE) production income			2,500,000						
			2,000,000						7
			\$ 1,500,000						
			1,500,000						
			1,000,000					_	
							/		
			000,000 Crundative						
			0						
			0 1 2 2 4 5 6 7 8 0 40	440404 44 54 647	1910000400000	15262728	20202422222425	26272920404442	24.445.454749.405
			0 1 2 3 4 5 6 7 8 910	1121314101017	10132021222324	- 32 02 1 2 8	20000102000405	303730334041424	0-40490
			-500,000						
			11						

Figure D-1. RETScreen results Kaplan turbine

Figure D-2 shows the results for the Kaplan turbine cost data and energy production estimates assuming the 30% cash grand cannot be utilized.

	Power proj									
Financial parameters General			Project costs and saving Initial costs	gs/income s	summary		Yearl Year	cash flows Pre-tax	After-taz	Cumulative
Fuel cost escalation rate	%	1.2%					*	-402,847	-402,847	\$
Inflation rate Discount rate	× ×	3.0%					1	-402,847 -22,070	-402,847 -22,070	-402,847 -424,917
Project life	yr	50	Power system	100.0%	\$	2,014,233	2	-20,943 -19,803	-20,943 -19,803	-445,860 -465,663
Finance							4	-18,649	-18,649	-484,313
Incentives and grants	\$	0					5	-17,482	-17,482	-501,795
Debt ratio Debt	* \$	80.0%	Balance of system & misc.	0.0%	\$	0	6	-16,301 -15,105	-16,301 -15,105	-518,095 -533,200
Equity	\$	402,847	Total initial costs	100.0%	\$	2,014,233	8	-13,896	-13,896	-547,096
Debt interest rate Debt term	% V	6.00% 30					9 10	-12,672 -11,433	-12,672 -11,433	-559,768 -571,201
Debt payments	\$łyr	117,065	Annual costs and debt p				11	-10,180	-10,180	-581,381
			O&M	ayments	\$	35,000	12	-8,912 -7,629	-8,912 -7,629	-590,294 -597,923
Income tax analysis			Fuel cost - proposed case		\$	0	14	-6,331	-6,331	-604,254
			Debt payments - 30 yrs Total annual costs		\$	117,065 152,065	15 16	-5,018 -3,688	-5,018 -3,688	-609,272 -612,960
			Desis dia anata (ara dias)				17	-2,343 -983	-2,343 -983	-615,304
			Periodic costs (credits)				19	-983 395	-383 395	-616,286 -615,892
							20 21	1,788 3,198	1,788 3,198	-614,104 -610,906
							22	4,624	4,624	-606,281
			Annual savings and inco Fuel cost - base case	me	\$		23 24	6,068 7,529	6,068 7,529	-600,213 -592,685
Annual income			Electricity export income		\$	128,882	25	9,007	9,007	-583,678
Electricity export income Electricity exported to grid	MWh	1,289					26 27	10,502 12,016	10,502 12,016	-573,176 -561,160
Electricity export rate	\$/MWh	100.00					28	13,547	13,547	-547,613
Electricity export income Electricity export escalation rate	\$ %	128,882	Total annual savings ar	d income	\$	128,882	29 30	15,096 16,664	15,096 16,664	-532,517 -515,853
	<i>.</i>		rotar annuar savnigs ar	ia income	•	120,002	31	135,316	135,316	-380,538
GHG reduction income							32	136,921 138,545	136,921 138,545	-243,617 -105,071
Net GHG reduction	tCO2/yr	253	Financial viability				34	140,189	140,189	35,117
Net GHG reduction - 50 yrs	tCO2	12,650	Pre-tax IRR - equity Pre-tax IRR - assets		2	4.4% 0.9%	35 36	141,852 143,534	141,852 143,534	176,969 320,503
							37	145,237	145,237	465,741
			After-tax IRR - equity After-tax IRR - assets		2	4.4% 0.9%	38	146,960 148,703	146,960 148,703	612,701 761,404
							40	150,467	150,467	911,871
Customer premium income (reba	te)		Simple payback Equity payback		yr yr	21.5 33.7	41 42	152,252 154,058	152,252 154,058	1,064,123 1,218,182
··································		_			•		43	155,886	155,886	1,374,068
			Net Present Value (NPV) Annual life cycle savings		\$ \$/yr	385,671 14,989	44 45	157,735 159,606	157,735 159,606	1,531,803 1,691,409
			Benefit-Cost (B-C) ratio		-	1.96	46 47	161,499 163,415	161,499 163,415	1,852,908 2,016,323
			Debt service coverage			0.81	48	165,354	165,354	2,181,677
			Energy production cost GHG reduction cost		\$/MWh \$/tCO2	90.90 (59)	49 50	167,315 169,300	167,315 169,300	2,348,993 2,518,293
Other income (cost)		•			φricoz	[33]	_ 00	103,300	103,300	2,010,200
			Cumulative cash flows g 3,000,000	rapn						
			3,000,000							
			0.500.000							
Clean Energy (CE) production inc	come		2,500,000							
			0.000.000							
			2,000,000							
			1,500,000							/
			lê l							
			4 1,000,000							
			500,000						7	
								/		
				7.0.0.404460	214151517	010002422222	6262220		62720204044404	344454647484950
			- 0123450	78910112	131413101/1	101820212223242		2000132033435	503738584041424	54440404/484800
			-500,000							
			-1,000,000							
						Year				

Figure D-2. Hydroelectric cash flow plots

Appendix E. Geothermal Heat Pump RETScreen Model Results

		Climate data	Project						
1 attack	Unit °N	location	location						
Latitude Longitude	°E	41.3	41.3 -75.7						
Elevation	m	293	293						
Heating design temperature	°C	-13.2	200						
Cooling design temperature	°C	30.0	1						
Earth temperature amplitude	°C	20.9	1						
				Daily solar					
//		Air	Relative	radiation -	Atmospheric		Earth	Heating	Cooling
Month		temperature	humidity	horizontal kWh/m²/d	pressure	Wind speed	temperature °C	degree-days	degree-days °C-d
January		°C -2.9	% 68.3%	1.76	kPa 98.3	m/s 3.7	-5.5	°C-d 648	0
February		-1.3	63.4%	2.54	98.3	3.7	-3.6	540	0
March		2.9	61.6%	3.56	98.2	4.0	1.3	468	0
April		9.3	60.4%	4.61	98.1	3.8	8.4	261	0
May		15.1	65.9%	5.39	98.2	3.4	14.9	90	158
June		19.7	71.0%	5.96	98.2	3.1	20.1	0	291
July		22.1	71.5%	5.88	98.3	2.9	22.3	0	375
August		21.1	73.3%	5.18	98.4	2.7	21.1	0	344
September		16.9	75.6%	4.07	98.5	2.9	16.7	33	207
October		10.7	72.3%	2.92	98.5	3.1	9.8	226	22
November		5.6	69.6%	1.77	98.3	3.5	3.7	372	0
December		-0.2	68.8% 68.5%	1.43 3.76	98.3 98.3	3.6 3.4	-2.4 9.0	564	0
Annual Measured at	m	10.0	00.076	2.70	30.3	3.4 10.0	0.0	3,203	1,397
		-				10.0	0.0		
ssion Analysis									
			GHG emission						
e case electricity system (Baseline)			factor (excl. T&D)	T&D losses	GHG emission factor				
intry - region		Fuel type	tCO2/MWh	%	tCO2/MWh				
ed States of America									
		All types	0.544	0.0%	0.544				
		All types	0.544						
e case losed case		tCO2 tCO2	0.544 43.3 96.6						
e case posed case ess annual GHG emission reduction		tC02 tC02 tC02	0.544 43.3 96.6 -53.3						
e case posed case oss annual GHG emission reduction 3 credits transaction fee		tC02 tC02 tC02 %	0.544 43.3 96.6 -53.3 0.0%	0.0%	0.544	are & linht trucke n	nt liced		
G emission e case posed case pss annual GHG emission reduction 3 credits transaction fee annual GHG emission reduction		tC02 tC02 tC02	0.544 43.3 96.6 -53.3		0.544	ars & light trucks no	ot used		
e case <u>sosed case</u> ses annual GHG emission reduction 3 credits transaction fee annual GHG emission reduction 5 reduction income		tC02 tC02 tC02 % tC02	0.544 43.3 96.6 -53.3 0.0% -53.3	0.0%	0.544	ars & light trucks n	ot used		
e case osed case ss annual GHG emission reduction e credits transaction fee annual GHG emission reduction is reduction income		tC02 tC02 tC02 %	0.544 43.3 96.6 -53.3 0.0%	0.0%	0.544	ars & light trucks n	ot used		
e case lossed case se annual GHG emission reduction caredits transaction fee annual GHG emission reduction g reduction income reduction credit rate		tC02 tC02 tC02 % tC02	0.544 43.3 96.6 -53.3 0.0% -53.3	0.0%	0.544	ars & light trucks ni	ot used		
e case lossed case se annual GHG emission reduction caredits transaction fee annual GHG emission reduction g reduction income reduction credit rate		tC02 tC02 tC02 % tC02	0.544 43.3 96.6 -53.3 0.0% -53.3	0.0%	0.544	ars & light trucks no	ot used		
e case boosed case ses annual GHG emission reduction 3 credits transaction fee annual GHG emission reduction G reduction income 3 reduction credit rate cial Analysis ancial parameters		tC02 tC02 % tC02 \$/tC02	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0%	0.0%	0.544	ars & light trucks ni	bt used		
e case posed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction G reduction income G reduction credit rate cial Analysis ancial parameters tion rate		tC02 tC02 % tC02 \$4 tC02 \$4 C02	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 1.2%	0.0%	0.544	ars & light trucks n	bt used		
e case lossed case se sannual GHG emission reduction c credits transaction fee annual GHG emission reduction G reduction income ireduction credit rate ial Analysis Incial parameters tion rate ct life		tC02 tC02 % tC02 \$/tC02 \$/tC02	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 50	0.0%	0.544	ars & light trucks ni	ot used		
e case lossed case se sannual GHG emission reduction c credits transaction fee annual GHG emission reduction G reduction income ireduction credit rate ial Analysis Incial parameters tion rate ct life		tC02 tC02 % tC02 \$4 tC02 \$4 C02	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 1.2%	0.0%	0.544	ars & light trucks ni	ot used		
e case osed case se annual GHG emission reduction credits transaction fee annual GHG emission reduction i reduction credit rate reduction credit rate ial Analysis notal parameters tion rate ect life ratio		tC02 tC02 % tC02 \$/tC02 \$/tC02	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 50	0.0%	0.544	ars & light trucks ni	ot used		
e case losed case se annual GHG emission reduction credits transaction fee annual GHG emission reduction reduction income i reduction credit rate ial Analysis incial parameters bion rate ct life ratio al costs ing system		tCO2 tCO2 % tCO2 \$ACO2 \$ACO2 \$ACO2 \$ % yr %	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0%	0.0%	0.544	ars & light trucks ni	ot used		
e case osed case se annual GHG emission reduction i credits transaction fee annual GHG emission reduction i reduction income i reduction credit rate iial Analysis incial parameters iion rate ctilife ratio al costs iing system iing system		tC02 tC02 % tC02 \$/tC0	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	0.544	ars & light trucks ni	ot used		
e case osed case se annual GHG emission reduction credits transaction fee annual GHG emission reduction ir eduction income ir eduction credit rate ial Analysis notal parameters bion rate cst life ratio al costs ing system ing system ing		tC02 tC02 % tC02 \$AC02 \$AC02 \$ % yr % \$ \$ \$	0.544 43.3 56.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 250.00	0.0%	0.544	ars & light trucks ni	bt used		
e case osed case se annual GHG emission reduction credits transaction fee annual GHG emission reduction ir eduction income ir eduction credit rate ial Analysis notal parameters bion rate cst life ratio al costs ing system ing system ing		tC02 tC02 % tC02 \$/tC0	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	0.544	ars & light trucks ni	ot used		
e case loosed case se sannual GHG emission reduction c credits transaction fee annual GHG emission reduction G reduction income ireduction credit rate dial Analysis uncial parameters tion rate ct life t ratio al costs ting system ling system al initial costs		tC02 tC02 % tC02 \$AC02 \$AC02 \$ % yr % \$ \$ \$	0.544 43.3 56.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 250.00	0.0%	0.544		ot used	s graph	
e case loosed case se annual GHG emission reduction c credits transaction fee annual GHG emission reduction c reduction income reduction credit rate isid Analysis motial parameters tion rate ct life t ratio al costs ing system ing system al initial costs entives and grants		tC02 tC02 % tC02 \$/tC0	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	-9.8 <u>C</u>			s graph	
e case lossed case se annual GHG emission reduction c redits transaction fee annual GHG emission reduction F reduction income a reduction credit rate ital Analysis incial parameters tion rate act life t ratio al costs ing system er al initial costs entives and grants ual costs and debt payments		tC02 tC02 % tC02 \$/tC0	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	-9.8 C			s graph	
e case lossed case se annual GHG emission reduction c credits transaction fee annual GHG emission reduction c reduction income reduction credit rate reduction credit rate tal Analysis tal Analysis tion rate ctilfe tratio al costs ting system al initial costs entives and grants tual costs and debt payments (casvings) costs		tC02 tC02 % tC02 \$/tC0	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	-9.8 C			s graph	
e case e case sosed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction GHG emission reduction a reduction credit rate enduction credit rate cital Analysis ancial parameters tion rate ect life t ratio al costs ting system ar al initial costs entives and grants f (savings) costs cost - proposed case		tC02 tC02 % tC02 \$AtC02 \$AtC02 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	-9.8 C			s graph	
e case e case sosed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction GHG emission reduction a reduction credit rate enduction credit rate cital Analysis ancial parameters tion rate ect life t ratio al costs ting system ar al initial costs entives and grants f (savings) costs cost - proposed case		tC02 tC02 % tC02 \$/tC02 \$/tC02 \$/tC02 \$/tC02 \$ % yr % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 0.	0.0%	0.544 -9.8 [C 00,000 00,000 00,000			s graph	
e case e case sosed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction G reduction income a reduction credit rate cial Analysis ancial parameters tion rate ect life t ratio al costs ting system ar al initial costs entives and grants fuel costs al costs and debt payments ((savings) costs i cost - proposed case al annual costs		tC02 tC02 % tC02 \$/tC02 \$/tC02 \$/tC02 \$/tC02 \$ % yr % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0.0%	0.544 -9.8 C			s graph	
e case boosed case ses annual GHG emission reduction S credits transaction fee annual GHG emission reduction G reduction income is reduction credit rate cal Analysis ancial parameters tion rate cet life t ratio al costs ting system ing system al initial costs entives and grants tual costs and debt payments (casving s) costs l cost - proposed case al annual costs tual savings and income		tC02 tC02 % tC02 \$/tC02 \$/tC02 \$/tC02 \$/tC02 \$ % yr % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 -53.3 0.00 -53.3 0.0% -53.3 -5.3 -	0.0%	0.544 -9.8 [C 00,000 00,000 00,000			s graph	
e case posed case posed case ses annual GHG emission reduction 3 credits transaction fee annual GHG emission reduction 3 reduction income 3 reduction credit rate cital Analysis ancial parameters tion rate ect life t ratio ling system er al initial costs entives and grants ual costs and debt payments A (savings) costs cost - proposed case al annual costs annual savings and income (cost - base case		tCO2 tCO2 % tCO2 % tCO2 \$AtCO2 \$AtCO2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 250.000 250.000 250.000 250.000 12,476 12,476	0.0%	0.544 -9.8 C	Cum	ulative cash flow		
e case boosed case ses annual GHG emission reduction S credits transaction fee annual GHG emission reduction G reduction income is reduction credit rate cal Analysis ancial parameters tion rate cet life t ratio al costs ting system ing system al initial costs entives and grants tual costs and debt payments (casving s) costs l cost - proposed case al annual costs tual savings and income		tC02 tC02 % tC02 \$/tC02 \$/tC02 \$/tC02 \$/tC02 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 -53.3 0.00 -53.3 0.0% -53.3 -5.3 -	0.0%	0.544 -9.8 C 00.000 00.000 00.000 00.000 00.000	Cum			
e case e case sossed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction G reduction credit rate a reduction credit rate cal Analysis ancial parameters tion rate ect life tratio al costs ting system al initial costs entives and grants fuel costs and debt payments (cost - proposed case al annual costs ual savings and income (cost - base case al annual savings and income		tCO2 tCO2 % tCO2 % tCO2 \$AtCO2 \$AtCO2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 250.000 250.000 250.000 250.000 12,476 12,476	0.0%	0.544 -9.8 C	Cum	ulative cash flow		011423341546774515
e case boosed case ses annual GHG emission reduction S credits transaction fee annual GHG emission reduction G reduction income is reduction credit rate seduction credit rate clai Analysis ancial parameters tion rate cet life t ratio al costs ting system ing system al initial costs entives and grants total costs auai costs and debt payments (costing) costs lecost - proposed case al annual costs auai savings and income lecost - base case al annual savings and income ancial viability		tC02 tC02 % tC02 \$/tC02 \$/tC02 \$/tC02 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.0% -53.3 0.00 -53.3 0.00 -53.3 0.00 -53.3 0.0% -53.3 -5.4 -5.3 -5.5 -5.3 -5.5 -	0.0%	0.544 -9.8 C 00.0000 00.0000 00.000000	Cum	ulative cash flow		2112344247485
e case e case sossed case se annual GHG emission reduction G credits transaction fee annual GHG emission reduction G reduction credit rate a reduction credit rate cal Analysis ancial parameters tion rate ect life tratio al costs ting system al initial costs entives and grants fuel costs and debt payments (cost - proposed case al annual costs ual savings and income (cost - base case al annual savings and income		tCO2 tCO2 % tCO2 % tCO2 \$AtCO2 \$AtCO2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.544 43.3 96.6 -53.3 0.0% -53.3 0.00 1.2% 55 0% 0% 250.000 250.000 250.000 250.000 12,476 12,476	0.0%	0.544 -9.8 C	Cum	ulative cash flow		011121311156074585

Figure E-1. Geothermal heat pump cash flow plots